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Abstract

There has been recent interest in exploring generative goals for counterfactual
reasoning, e.g., individualized treatment effect (ITE) estimation. However, existing
solutions often fail to address issues that are unique to causal inference, such as
covariate balancing and counterfactual validation. As a step toward more flexible,
scalable and accurate ITE estimation, we present a novel generative Bayesian
estimation framework that integrates representation learning, adversarial matching
and causal estimation. By appealing to the Robinson decomposition, we derive a
reformulated variational bound that explicitly targets the causal effect estimation
rather than specific predictive goals. Our procedure acknowledges the uncertainties
in representation and solves a Fenchel mini-max game to resolve the representation
imbalance for better counterfactual generalization, justified by new theory.The
latent variable formulation enables robustness to unobservable latent confounders,
extending the scope of its applicability. The proposed approach is demonstrated via
an extensive set of tests against competing solutions, both under various simulation
setups and to real-world datasets, with encouraging results reported.

1 Introduction
Inferring the individualized treatment effects from observational data is a fundamental challenge
shared by many decision-making application domains, including healthcare [23], advertising [15],
and policy making [44], among others. Recent advances in machine learning have motivated new
causal inference methodologies inspired by modern learning perspectives, such as representation
learning, adversarial training, etc.

In this work we focus on the problem of causal estimation from observational data, which differs
from standard supervised learning in fundamental ways [60]. First, only partial observation of the
potential outcomes, the one corresponding to the assigned intervention, can be made. The lack of
counterfactual labels prohibits direct validation of the estimated CE. Second, observational studies
are susceptible to selection bias due to confounding. In particular, some variables obfuscate causation
as they affect both treatment assignment and outcome [81], and they may be latent. Without a proper
confounder compensation mechanism, causal estimation can face severe bias.

To resolve this difficulty, the classical statistics literature has mainly focused on sample-based adjust-
ment strategies, namely matching and weighting. Matching pairs units that are similar with respect to
particular matching criteria [74], forming basic elements of synthetic “randomized trials”; weighting
reassigns importance weights to each sample unit to create a pseudo population of better balance
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[29, 46, 47]. Both approaches typically make the unconfoundedness assumption [65], assuming that
there are no latent variables that affect both the outcome and the treatment assignment. To guard
against model mis-specification-induced failures [63], balancing weights are often used in conjunction
with outcome regression models to achieve double robustness [72]. However, these classical solutions
are constantly challenged by modern datasets, characterized by features such as high dimensionality
[12] and complex interactions [88], and they typically make the unconfoundedness assumption.

More recently, representation learning emerged as a new, promising alternative to approach covariate
balance [48, 36]. Such schemes explicitly seek an intermediate (low-dimensional) representation
that is both (i) predictive of the outcome [82]; and (ii) matched between treatment groups [34].
From a learning perspective, these two points serve to promote the generalization performance for
counterfactual predictions [75]. On the flip side, causal perspectives also motivate invariant feature
representation learning under general machine learning setups [7].

Recent strides in generative modeling techniques, such as the variational auto-encoder (VAE) [39]
and the generative adversarial network (GAN) [24], have equipped causal estimation with new
learning principles. Rather than appealing to predictive goals [82], these schemes learn stochastic
rules that mimic the data generating procedure, i.e., how to synthesize realistic counterfactuals based
on observed data [87]. Such generative causal models typically relax model assumptions posited
by standard causal estimation machinery, allowing black-box type inference using flexible learners
such as deep networks. Despite their reported strong empirical performance, questions remain: (i)
Confounding: Do we fully trust the observed confounders? (ii) Balancing: What if the covariates are
unbalanced? (iii) Counterfactual validation: How to avoid over-fitting?

