
Appendix—Graph Random Neural Networks for
Semi-Supervised Learning on Graphs

Contents

A Reproducibility 1

A.1 Datasets Details . 1

A.2 Implementation Details . 1

A.3 Hyperparameter Details . 2

B Theorem Proofs 3

B.1 Proof for Theorem 1 . 3

B.2 Proof for Theorem 2 . 3

C Additional Experiments 4

C.1 Results on Large Datasets . 4

C.2 Efficiency Analysis . 4

C.3 Parameter Sensitivity . 4

C.4 DropNode vs Dropout . 5

C.5 GRAND vs. GRAND_GCN & GRAND_GAT . 6

C.6 Performance of GRAND under different label rates 6

A Reproducibility

A.1 Datasets Details

Table 2 summarizes the statistics of the three benchmark datasets — Cora, Citeseer and Pubmed. Our
preprocessing scripts for Cora, Citeseer and Pubmed is implemented with reference to the codes of
Planetoid [10]. We use exactly the same experimental settings—such as features and data splits—on
the three benchmark datasets as literature on semi-supervised graph mining [10, 5, 9] and run 100
trials with 100 random seeds for all results on Cora, Citeseer and Pubmed reported in Section 4. We
also evaluate our method on six publicly available and large datasets, the statistics and results are
summarized in Appendix C.1.

A.2 Implementation Details

We make use of PyTorch to implement GRAND and its variants. The random propagation proce-
dure is efficiently implemented with sparse-dense matrix multiplication. The codes of GCN and

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Table 2: Benchmark Dataset statistics.
Dataset Nodes Edges Train/Valid/Test Nodes Classes Features

Cora 2,708 5,429 140/500/1,000 7 1,433
Citeseer 3,327 4,732 120/500/1,000 6 3,703
Pubmed 19,717 44,338 60/500/1,000 3 500

GRAND_GCN are implemented referring to the PyTorch version of GCN 1. As for GRAND_GAT
and GAT, we adopt the implementation of GAT layer from the PyTorch-Geometric library 2 in our
experiments. The weight matrices of classifier are initialized with Glorot normal initializer [2]. We
employ Adam [4] to optimize parameters of the proposed methods and adopt early stopping to control
the training epochs based on validation loss. Apart from DropNode (or dropout [8]) used in random
propagation, we also apply dropout on the input layer and hidden layer of the prediction module used
in GRAND as a common practice of preventing overfitting in optimizing neural network. For the
experiments on Pubmed, we also use batch normalization [3] to stabilize the training procedure. All
the experiments in this paper are conducted on a single NVIDIA GeForce RTX 2080 Ti with 11 GB
memory size. Server operating system is Unbuntu 18.04. As for software versions, we use Python
3.7.3, PyTorch 1.2.0, NumPy 1.16.4, SciPy 1.3.0, CUDA 10.0.

A.3 Hyperparameter Details

Overall Results in Section 4.2. GRAND introduces five additional hyperparameters, that is the
DropNode probability δ in random propagation, propagation step K, data augmentation times S
at each training epoch, sharpening temperature T when calculating consistency regularization loss
and the coefficient of consistency regularization loss λ trading-off the balance between Lsup and
Lcon. In practice, δ is always set to 0.5 across all experiments. As for other hyperparameters, we
perform hyperparameter search for each dataset. Specifically, we first search K from { 2,4,5,6,8}.
With the best selection of K, we then search S from {2,3,4}. Finally, we fix K and S to the best
values and take a grid search for T and λ from {0.1, 0.2, 0.3,0.5} and {0.5, 0.7, 1.0} respectively.
For each search of hyperparameter configuration, we run the experiments with 20 random seeds and
select the best configuration of hyperparameters based on average accuracy on validation set. Other
hyperparameters used in our experiments includes learning rate of Adam, early stopping patience,
L2 weight decay rate, hidden layer size, dropout rates of input layer and hidden layer. We didn’t
spend much effort to tune these hyperparameters in practice, as we observe that GRAND is not very
sensitive with those. Table 3 reports the best hyperparameters of GRAND we used for the results
reported in Table 1.

