
A Experiment Details

A.1 Image Modeling

Datasets In Section 5.4, VAEs are modified with GBNF approximate posteriors to model four
datasets: Freyfaces3, Caltech 101 Silhouettes4 [54], Omniglot5 [49], and statically binarized MNIST6

[50]. Details of these datasets are given below.

The Freyfaces dataset contains 1965 gray-scale images of size 28× 20 portraying one man’s face in
a variety of emotional expressions. Following van den Berg et al. [78], we randomly split the dataset
into 1565 training, 200 validation, and 200 test set images.

The Caltech 101 Silhouettes dataset contains 4100 training, 2264 validation, and 2307 test set images.
Each image portrays the black and white silhouette of one of 101 objects, and is of size 28 × 28.
As van den Berg et al. [78] note, there is a large variety of objects relative to the training set size,
resulting in a particularly difficult modeling challenge.

The Omniglot dataset contains 23000 training, 1345 validation, and 8070 test set images. Each image
portrays one of 1623 hand-written characters from 50 different alphabets, and is of size 28 × 28.
Images in Omniglot are dynamically binarized.

Finally, the MNIST dataset contains 50000 training, 10000 validation, and 10000 test set images.
Each 28× 28 image is a binary, and portrays a hand-written digit.

Experimental Setup We limit the computational complexity of the experiments by reducing the
number of convolutional layers in the encoder and decoder of the VAEs from 14 layers to 6. In Table
2 we compare the performance of our GBNF to other normalizing flow architectures. Planar, radial,
and Sylvester normalizing flows (SNF) each use K = 16, with SNF’s bottleneck set to M = 32
orthogonal vectors per orthogonal matrix. IAF is trained with K = 8 transformations, each of which
is a single hidden layer MADE [32] with either h = 256 or 512 hidden units. RealNVP uses K = 8
transformations with either h = 256 or h = 512 hidden units in the Tanh feed-forward network. For
all models, the dimensionality of the flow is fixed at d = 64.

Each baseline model is trained for 1000 epochs, annealing the KL term in the objective function
over the first 250 epochs as in Bowman et al. [6], Sønderby et al. [72]. The gradient boosted models
apply the same training schedule to each component. We optimize using the Adam optimizer [45]
with a learning rate of 1e− 3 (decay of 0.5x with a patience of 250 steps). To evaluate the negative
log-likelihood (NLL) we use importance sampling (as proposed in Rezende et al. [66]) with 2000
importance samples. To ensure a fair comparison, the reported ELBO for GBNF models is computed
by (1)—effectively dropping GBNF’s fixed components term and setting the entropy regularization
to λ = 1.0.

Model Architectures In Section 5.4, we compute results on real datasets for the VAE and VAEs
with a flow-based approximate posterior. In each model we use convolutional layers, where con-
volutional layers follow the PyTorch convention [62]. The encoder of these networks contains the
following layers:

Conv(in = 1, out = 16, k = 5,p = 2, s = 2)

Conv(in = 16, out = 32, k = 5,p = 2, s = 2)

Conv(in = 32, out = 256, k = 7,p = 0, s = 1)

where k is a kernel size, p is a padding size, and s is a stride size. The final convolutional layer is
followed by a fully-connected layer that outputs parameters for the diagonal Gaussian distribution
and amortized parameters of the flows (depending on model).

3http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
4https://people.cs.umass.edu/~marlin/data/caltech101_silhouettes_28_split1.mat
5https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT
6http://yann.lecun.com/exdb/mnist/

15

http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat
https://people.cs.umass.edu/~marlin/data/caltech101_silhouettes_28_split1.mat
https://github.com/yburda/iwae/tree/master/datasets/OMNIGLOT
http://yann.lecun.com/exdb/mnist/

Similarly, the decoder mirrors the encoder using the following transposed convolutions:
ConvT(in = 64, out = 32, k = 7,p = 0, s = 2)

ConvT(in = 32, out = 16, k = 5,p = 0, s = 2)

ConvT(in = 16, out = 16, k = 5,p = 1, s = 1, op = 1)

where op is an outer padding. The decoders final layer is passed to standard 2-dimensional con-
volutional layer to reconstruction the output, whereas the other convolutional layers listed above
implement a gated action function:

hl = (Wl ∗ hl−1 + bl)� σ(Vl ∗ hl−1 + cl),

where hl−1 and hl are inputs and outputs of the l-th layer, respectively, Wl,Vl are weights of the
l-th layer, bl, cl denote biases, ∗ is the convolution operator, σ(·) is the sigmoid activation function,
and � is an element-wise product.

