Supplements for Quantile Propagation for Wasserstein-Approximate Gaussian Processes.

A Minimization of L, WD between Univariate Gaussian and Non-Gaussian
Distributions

In this section, we derive the formulas of the optimal p* and o* for the Ly, WD, i.e., Eqn. (5). Recall
the optimization problem: we use a univariate Gaussian distribution N'(f|u, 0?) to approximate a
univariate non-Gaussian distribution ¢(f) by minimizing the Ly WD between them:

man2 o, N) = Inln/ ’F — pu—20erf ™ (2y — 1) dy,
n,o

where F~ ! is the quantile function of the non-Gaussian distribution ¢, namely the pseudoinverse

function of the corresponding cumulative distribution function F, defined in Proposition 1.

To solve this problem, we first calculate derivatives about y and o:

OW3 g -1
e —2 [ F;'(y) — p— V2oerf ' (2y — 1) dy,
0

OW3
oo

Then, by zeroing derivatives, we obtain the optimal parameters:

/ F; —V2gerf 1 (2y — 1) dy

:/_Oox( dx——a/ erf*(

—\/50/ xN(2]0,1/2) dz

= —2/0 (F ' (y) —p— V2oerf ! (2y — 1))V2erf  (2y — 1) dy.

a*:x/ﬁ/l(Fql( perf=(2y — 1) dy// (erf")2(2y — 1) dy
—f/ y)erf ! dy// 222N (2]0,1/2) da

=1

—\f/ ylerf 1 (2y — 1) dy
_ 3 / ferf L (2F,(f) — 1) dF,(f)

_ /L/OO Fde—let @R (D1
27 J_ o
/1 [ -
=04 %/ o[t~ (2F7 () -1 df. (8)

B Minimization of L, WD between Univariate Gaussian and Non-Gaussian
Distributions

In this section, we describe a gradient descent approach to minimizing an L, WD, for p # 2, in
order to handle cases with no analytical expressions for the optimal parameters. Our goal is to use a
univariate Gaussian distribution A'( f|u, o) to approximate a univariate non-Gaussian distribution
q(f). Specifically, we seek the minimiser in & and o of Wg(q7 N); the derivatives of the objective
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function about y and o are:

@W%vﬁéMm“@mw»@=w[§wm”@mmmum%
%W%rwﬁka*wwwMW%w—nwzﬂ%fmmw%@wwmﬂ@&m—m«mm.

where for simplification, we define e(y) = F, '(y) — p — V2oerf 1 (2y — 1) and n(z) = = —
w—+/20erf *(2F,(z) — 1), with F, and F ;! being the CDF and the quantile function of ¢. Note
the derivatives have no analytical expressions. However, if the CDF F is available, we can use
the standard numerical integration routines; otherwise, we resort to Monte Carlo sampling. In the
framework of EP or QP, ¢(z) o< ¢\*(x)p(y;|x) and ¢\* is Gaussian, so we may draw samples from a
Gaussian proposal distribution to obtain a simple Monte Carlo method.

C Computations for Different Likelihoods

Given the likelihood p(y| f) and the cavity distribution ¢\*(f) = N'(f|u, 0?), a stable way to compute
the mean and the variance of the tilted distribution g(f) = p(y|f)q\*(f)/Z where the normalizer
Z = f p(y|f)q\(f) df, can be found in the software manual of Rasmussen and Williams [47].
We present the key formulae below, for use in subsequent derivations:

%Z:[ f(;”p(ylf)/\/(fluﬂ) df
o0uZ 1 [ pylIN(flp,o?) [ pylHIN (flu, %)
ST e S A T I v

Z o2
oz 1 1
A
20,7
:ugza; +u:J28#logZ—|—u7

9 > 1 2 f_MZ 2
sz = [ —Lolowinet + (LE) sooniine

— 00
%Z:f”_1+ L2 PN o)
— 00 O'2 0’4 0'4 0'4 7
482Z 12 2 9y 24
7 = ot gt oalogtug) - qng
A S R ey () R § ig'f‘ 0,2\>
Z 0'2 0’4 0'4 0-2 0-4 Z