Table 3: Hyperparameters of GRAND for results in Table 1.
Hyperparameter Cora Citeseer Pubmed

DropNode probability δ 0.5 0.5 0.5
Propagation step K 8 2 5

Data augmentation times S 4 2 4
CR loss coefficient λ 1.0 0.7 1.0

Sharpening temperature T 0.5 0.3 0.2
Learning rate 0.01 0.01 0.2

Early stopping patience 200 200 100
Hidden layer size 32 32 32

L2 weight decay rate 5e-4 5e-4 5e-4
Dropout rate in input layer 0.5 0.0 0.6

Dropout rate in hidden layer 0.5 0.2 0.8

Robustness Analysis in Section 4.5. For random attack, we implement the attack method with
Python and NumPy library. The propagation step K of GRAND (with or without CR) is set to 5.
And the other hyperparameters are set to the values in Table 3. As for Metattack [11], we use the
publicly available implementation3 published by the authors with the same hyperparameters used in

1https://github.com/tkipf/pygcn
2https://pytorch-geometric.readthedocs.io
3https://github.com/danielzuegner/gnn-meta-attack

2

https://github.com/tkipf/pygcn
https://pytorch-geometric.readthedocs.io
https://github.com/danielzuegner/gnn-meta-attack

the original paper. We observe GRAND (with or without CR) is sensitive to the propagation step K
under different perturbation rates. Thus we search K from {5,6,7,8} for each perturbation rate. The
other hyperparameters are fixed to the values reported in Table 3.

Other Experiments. For the other results reported in Section 4.2 -4.6, the hyperparameters used
in GRAND are set to the values reported in Table 3 with one or two changed for the corresponding
analysis.

Baseline Methods. For the results of GCN or GAT reported in Section 4.5-4.6, the learning rate is
set to 0.01, early stopping patience is 100, L2 weight decay rate is 5e-4, dropout rate is 0.5. The
hidden layer size of GCN is 32. For GAT, the hidden layer consists 8 attention heads and each head
consists 8 hidden units.

B Theorem Proofs

B.1 Proof for Theorem 1

Proof. The expectation of Lcon is:

1

2

n−1∑
i=0

E
[
(z̃

(1)
i − z̃

(2)
i)2

]
=

1

2

n−1∑
i=0

E
[(

(z̃
(1)
i − zi)− (z̃

(2)
i − zi)

)2]
. (7)

Here zi = sigmoid(AiX ·W), z̃i = sigmoid(AiX̃ ·W). For the term of z̃i−zi, we can approximate
it with its first-order Taylor expansion around AiX ·W, i.e., z̃i− zi ≈ zi(1− zi)(Ai(X̃−X) ·W).
Applying this rule to the above equation, we have:

1

2

n−1∑
i=0

E
[
(z̃

(1)
i − z̃

(2)
i)2

]
≈ 1

2

n−1∑
i=0

z2i (1− zi)2E
[
(Ai(X̃

(1) − X̃(2)) ·W)2
]

=

n−1∑
i=0

z2i (1− zi)2Varε
(
AiX̃ ·W

)
.

(8)

B.2 Proof for Theorem 2

Proof. Expanding the logistic function, Lorg is rewritten as:

Lorg =

m−1∑
i=0

[
−yiAiX ·W +A(Ai,X)

]
, (9)

where A(Ai,X) = − log
(

exp(−AiX·W)

1+exp(−AiX·W)

)
. Then the expectation of perturbed classification loss

can be rewritten as:

Eε(Lsup) = Lorg +R(W), (10)

where R(W) =
∑m−1
i=0 Eε

[
A(Ai, X̃)−A(Ai,X)

]
. Here R(W) acts as a regularization term

for W. To demonstrate that, we can take a second-order Taylor expansion of A(Ai, X̃) around
AiX ·W:

Eε
[
A(Ai, X̃)−A(Ai,X)

]
≈ 1

2
A

′′
(Ai,X)Varε

(
AiX̃ ·W

)
. (11)

Note that the first-order term Eε
[
A′

(Ai,X)(X̃−X)
]

vanishes since Eε(X̃) = X. We can easily

check that A′′
(Ai,X) = zi(1− zi). Applying this quadratic approximation toR(W) , we get the

quadratic approximation form ofR(W):

R(W) ≈ Rq(W) =
1

2

m−1∑
i=0

zi(1− zi)Varε(AiX̃ ·W). (12)