A.2 Density Estimation on Real Data

Dataset For the unconditional density estimation experiments we follow Papamakarios et al. [60],
Uria et al. [77], evaluating on four dataset from the UCI machine learning repository [23] and patches
of natural images from natural images [55]. From the UCI repository the POWER dataset (d = 6,
N =2,049,280) contains electric power consumption in a household over a period of four years, GAS
(d = 8, N =1,052,065) contains logs of chemical sensors exposed to a mixture of gases, HEPMASS
(d = 21, N =525,123) contains Monte Carlo simulations from high energy physics experiments,
MINIBOONE (d = 43, N =36,488) contains electron neutrino and muon neutrino examples. Lastly
we evaluate on BSDS300, a dataset (d = 63, N =1,300,000) of patches of images from the homonym
dataset. Each dataset is preprocessed following Papamakarios et al. [60].

Experimental Setup We compare our results against Glow [46], and RealNVP [20]. We train
models using a small grid search on the depth of the flows K ∈ {5, 10}, the number of hidden units
in the coupling layers H ∈ {10d, 20d, 40d}, where d is the input dimension of the data-points. We
trained using a cosine learning rate schedule with the learning rate determined using the learning
rate range test [71] for each dataset, and similar to Durkan et al. [24] we use batch sizes of 512
and up to 400,000 training steps, stopping training early after 50 epochs without improvement.
The log-likelihood calculation for GBNF follows (7), that is we recursively compute and combine
log-likelihoods for each component.

B Multiplicative Boosting for Density Estimation

The multiplicative GBNF seeks a new component g(c)K that minimizes:

F (ML)(φφφ) = − 1

n

n∑
i=1

[(
log(G

(c−1)
K (xi)) + ρc log(g

(c)
K (xi))

)
− log Γ(c)

]
, (15)

where the partition function Γ(c) ensures the validity of the probabilistic model, and, here in the
multiplicative setting, makes explicitly maintaining the convex combination between G(c−1)

K and
g
(c)
K unnecessary. Since the partition function ensures proper normalization, the component weight
ρc ∈ [0, 1] simply acts as a step size.

B.1 Partition Function

First, note that the partition function is defined as Γ(c) =
∫
x

∏c
j=1(g

(j)
K)ρj (x)p0(x)dx and computing

Γ(c) for GBNF is straightforward since normalizing flows learn self-normalized distributions—and
hence can be computed without resorting to simulated annealing or Markov chains [34]. Moreover,
following standard properties [16, 34], we also inherit a recursive property of the partition function.
To see the recursive property, denote the un-normalized GBNF density as G̃(c)

K , where G̃(c)
K ∝ G

(c)
K

but G̃(c)
K does not integrate to 1. Then, by definition:

Γ(c)G
(c)
K (x) = g

(c)
K (x)ρcG̃

(c−1)
K (x) = Γ(c−1)g

(c)
K (x)ρcG

(c−1)
K (x) ,

16

then, integrating both sides and using
∫
x
G

(c)
K (x)dx = 1 gives

Γ(c) = Γ(c−1)

∫
x

g
(c)
K (x)ρcG

(c−1)
K (x)dx = Γ(c−1)EG(c−1)

K

[
g
(c)
K (x)ρc

]
.

and therefore Γ(c) = Γ(c−1)EG(c−1)
K

[g
(c)
K (x)ρc], as desired.

B.2 Deriving the New Component Update

The objective in (15) represents the loss under the model G(c)
K which followed from minimizing the

forward KL-divergence KL(p∗‖G(c)
K), where G

(c)
K is the normalized approximate distribution and

p∗ the target distribution. To improve (15) with gradient boosting, consider the difference in losses
after introducing a new component g(c)K to the model:

KL(p∗‖G(c−1)
K)−KL(p∗‖G(c)

K) = Ep∗
[

log
p∗(x)

G
(c−1)
K (x)

− log
p∗(x)

G
(c)
K (x)

]

= Ep∗
[

log
G

(c)
K (x)

G
(c−1)
K (x)

]

= Ep∗

log
(g

(c)
K (x))ρcG̃

(c−1)
K (x)

Γc−1EG(c−1)
K

[(g
(c)
K (x))ρc]

× Γc−1

G̃
(c−1)
K (x)

= Ep∗

log
(g

(c)
K (x))ρc

E
G

(c−1)
K

[(g
(c)
K (x))ρc]

= Ep∗

[
log g

(c)
K (x))ρc

]
− logE

G
(c−1)
K

[
g
(c)
K (x))ρc

]
(a)