C.1 Probit Likelihood for Binary Classification

For the binary classification with labels y € {—1, 1}, the PDF of the tilted distribution g( f) with the
probit likelihood is provided by Rasmussen and Williams [47]:

~N =1 o2 — P(2). »— H
q(f) = Z2(fy)N(flp,0%), Z=2(2), ViTor

and the mean estimate also has a closed form expression:
. 9N
po=ha = d(2)yvV1+ 02
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As per Equation (5), the computation of the optimal o* requires the CDF of ¢, denoted as Fj. For
positive y > 0, the CDF is derived as

Frmo@) =27 [ @ ()N (fln.o?) af
71 rp pr—p 1 T —2 4 52 =2
- 2oy /,OO /,OO eXP <_2 {I}]] [U v_za 2—2] [Sﬂ) dwdf
L k ok w T
.y 1/00/OON(M 0,[_/) 1]) dw df

1

k+ ph 1 h + pk
“Oh)-T|\hy——eex= | +:Pk)-T |k, ———xx | +
S0(h) ( ’ 1p2> 5 2() ( - ﬁﬁ) n]

- 1
h=—t =L v A p 0,

Vo241’ o’ pi\/1—|—1/02’

where the step (a) is obtained by exploiting the work of Owen [45] and T'(-, ) is the Owen’s T
function:

@ 71

dx,

1 [ — (1 +22)Rh?/2
T(h7a):7/ exp |~ (1+2)h%/2]
27T 0 1+$2
and 7 is defined as
_J0 hk >0or(hk =0and h + k > 0),
n= —0.5 otherwise.

Similarly, for y < 0, the CDF is

1 k + ph 1 h + pk
—®h)+T|h——— | — =)+ T |k, ——— | — 1] .
S®(h) ( ’ Tﬁ) S 8(k) ( - sz> 77]

Summarizing the two cases, we get the closed form expression of Fy:

Fyy<o(z) =27}

L k + ph y h+ pk

1|1 k y h
=7 Z0((h) —yT [ h,————— Yok) —yT | b, — e .
520~y (h,h %1_[)24-0)4—2 (k) —y (kk ﬁ_p2+o>+yn

Provided the above, the optimal o* can be computed by numerical integration of Eqn (8). For special
cases, we provide additional formulas:

2= 07 0: Fya) = 27 |3 = B0 4 Loy - 1k, 0) 4 )
@) # 0 =03 Fye) =2 | 300 ~ (o) + § = PEED gy

1
B)x=p, p=0:Fzz) = s %arctan(a).

C.2 Square Link Function for Poisson Regression

Consider Poisson regression, which uses the Poisson likelihood p(y|g) = g¥ exp(—g)/y! to model
count data y € N, with the square link function g(f) = f2 [56, 15]. We use the square link
function because it is more mathematically convenient than the exponential function. Given the cavity
distribution ¢\'(f) = N'(f|u,0?), we want the tilted distribution g(f) = ¢\*(f)p(y|g(f))/Z where
the normalizer Z is derived as:

Z= /_OC 0" (f)p(ylg) df
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:/oo L oo (W> fP exp(—f2)/y! df

—oo V2102 202
) 1 T gy _(f—u/(1+202))2>
 V2ro2ylexp(p2/(1 + 202)) /_oo I exp ( 202 /(1 + 202) df

( 202 )y+%
Ti202 1 1 2
o r (y + ) 1F1 (y; 5 M)

B V2ro?ylexp(u2/(1+ 202)) 2 2" 202%(1+202)

avts F<+1>F< 1 h)
= T . . yrg Y5753 )
V2ra?ylexp(h) 2) ! 2" 207

- 20.2 e /1/2
14202 7 14202
where the step (a) rewrites the product of two exponential functions into the form of the Gaus-

sian distribution, (b) is achieved through Mathematica [59], T'(-) is the Gamma function and

2 . . . .
1Fi | —v; %; —% is the confluent hypergeometric function of the first kind. Furthermore, we