3

C Additional Experiments

C.1 Results on Large Datasets

Table 4: Statistics of Large Datasets.
Classes Features Nodes Edges

Cora-Full 67 8,710 18,703 62,421
Coauthor CS 15 6,805 18,333 81,894

Coauthor Physics 5 8,415 34,493 247,962
Aminer CS 18 100 593,486 6,217,004

Amazon Computers 10 767 13,381 245,778
Amazon Photo 8 745 7,487 119,043

We also evaluate our methods on six relatively large datasets, i.e., Cora-Full, Coauthor CS, Coauthor
Physics, Amazon Computers, Amazon Photo and Aminer CS. The statistics of these datasets are
given in Table 4. Cora-Full is proposed in [1]. Coauthor CS, Coauthor Physics, Amazon Computers
and Amazon Photo are proposed in [7]. We download the processed versions of the five datasets
here4. Aminer CS is extracted from the DBLP data downloaded from https://www.aminer.cn/
citation. In Aminer CS, each node corresponds to a paper in computer science, and edges represent
citation relations between papers. These papers are manually categorized into 18 topics based on
their publication venues. We use averaged GLOVE-100 [6] word vector of paper abstract as the node
feature vector. Our goal is to predict the corresponding topic of each paper based on feature matrix
and citation graph structure.

Following the evaluation protocol used in [7], we run each model on 100 random train/validation/test
splits and 20 random initializations for each split (with 2000 runs on each dataset in total). For each
trial, we choose 20 samples for training, 30 samples for validation and the remaining samples for
test. We ignore 3 classes with less than 50 nodes in Cora-Full dataset as done in [7]. The results are
presented in Table 5. The results of GCN and GAT on the first five datasets are taken from [7]. We
can observe that GRAND significantly outperforms GCN and GAT on all these datasets.

Table 5: Results on large datasets.

Method Cora
Full

Coauthor
CS

Coauthor
Physics

Amazon
Computer

Amazon
Photo

Aminer
CS

GCN 62.2 ± 0.6 91.1 ± 0.5 92.8 ± 1.0 82.6 ± 2.4 91.2 ± 1.2 49.9 ± 2.0
GAT 51.9 ± 1.5 90.5 ± 0.6 92.5 ± 0.9 78.0 ± 19.0 85.7 ± 20.3 49.6 ± 1.7

GRAND 63.5 ±0.6 92.9 ± 0.5 94.6 ± 0.5 85.7 ± 1.8 92.5 ± 1.7 52.8 ± 1.2

C.2 Efficiency Analysis

The efficiency of GRAND is mainly influenced by two hyperparameters: the propagation step K
and augmentation times S. Figure 5 reports the average per-epoch training time and classification
accuracy of GRAND on Cora under different values of K and S with #training epochs fixed to 1000.
It also includes the results of the two-layer GCN and two-layer GAT with the same learning rate,
#training epochs and hidden layer size as GRAND.

From Figure 5, we can see that when K = 2, S = 1, GRAND outperforms GCN and GAT in terms of
both efficiency and effectiveness. In addition, we observe that increasing K or S can significantly
improve the model’s classification accuracy at the cost of its training efficiency. In practice, we can
adjust the values of K and S to balance the trade-off between performance and efficiency.

C.3 Parameter Sensitivity

We investigate the sensitivity of consistency regularization (CR) loss coefficient λ and DropNode
probability δ in GRAND and its variants on Cora. The results are shown in Figure 6. We observe that

4https://github.com/shchur/gnn-benchmark

4

https://www.aminer.cn/citation
https://www.aminer.cn/citation
https://github.com/shchur/gnn-benchmark

1 2 3 4 5 6 7 8 9 10

Propagation Step K

5

10

15

20

25

30

35

40

45

T
im

e
(m

s)

2-layer GCN

2-layer GAT

Grand, S=1

Grand, S=2

Grand, S=3

Grand, S=4

(a) Per-epoch Training Time

1 2 3 4 5 6 7 8 9 10

Propagation Step K

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

u
ra

cy

2-layer GCN

2-layer GAT

Grand, S=1

Grand, S=2

Grand, S=3

Grand, S=4

(b) Classification Accuracy

Figure 5: Efficiency Analysis for GRAND.

0.1 0.3 0.5 0.7 0.9

CR Loss Coefficient λ

0.830

0.835

0.840

0.845

0.850

A
cc

u
ra

cy

Grand

Grand GCN

Grand GAT

(a) CR loss coefficient λ

0.1 0.3 0.5 0.7

DropNode Probability δ

≤ 0.82

0.83

0.84

0.85

0.86

A
cc

u
ra

cy

Grand

Grand GCN

Grand GAT

(b) DropNode probability δ

Figure 6: Parameter sensitivity of λ and δ on Cora.

their performance increase when enlarging the value of λ. As for DropNode probability, GRAND,
GRAND_GCN and GRAND_GAT reach their peak performance at δ = 0.5. This is because the
augmentations produced by random propagation in that case are more stochastic and thus make
GRAND generalize better with the help of consistency regularization.