Notably, in-depth discussions on (iii), causal validation procedure, has received attention in the
literature only recently, despite its paramount importance [8, 83]. The promise of a fully automated
causal estimation procedure has inspired many (unreliable) heuristic proxies [73] (e.g., plug-in
surrogate or predictive loss) and principled evaluation strategies have only appeared quite recently.
While scholarly consensus on best practice is yet to be reached [20], prominent examples from this
category include influence function based causal validation [3] and rank-preserving causal cross-
validation [71]. Of particular interest is the Robinson residual decomposition employed by the
R-learner [56] and generalized causal forests [10], which construct a directly learnable objective.

Motivated by the preceding discussions, this work seeks a unified treatment that accommodates
(i)-(iii). We revisit the generative perspective of causal modeling, and demonstrate how explicitly
accounting for balancing and counterfactual validation helps to improve causal estimation. In
particular, we present a variational procedure, termed Balancing Variational Neural Inference of
Causal Effects (BV-NICE), to address the challenges of generative learning for causal estimation.
Our key contributions include: (i) repurposing variational inference as random feature representation
learning scheme to facilitate causal estimation; (ii) reformulating the variational objective to better
balance confounder representations between comparison groups; (iii) incorporating causal validation
targets to scrutinize inferred causal effect. Our approach features direct modeling of causal effects,
rather than the difference between the outcome models. It joints strength from distribution matching,
representation learning and generative causal estimation, resulting a principled attempt that better
addresses the challenges in counterfactual inference. To embrace a more holistic picture, we also
cover related issues such as identifiability and establish border connections to the literature on causal
discovery with the extended discussions found in our supplementary material (SM).

2 Preliminaries
Problem setup We consider the basic setup under the potential outcome framework [69, 33].
Assume a sample of n units, with unit i associated with a covariate Xi ∈ Rp, a treatment indica-
tor Ti ∈ {0, 1} and potential outcomes [Yi(0), Yi(1)] ∈ R2. The fundamental problem of causal
inference [32] is that only the outcome associated with the prescribed treatment is observed, i.e.,
Yi , Y (Ti) = TiYi(1) + (1 − Ti)Yi(0), known as the factual data. The individualized treatment
effect (ITE) is defined as the expected difference between outcome τ(x) , E[Yi(1)−Yi(0)|Xi = x],
and our goal is to learn a generalizable model τ(x) that predicts the ITE given observed covariates x.
We often assume the decomposition τ(x) = µ1(x)− µ0(x), where µt(x) , E[Y (t)|x], t ∈ {0, 1}
are known as the outcome models. Another key concept in causal estimation is the propensity
score (PS): e(x) , p(T = 1|x), i.e., the conditional probability of receiving the treatment given x.
While the identifiability of causal effect can only be established in the average sense for observa-
tional studies, under the assumptions of unconfoundedness:{Y (0), Y (1)} ⊥⊥ T |X , and positivity:
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p(T |X, Y (0), Y (1)) ∈ (0, 1) [66], individualized predictions still hold promise. A typical predictive
scheme minimizes the prediction loss for the factual observation, i.e., µ̂ = minµ{

∑
i(Yi−µt(Xi))

2}.
Alternatively, generative schemes seek to identify a data generation procedure pθ(x, t, y) that is
consistent with factual observations Dn = {(xi, yi, ti)}ni=1.
Robinson residual decomposition Under unconfoundedness, it is easy to verify E [ε(T )|X, T ] =

0, where ε(T ) , Y (T )− (µ0(X) + Tτ(X)) is known as the Robinson residual [64]. Denoting the
conditional mean outcome as m(x) , E[Y |x] = µ0(x) + e(x)τ(x), and we can rewrite Robinson
residual as ε(T ) = Y (T ) −m(X) − (T − e(X))τ(X). Note that this decomposition holds for
any outcome distribution, including binary outcomes. This directly motivates the R-learning [56]
objective τ̂ = arg minτ{1/n

∑
i (yi − m̃(xi)− (ti − ẽ(xi))τ(xi))

2}, where m̃(x) and ẽ(x) are
estimated surrogates for the mean outcome and propensity score model. Recently, many have
considered the of direct modeling of CE (τ ) through the R-decomposition [91, 92, 16, 61, 10], rather
than indirectly through (µ0, µ1).