9

(07

compute the first derivative of log Z w.r.t. iz and then the mean of the tilted distribution:

y1Fy (—y+ 153 —58) 2
Oulog Z = 1 i -1 5
021y (—y; 55— o) 1+20

= ug = 026H log Z + p.
Fy(—y+1;2; -2, 9
92log Z = 3“21( v Ligizgs)
02 1F1 (—y 33— 307)
2
21— y)1Fy (—y+2; 5 —52) L2k (—y+1;3;—5=) 202y
31F1 (—y; 55— ) By (—yp b —5l)” ) ot (L4 202)2

T 202

== 0;1% = 0483 log Z + o2

Finally, we derive the CDF of the tilted distribution ¢ by using the binomial theorem:

R =27 [ " PN (flu. o) df

— 00

., /; e (_ (f2;5//((11 : 22;;)))“‘) df

p—) 2y 2

- " !

‘A/,w (f +1+2o2> eXp<‘202/<1+202>>df
m—ﬂ 2y

af ) (£)o

2y 0 2 z—f
=42 (2;;”) g l e <—J;) df + /O f*exp

z1 \ 1 1 n\]! 7
N S R
V2ro2ylexp(u? /(1 + 202)) [ YT ) Ty T g2 g 1+ 202

where the step (a) has been derived in (a) of Eqn. (9), (b) applies the binomial theorem and (c)
is obtained through Mathematica [59]. And, the function I'(a, z) = fzoo t¢~le~t dt is the upper
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incomplete gamma function and sgn(z) is the sign function, equaling 1 when z > 0, 0 when = 0
and —1 when z < 0.

D Proof of Convexity

Theorem Given two probability measures in M? (R): a Gaussian A(y1,0?) with mean y and
standard deviation o > 0, and an arbitrary measure g, the L, WD W/ (q, N) is strictly convex about
pand o.

Proof. Let Fq:l(y) and Fi/' (y) = p + v20erf ™' (2y — 1), y € [0,1], be the quantile functions
of ¢ and the Gaussian A/, where erf is the error function. Then, we consider two distinct Gaussian
measures N (111, 0%) and N (u2,03) and a convex combination w.r.t. their parameters N (a1 p; +
azpiz, (@101 + azoq)?) with aj,as € Ry and a; + az = 1. Given the above, we further define
ex(y) = F= ' (y) — pi — opv/2erf 1 (2y — 1), k = 1, 2, for notational simplification, and derive the

q
convexity as:

a 1 (b) 1
WP(q, N (a1p + azpa, (101 + a202)%)) @ / la1€1(y) + azea(y)|P dy < / (a1le1(y)|+
0 0

(©) B _
aslea(y)))? dy < ayWE(G, N (p1,07)) + a2 Wh(G, N (2, 03)),

where steps (a), (b) and (c) are obtained by applying Proposition 1, non-negativity of the absolute
value, and the convexity of f(z) = zP, p > 1, over R, respectively. The equality at (b) holds iff
er(y) > 0,k = 1,2,Yy € [0,1], and (¢)’s equality holds iff |¢1(y)| = |e2(y)|, Vy € [0, 1]. These
two conditions for equality can’t be attained simultaneously as otherwise it would contradict that
N (p1,01) is different from NV (p2, 03). So, WP (g, N), p > 1, is strictly convex about yand 0. [J

E Proof of Variance Difference

Theorem The variance of the Gaussian approximation to a univariate tilted distribution ¢( f) as
estimated by QP and EP satisfy 03, < ogp.

Proof.  Let N'(uqp, aép) be the optimal Gaussian in QP. As per Proposition 1, we reformulate the
Ly WD based projection W3 (g, N (pugp, ogp)) W.r.t. quantile functions:

1 1
W%(@N(uop,aép)h/o \qul(y)—qu—ﬁUQperf‘l(Qy—l)lzdy:/o (F7 ' (y)—pop)?
—_——
o
+(V20qperf ™ (2y—1))* —2(F;* (y) — pgp) V20qperf ™ (2y—1) dy=02p—0gp,

G (A)

where for (A), we used f ,quanerf_1 (2y — 1) dy = 0 and the remaining factor can be easily shown
to be equal to 20(22}). Furthermore, due to the non-negativity of the WD, we have o2, > O'%P, and the
equality holds iff ¢ is Gaussian. O