C.4 DropNode vs Dropout

1 5 10

Propagation Step

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(a) Cora

1 5 10

Propagation Step

≤ 0.6

0.64

0.68

0.72

0.76

A
cc

u
ra

cy

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(b) Citeseer

1 5 10

Propagation Step

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

A
cc

u
ra

cy

Grand

Grand dropout

Grand (w/o CR)

Grand dropout (w/o CR)

(c) Pubmed

Figure 7: GRAND vs. GRAND_dropout.

We compare GRAND and GRAND_dropout under different values of propagation step K. The results
on Cora, Citeseer and Pubmed are illustrated in Figure 7. We observe GRAND always achieve better

5

performance than GRAND_dropout, suggesting DropNode is much more suitable for graph data
augmentation.

1 2 3 4 5 6 7 8 9 10

Propagation Step

0.66

0.68

0.70

0.72

0.74

0.76

0.78
M

A
D

G
ap

Grand

Grand GCN

Grand GAT

(a) MADGap

1 2 3 4 5 6 7 8 9 10

Propagation Step

0.80

0.81

0.82

0.83

0.84

0.85

A
cc

u
ra

cy

Grand

Grand GCN

Grand GAT

(b) Classification Results

Figure 8: Over-smoothing: GRAND vs. GRAND_GCN & GRAND_GAT on Cora.

C.5 GRAND vs. GRAND_GCN & GRAND_GAT

As shown in Table 1, GRAND_GCN and GRAND_GAT get worse performances than GRAND,
indicating GCN and GAT perform worse than MLP under the framework of GRAND. Here we
conduct a series of experiments to analyze the underlying reasons. Specifically, we compare the
MADGap values and accuracies GRAND, GRAND_GCN and GRAND_GAT under different values of
propagation step K with other parameters fixed. The results are shown in Figure 8. We find that the
MADGap and classification accuracy of GRAND increase significantly when enlarging the value of
K. However, both the metrics of GRAND_GCN and GRAND_GAT have little improvements or even
decrease. This indicates that GCN and GAT have higher over-smoothing risk than MLP.

C.6 Performance of GRAND under different label rates

We have conducted experiments to evaluate GRAND under different label rates. For each label rate
setting, we randomly create 10 data splits, and run 10 trials with random initialization for each split.
We compare GRAND with GCN and GAT. The results are shown in Table 6. We observe that GRAND
consistently outperforms GCN and GAT across all label rates on three benchmarks.

Table 6: Classification Accuracy under different label rates (%).
Dataset Cora Citeseer Pubmed

Label Rate 1% 3% 5% 1% 3% 5% 0.1% 0.3% 0.5%

GCN 62.8±5.3 76.1±1.9 79.6±2.1 63.4±2.9 70.6±1.7 72.2±1.1 71.5±2.1 77.5±1.8 80.8±1.5

GAT 64.3±5.8 77.2±2.4 80.8±2.1 64.4±2.9 70.4±1.9 72.0±1.3 72.0±2.1 77.6±1.6 80.6±1.2

GRAND 69.1±4.0 79.5±2.2 83.0±1.6 65.3±3.3 72.3±1.8 73.8±0.9 74.7±3.4 81.4±2.1 83.8±1.3

References
[1] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-

pervised inductive learning via ranking. In ICLR, 2017.

[2] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS’10, 2010.

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. ICML’15, 2015.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR’14,
2014.

6

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907, 2016.

[6] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP’14, 2014.

[7] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[8] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. JMLR, 2014.

[9] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ICLR’18, 2018.

[10] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. ICML’16, 2016.

[11] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. ICLR’19, 2019.

7

	Reproducibility
	Datasets Details
	Implementation Details
	Hyperparameter Details

	Theorem Proofs
	Proof for Theorem 1
	Proof for Theorem 2

	Additional Experiments
	Results on Large Datasets
	Efficiency Analysis
	Parameter Sensitivity
	DropNode vs Dropout
	Grand vs. Grand_GCN & Grand_GAT
	Performance of Grand under different label rates