Variational inference A general learning principle is to maximize the expectation of the log-
likelihood wrt observed data, i.e., `(θ) :=

∑
i log pθ(xi), which constitutes maximum likelihood

estimation (MLE). For a latent variable model pθ(x, z), we consider x as an observation (i.e., data)
and z as latent variable. The marginal likelihood pθ(x) =

∫
pθ(x, z) dz typically does not have a

closed-form expression, and to avoid direct numerical estimation of pθ(x), variational inference (VI)
instead optimizes a variational bound to the marginal log-likelihood log pθ(x) [14, 79]. The most
popular choice is known as the Evidence Lower Bound (ELBO), given by

ELBO , EZ∼qφ(z|x)

[
log

pθ(x,Z)

qφ(Z|x)

]
≤ log pθ(x), (1)

where qφ(z|x) is an approximation to the true posterior pθ(z|x) and the inequality is a result
of Jensen’s inequality. This bound tightens as qφ(z|x) approaches the true posterior pθ(z|x).
For estimation, we seek parameters θ that maximize the ELBO, and the commensurately learned
parameters φ are often used in a subsequent inference task with new data.

Adversarial distribution matching Consider the problem of matching a model distribution pG(x)
to some true data distribution pd(x) presented as empirical samples, wrt some discrepancy measure,
d(pd, pG). Typically, pG(x) is given in the form of a stochastic sampler. In the GAN framework,
the discrepancy is first estimated by maximizing an auxiliary variational functional V (pd, pG;D) :
P × P → R between distributions pd(x) and pG(x) satisfying d(pd, pG) = maxD V (pd, pG;D),
where P is the space of probability distributions and V (pd, pG;D) is estimated using samples from
the two distributions. Function D(x;ω), parameterized by ω and known as the critic function,
is intended to maximally discriminate between samples of the two distributions. Subsequently,
one seeks to match the generator distribution pG(x) to the unknown true distribution pd(x) by
minimizing the estimated discrepancy, resulting in a minimax game between the critic and the
generator: minG maxD V (pd, pG;D).

3 Balancing VI For Causal Estimation
Inspired by the above, we present BV-NICE, a model seeks to improve the current practice of
generative learning of causal inference from the following perspectives: (a) automated feature
representation learning that explicitly accounts covariate balance, (b) a built-in mechanism for
automated model selection directly targets CE estimation accuracy, (c) acknowledging the uncertainty
in the observed confounders by introduction of inferred latent variables.

We frame our construction under variational inference based on the following considerations:

• We treat covariate x as noisy proxies for the true, unobservable confounders (latent z)
• The (approximate) posterior acts as a representation encoder that encapsulates uncertainties
• Matching for the prior p(z) naturally regularizes for model generalization

Consider the following latent variable model pθ(x, y, t, z) = p(x|z)p(y|z, t)p(t|z)p(z) (Figure S1),
where (x, y, t) are the observables, z is the (continuous) latent variable, and θ denotes the model
parameters. In accordance with standard practice, we model discrete variables with multinomial
logistic and continuous variables with Gaussian N (µ,σ2), where µ is a function of z and also
possibly t depending on the context, with σ2 set to some prescribed value to avoid overfitting.
We parameterize stochastic encoders qφ(z|x, y, t) to infer unobserved confounders z. For flexible
inference, we model all functions with deep neural nets. Plugging into (1) gives us a tractable objective
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for stochastic optimization (see Equation (4)). We relegate the specifics of our modeling choices in
the subsections that follow, after revealing more causal insights embodied in our reformulation.