F Proof of Locality Property

Theorem Minimization of W3 (g(f), N(f)) w.r.t. N(f) results in ¢\ (fi;]f;) = N(fii] fi)-

)=
Proof.  We first apply the decomposition of the Ly norm to rewriting the W2 (g(f), N'(f)) as below
(see detailed derivations in Appendix F.2):

W(@N)=infEy, | Ifi— FHI3+ W3 ()Mo | (10)

where the prime indicates that the variable is from the Gaussian AV, and for simplification, we use the
notation 7; for the joint distribution 7(f;, f/) which belongs to a set of measures U(g;, ;). Since
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q\'(f) is known to be Gaussian, we define it in a partitioned form:

soc(@ [ ) e

and the conditional ¢\*( fil fi) is expressed as:
q\i(f\i|fi) = N(f\i\m\um S\ifi)y MG =My + 8\ S; (fz m;) =af; +b, (12)
Sviji = Svi — S\iS; 1SV

We define a similar partioned expression for the Gaussian N'( ') by adding primes to variables and
parameters on the r.h.s. of Equation (11), and as a result, the conditional N/ ( FU1f7) is written as:

NFGID = N(ml, 8,), miy = mi; + 84,8 H(f —mi) =a'f{ +b,  (13)
Sy = 8% — S(aSi S (14)

Given the above definitions, we exploit Proposition 2 to take the means out of the Lo WD on the r.h.s.
of Equation (10):

W3 (¢, N) = inf Er,

i = I3+ s = m 3] + W3 (V10,8440 M (0, 8{,1)) - (15)

(A)
Minimizing this function requires optimizing m., m’\l, S, S’ and S{u As Si ; is only contained in
S\ ;|; and isolated into the term (A), it can be optimized by 51mply setting

Eqn (14)

Sl =S == S =8\ g+ 81,5171 S (16)

As aresult, (A) is minimized to zero. Next, we plug in expressions of m,;|; and m'\ ili (Equation (12)

and Equation (13)) into optimized Equation (15):

min(15)=infE [|fi—fi[3+]afi—afi+b=b'|13], (17)
\i :

where m’\z is only contained by b’. Thus, we can optimize it by zeroing the derivative of the above

function about m’\i, which results in:

b =b+aug —a'm; P9 in)* = 80,5 'mj + b+ apg, — a'mj, (18)

where 15, is the mean of g(f;). The minimum value of Equation (17) thereby is (see details in
subsection F.3):

min (17) = (1 + a"a")W3(i, N;) + [la|303, + [|a/[55] —a'a’ [0% + 8!+ (ug, —m5)?|(19)
where 0'(—1%1_ is the variance of ¢( f;). This function can be further simplified using the quantile based

reformulation of W2(g;, N;) (see details in Appendix F.4) which results in:
1
(19)=W2(G;,\;) +|lal302 —23aTa’c;, S, +||a’ |35 (20)
(B)

Now, we are left with optimizing m/, S/ and S {;;- To optimize S\“, which only exists in the above

term (B), we zero the derivative of (B) w.r.t. S /! \ii and this yields:

=23(5)) 3¢50 "ELY S, = (28) i cza, Q1)
and the minimum value of Equation (20) is
min (20) = W5(3;, N:) + [lafl3(0F, —2¢3). (22)
\ii

The results of optimizing m/ and S} in the above equation have already been provided in Equation (5):
m;* = pg, and S;* = 2c¢z.. By plugging them into Equation (21) and Equation (18), we have
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a’* = a and b’* = b. Finally, using Equation (16), we obtain q\i(f\l- |fi) = N(fulafi+b,S\) =
N(fula'fi + ', 8(;;) = N(fiilfi) . which concludes the proof. O

F.1 Details of Eqn. (6)

a(falfacs)
(f\i|fi)N(fi)
( ) ) ~p (f\l|fl) ) :
/ () o ek afi+ / 3 / Tl 108 108 afd
= KLV (£) + Baos [KL@ALL IV Rl )]
Fulfy) = a(r) (et fiT Tz ti (F)
DI =505 A (foplydfT
= q\'(fulf)- (23)

KL@G()IN(F)) = / af) log 1+ af

F.2 Details of Eqn. (10)

