Uncertainty-Aware Learning for Zero-Shot Semantic Segmentation —Supplementary Material—

1 Bayesian Regression for DICE Coefficient.

The L-1 regression problem can be interpreted as maximum likelihood with a Laplacian error model.

$$P(t_i|x_i, \mathcal{L}) = \frac{1}{2\sigma(x_i)} exp(-\frac{|t_i - y(x_i)|}{\sigma(x_i)})$$
(1)

where x_i is the input, t_i is the target output, $y(x_i)$ and $\sigma(x_i)$ are the estimated mean and scale based on x_i respectively. By taking negative log on Eq. 1, we have,

$$-\ln P(t_i|x_i,\mathcal{L}) = \frac{1}{\sigma(x_i)} \cdot |t - y(x_i)| + \ln(\sigma(x_i)) + \ln(2)$$

$$\tag{2}$$

which needs to be minimized. The last term $\ln(2)$ is a constant, thus can be ignored. As a result we get the Bayesian regression loss with Laplacian error,

$$\mathcal{L} = \frac{1}{\sigma(x_i)} \cdot |t - y(x_i)| + \ln(\sigma(x_i))$$
(3)

2 Effect of λ

	PC-30		PC-156		ADE-75		
	Overall	Unseen		Overall	Unseen	Overall	Unseen
$\lambda = 0.0$	36.0	17.1		23.1	12.1	25.3	13.9
$\lambda = 0.05$	36.5	18.6		23.8	13.3	25.8	15.2
$\lambda = 0.5$	36.5	17.9		23.9	13.6	25.6	14.5
$\lambda = 1.0$	36.4	17.6		23.8	12.4	25.3	13.8

Table 1: Effect of λ in Eq.(2) of the paper. As we can see, a too large or too small value for λ decreases the unseen-class performance.