≥ Ep∗
[
log g

(c)
K (x))ρc

]
− log

(
E
G

(c−1)
K

[g
(c)
K (x)]

)ρc
= ρc

{
Ep∗

[
log g

(c)
K (x)

]
− logE

G
(c−1)
K

[
g
(c)
K (x)

]}
, (16)

where (a) follows by Jensen’s inequality since ρc ∈ [0, 1]. Note that we want to choose the new
component g(c)K (x) so that KL(p∗‖G(c)

K) is minimized, or equivalently, for a fixed G
(c−1)
K , the

difference KL(p∗‖G(c−1)
K)−KL(p∗‖G(c)

K) is maximized. Since ρc ≥ 0, it suffices to focus on the
following maximization problem:

g
(c)
K = arg max

gK∈GK
Ep∗ [log gK(x)]− logE

G
(c−1)
K

[gK(x)] . (17)

If we choose a new component according to:

g
(c)
K (x) =

p∗(x)

G
(c−1)
K (x)

, (18)

then, with this choice of g(c)K , we see that (17) reduces to:

Ep∗
[

log
p∗(x)

G
(c−1)
K (x)

]
− logE

G
(c−1)
K

[
p∗(x)

G
(c−1)
K (x)

]
= KL

(
p∗‖G(c−1)

K

)
− logEp∗(x) [1]︸ ︷︷ ︸

0

.

Our choice of g(c)K , therefore, gives a lower bound to (16) and asKL(p∗‖G(c)
K)→ 0 the optimization

in (18) approaches the maximum achievable value. The solution to (17) can also be understood in
terms of the change-of-measure inequality [1, 22], which also forms the basis of the PAC-Bayes
bound and a certain regret bounds [1].

17

Connection to Boosted Generative Models The solution in (18) not only gives an insightful
description of GBNF as fitting new components to a re-weighted data distribution, but also clarifies
the derivation of the broader class Boosted Generative Models [34]. More specifically, Grover and
Ermon [34] train the new boosting component g(c) to perform maximum likelihood estimation over a
re-weighted data distribution:

g(c) = arg min
g∈G

E
D(c−1)

[− log g] (19)

where D(c−1) denotes a re-weighted data distribution whose samples are drawn with replacement
using sample weights inversely-proportional to G(c−1)

K . In Grover and Ermon [34] the re-weighted
data distribution may include a re-weighting coefficient β ∈ [0, 1] such that:

D(c−1)(x) =

(
c0p
∗(x)

G(c−1)(x)

)β
, (20)

where c0 is the proportionality constant associated with the re-weighted data distribution. In our
analysis it suffices to leave β = 1. We show that, when properly bounded, the objective in (19) shares
an optimal solution with our results from (17).

First, note that g ∈ G needs to be a bounded measurable function, otherwise one can minimize (19)
by scaling g. Hence, (19) is a constrained optimization problem, whose Lagrangian is given by:

L(g, λ) =

∫
x

(− log g(x))
c0p
∗(x)

G(c−1)(x)
dx + λ

(∫
x

g(x)dx− c1)

)
, (21)

where c1 determines the scaling of g, e.g., when c1 = 1, g will be a probability density function.
From the Lagrangian, the optimality condition for any specific g(x) yields:

− 1

ĝ(x)

c0p
∗(x)

G(c−1)(x)
+ λ = 0 ⇒ ĝ(x) =

c0
λ

p∗(x)

G(c−1)(x)
. (22)

Further, the optimality condition for λ yields∫
x

ĝ(x)dx = c1 ⇒ c0
λ

∫
x

p∗(x)

G(c−1)(x)
dx = c1 ⇒ λ =

c0
c1

∫
x

p∗(x)

G(c−1)(x)
dx , (23)

a positive constant. Hence, the optimal solution ĝ(x) for (19) is proportional to (18), the optimal
solution to (17).

Surrogate Losses Further, our analysis reveals the source of a surrogate loss function [2, 58, 59]
which optimizes the global objective—namely, when written as as a minimization problem (18)
corresponds to the weighted negative log-likelihood of the samples. Surrogate loss functions are
common in the boosting framework [2, 7, 26, 27, 28, 68, 70, 75]. Adaboost [26, 27], in particular,
solves a re-weighted classification problem where weak learners, in the form of decision trees, opti-
mize surrogate losses like information gain or Gini index. The negative log-likelihood is specifically
chosen as a surrogate loss function in other boosted probabilistic and density estimation models
which also have f -divergence based global objectives [34, 68], however here we clarify that the
surrogate loss follows from (16).