W3 (@) N(f) = _inf B ([lf — F'II3)

WGU(J,N)
= inf E.(||fi — .’2_|_E7T( - /_2)
Lt B (5= 1) 1 — FLII3
@ i . 12 12
¢ nt B (= FIB+ By (1 R3]

(b) .
inf Exr [Ife — {15 + inf B (11— £0l3) |

= inf B, [Hfi ~ fil3 + W%(a\mv/\f\z‘\i)}

Dint B, (I — £ + Wilalfo Ma)].

where the superscript prime indicates that the variable is from the Gaussian A. In (a), m; =
7(fi, i) and m\;; = m(f\i f\t|fz, /). In (b), the first and the second inf are over U (g;, N;) and

(q\m,/\/\m) respectively. (c) is due to g( f\;|f;) being equal to q\l(f\i|fi) (refer to Eqn. (23)).
F.3 Details of Eqn. (19)

min Eqn. (17)

m

\i

= inf By, |I1fi = £/15 + la(fi — 1) — @' (F = m)3]

=l Ex [l = f113] + lall3o?, + o' I35, — 2aTa'Exr, (fis; - uaim;)
=il B i f1I3] + lalldo, + Ia'I3S! + aTaEx, (I = 115 — 57 = ()7 + 2ugm)
= infEx, |[If; = f/13] + lallBoZ + 0135} + a"a'Ex, (I1£: = £ = (fi — )~

2fipg, + 12 — (ff —ml)? = 2fim} + (m})? + 2ugm )
= (1+aTa)W3(@, M) + lall3oF, + 1o’ [35] — aTa’ (o3 + i, + !+ (m)” — 2ugm])

= (1+a"a)W3(@, i) + lal3o + aI3S] - aa' [0 + S + (g, — m})?]
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F.4 Details of Eqn. (19)

We first use Proposition 1 to reformulate the Ly WD W2(g;, NV;) as:
1
W23, ;) = / (F=(y) — m) — y/28lert 2y — 1)) dy,
0

1
_ —1 2 —1 2 —1 —1
- / (F(y) — ml)? + 28lert™ (2 — 1)2 — 2,/28Tert (2 — 1)(F; (y) — m]) dy,

1
= [ ) = g = ) -+ S =225,
=02 + (ug, —mi)® + 5] — 2c5,/25,,
where F(il(y) is the quantile function of ¢(f;) and ¢z, = fol ngl(y)erf*l@y — 1) dy. Next, we
plug this reformulation into Eqn. (19):

Ean. (19) = W3(@, ;) + a’ @' W3(@, i) + llall302 + |a'I3S] - aTa’ 02 + 5] + (ug, — m))?]

= W33 M) + aTa’ [o2 + (gt TS, 20\/25] + lall302 + a'|3S]
—a'a M

= W3(qi, Ni) — 2cz,v/2S(a"a’ + |la||307, + [|a’|35;

G More Details of EP

We use the expressions g(f) = ¢\'(f)p(yi| f;)/Z7 and ¢\'(f) = q(f)/(t:(fi)Z,.:), and the deriva-
tion of KL(q(f)||q(f)) = KL(q(fi)llg(f;)) is shown as below:
0" (f)p(yilf;)
& Zu(f) ‘
afTp(yilfi)

/

_ / AP)log 7 a7
-/
/

f

(yilfi)
q(fi)log m dfi

log 4 N (f)p(yilfi)
Zi Zgg N (fi)ts(fi)

Y PP qlfi) ..

- /Q(f’)1 S a(f) A

= KL(q(fi)llq(fi))

df;

H Predictive Distributions of Poisson Regression

Given the approximate predictive distribution f(x.) = N (14, 02) and the relation g(f) = f2, itis
straightforward to derive the corresponding g(z.) ~ Gamma(k.,, c.)* where the shape k. and the
scale c, are expressed as [56, 61]:
(42 + 022 202 (202 + 02)
= , Cy = .
20222 + 07) W2+ o7

1 kxk 16_1/8.

2Gamma(z|k, c) = T)oF
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Furthermore, the predictive distribution of the count value y € N can also be derived straightfor-
wardly:

ply) = /0 " plg)pulg.) dg.