Convergence Lastly, we note that the analysis of Cranko and Nock [16] highlights important
properties of the broader class of boosted density estimation models that optimize (4), of which both
the additive and multiplicative forms of GBNF are members. Specifically, Remark 3 in Cranko and
Nock [16] shows a sharper decrease in the loss—that is, for any step size ρ ∈ [0, 1] the loss has
geometric convergence:

KL
(
p∗ ||G(c)

K |ρc
)
≤ (1− ρc)KL

(
p∗ ||G(c−1)

K

)
(24)

where G
(c)
K |ρc denotes the explicit dependence of G(c)

K (x) on ρc. Thus GBNF provides a strong
convergence guarantee on the global objective.

18

Algorithm 1: Updating Mixture Weight ρc.
Let: Tolerance ε > 0, and Step-size δ > 0

Initialize weight ρ(0)c = 1/C
Set iteration t = 0

while |ρ(t)c − ρ(t−1)c | < ε do
Draw mini-batch samples z(c−1)K,i ∼ G(c−1)

K (zK | xi) and z
(c)
K,i ∼ g

(c)
K (zK | xi) for i = 1, . . . , n

Compute Monte Carlo estimate of gradient
∇ρcF

(V I)
θ,φ (x) = 1

n

∑n
i=1 γ

(t−1)
ρc (z

(c)
K,i | xi)− γ

(t−1)
ρc (z

(c−1)
K,i | xi)

t = t + 1
ρ
(t)
c = ρ

(t−1)
c − δ∇ρc

ρ
(t)
c = clip(ρ

(t)
c , [0, 1])

return ρ(t)c

C Updating Component Weights for Variational Inference

After g(c)K (zK | x) has been estimated, the mixture model still needs to estimate ρc ∈ [0, 1]. Similar
to the density estimation setting, the weights on each component can be updated by taking the
gradient of the loss F (V I)

φ,θ (x) with respect to ρc. Recall that G(c)
K (zK | x) can be written as the

convex combination:

G
(c)
K (zK | x) =(1− ρc)G(c−1)

K (zK | x) + ρcg
(c)
K (zK | x)

= ρc

(
g
(c)
K (zK | x)−G(c−1)

K (zK | x)
)

+G
(c−1)
K (zK | x) ,

Then, with ∆
(c)
K (zK | x) , g

(c)
K (zK | xi)−G(c−1)

K (zK | xi), the objective function F (V I)
θ,φ (x) can

be written as a function of ρc:

F (V I)
θ,φ (x) =

n∑
i=1

〈
ρc∆

(c)
K (zK | xi) +G

(c−1)
K (zK | xi),− log pθ(xi, zK)

〉
+

n∑
i=1

〈
ρc∆

(c)
K (zK | xi) +G

(c−1)
K (zK | xi), log

(
ρc∆

(c)
K (zK | xi) +G

(c−1)
K (zK | xi)

)〉
.

(25)

The above expression can be used in a black-box line search method or, as we have done, in a
stochastic gradient descent algorithm 1. Toward that end, taking gradient of (25) w.r.t. ρc yields the
component weight updates:

∂F (V I)
φ,θ

∂ρc
=

n∑
i=1

(
E

g
(c)
K (zK |xi)

[
γ(t−1)ρc (zK | xi)

]
− E
G

(c−1)
K (zK |xi)

[
γ(t−1)ρc (zK | xi)

])
, (26)

where we’ve defined:

γ(t−1)ρc (zK | xi) , log

(
(1− ρ(t−1)c)G

(c−1)
K (zK | xi) + ρ

(t−1)
c g

(c)
K (zK | xi)

pθ(xi, zK)

)
.

To ensure a stable convergence we follow Guo et al. [35] and implement an SGD algorithm with a
decaying learning rate.

Updating a component’s weight is only needed once after each component converges. We find,
however, that results improve by “fine-tuning” each component and their weights with additional
training after the initial training pass. During the fine-tuning stage, we sequentially retrain each
component g(i)K for i = 1, . . . , c, during which we treatG(−i)

K as fixed where−i represents the mixture
of all other components: 1, . . . , i− 1, i+ 1, . . . c. Figure 1 demonstrates this phenomenon: when a

19

single flow is not flexible enough to model the target, mode-covering behavior arises. Introducing
the second component trained with the boosting objective improves results, and consequently the
second component’s weight is increased. Fine-tuning the first component leads to a better solution
and assigns equal weight to the two components.

20