= /Gamma(g*|k*,c*)Poisson(y|g*) dg.

A(es +1)*¥0(ki +y)
= == NB k;*7 * 1 * 5
) (9l e /(1 +c2)
where g, = g(x,) and NB denotes the negative binomial distribution. The mode is obtained as
lex (ke — 1)] if ki > Lelse 0.

I Proof of Corollary 2.2

Since the site approximations of both EP and QP are Gaussian, we may analyse the predictive
variances using results from the regression with Gaussian likelihood function case, namely the well
known Equation (3.61) in [47]:

o2(f.) = k(z,, @) — kI (K + 3) k., (24)
where f. = f(ax.) is the evaluation of the latent function at x, and k. =
[k(xs, 1), -, k(xs, zn)]" is the covariance vector between the test data x, and the training

data {wl}l 1> K is the prior covariance matrix and 5. is the diagonal matrix with elements of site
variances o;

After updating the parameters of a site function #;(f;), the term (K + %)~ is updated to (K +

S+ (52 7 new — 07)ei€] )~ ! Where G ey is the site variance estimated by EP or QP and e; is a unit
vector in direction 7. Using the Woodbury, Sherman & Morrison formula [47, A.9], we rewrite

(K + E + ( Oinew — Ezz)eie—'r)_l as
(K + E + ( O3 new — gf)eie;l—)_l
= (A7 + (07 pew — 07 Jeie]) !

’L new

=A- Aeb[( Oinew — 05 )71 + e'-irAei]ile;'rA
=A- Si[(az‘%new - Ui2)71 + Aii}il ;l'
1
= A isT
(gg,new — 0 )71 + Aiis %

where A = (K + i) ~1and s; is the 7’th column of A. Putting the above expression into Equation (24),
we have that the predictive variance is updated according to:

T, .T
k. sis; k..

1
Toew(f+) = k(@ ) — k[ Ak + = =5
Tne (aiz,new - 022) 1+ Ay
In EP and QP, the first two terms on the r.h.s. of the above equation are equivalent. As the site
variance provided by QP is less or equal to that by EP, i.e., o7 op < o2 gp» the third term on the rh.s.
for QP is less or equal to that for EP. Therefore, the predlctlve variance of QP is less or equal to that

of EP: UQP(f*) < UEP(f*)

J Lookup Tables

To speed up updating variances Uép in QP, we pre-compute the integration in Equation (5) over a
grid of cavity parameters 1 and o, and store the results into lookup tables. Consequently, each update
step obtains aép simply based on the lookup tables. Concretely, for the GP binary classification, we
compute Equation (5) with 4, o and y varying from -10 to 10, 0.1 to 10 and {—1, 1} respectively.
w1 and o vary in a linear scale and a log10 scale respectively, and both have a step size of 0.001.
The resulting lookup tables has a size of 20001 x 2001. In a similar way, we make the lookup table
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Algorithm 1 Expectation (Quantile) Propagation
Imput: p(f), p(yi|fi), ti(fi),i=1,--- ,N,0

Output: ¢(f) approximate posterior
1: repeat
2. compute q(f) o< p(f) [T, t:i(fi) by (1)
3:  repeat
4: fori=1to N do
5: compute ¢\'(f;) oc q(fi)/t:(f:) cavity
6: compute §(f;) o< ¢\'(fi)p(yil f3) tilted
7: if EP then '
8: ti(fi) oc proj [q(f:)]/a ' (fi) by (3)(4)
9: else if QP then _
10: ti(f:) o< projy [q(fi)]/q" (f:) by (5)(4)
11: end if
12: update q(f) o p(f) I, t:(fi) by (1)
13: end for
14:  until convergence
15: 8 = argmaxy log ¢(D) by (2)

16: until convergence
17: return q(f)

for the Poisson regression. In the experiments, we exploit the linear interpolation to fit aép given
p € [-10,10] and & € [0.1,10], and if 42 and o lie out of the lookup table, o¢,p is approximately

computed by the EP update formula, i.e., aép ~ o%p. On Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, we observe the running time of EP and QP is almost the same.
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