3.1 A unifying view for VI and R-learner
A key feature we seek to incorporate is to automatically favor solutions that more accurately describe
causal effect based on the factual observations. Unlike a model-selection procedure, where candidates
are screened in an ad hoc manner, we want our model to explore the parameter space, to identify
the best candidates for causal descriptives as part of training. This precludes options such as meta-
learners [43] and influence function based estimator [3], as they function as a causal estimator and
cannot be efficiently trained in an end-to-end manner. We choose to work with the Robinson residual
decomposition, and show how the resulting R-learner [56] relates to VI. This implies our variational
framework automatically assumes the model selection property.

It is convenient to denote µt(z) , µy(z, t), and the causal effect estimator τ(z) = µy(z, t =
1)− µy(z, t = 0). Under the R-learning framework, one models the mean outcome m(z) and τ(z)
rather than (µ0(z), µ1(z)). It is easy to see these two modeling choices are related by{

m(z) = e(z)µ1(z) + (1− e(z))µ0(z)

τ(z) = µ1(z)− µ0(z)
⇒

{
µ0(z) = m(z)− e(z)τ(z),

µ1(z) = m(z) + (1− e(z))τ(z).
(2)

A key insight is given by the observation

ε(z, t, y) = y −m(z)− (t− e(z))τ(z) = y − {tµ1(z)− (1− t)µ0(z)}. (3)

Note that the RHS is the residual error for prediction given (z, t). Consequently, `R(z, y, t) =
ε(z, t, y)2 = −2σ2 log pθ(y|z, t). Plugging this result back into the ELBO, and recalling that pθ(t|z)
is essentially the propensity score model e(z), we obtain the following factorization

ELBO(x, y, t|pθ, qφ) =

EZ∼qφ [log pθ(x|Z)︸ ︷︷ ︸
Optional

+

V-NICE︷ ︸︸ ︷
log pθ(y|Z, t)︸ ︷︷ ︸

R-loss

+ log pθ(t|Z)︸ ︷︷ ︸
PS-loss

]− KL(qφ(z|x, y, t) ‖ p(z))︸ ︷︷ ︸
KL-loss

(4)

Since our primary goal is to model the causal effect τ , we discard the first term related to the likelihood
of x and treat the rest as our training target, which we term `V-NICE. This choice is motivated by the
fact that to correctly infer CE we only need the part of x that is predictive of (y, t) [82]. Modeling x
indiscriminately, as practiced by existing generative causal models [50, 68], takes away representation
capacity of z [30, 5], compromising our main objective.

Critics
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Figure 1: BV-NICE model architecture.

Intuitively, `V-NICE, our reformulated ELBO, is
a combination of R-loss and propensity score
loss, regularized by KL-divergence on the la-
tents to encourage better generalization. Un-
like its generative counterparts, our model is
directly parameterized through causal triplet
(τ(z),m(z), e(z)) to emphasize the causal per-
spective and allowing structural constraints to
be imposed [43]. V-NICE also approximately
recovers the R-learner as σ2 → 0. By optimizing the triplet jointly, rather than a two stage procedure
employed by R-learner, our triplet share the refined representation learned. Our discussion also
bridges R-learning and likelihood-based learning.

Benefits of integrating the R-loss. A major difference in the construction of R-learner objective,
relative to the standard two-learner setup, is that the propensity score is explicitly involved. This
allows additional information to be leveraged in many practical settings. For example, a common
scenario is that significant lags can be expected between the application of a treatment and the
observation of the outcome (e.g., when the target outcome is the patients’ recovery in one year time
whether or not administrating a drug). In such scenarios, there will be data available with only
confounder and treatment to refine propensity score estimate, which in turn improves treatment effect
estimation in R-learning, but can not be used for outcome modeling in the two learner setup. A
similar argument holds when additional knowledge is known about the treatment assignment (e.g.,
when the data is a hybrid of observational and randomized trial). In the same spirit, R-learning also
allows the use of data where the treatment information is missing, as they can still be used to improve
the estimate of average outcome m(x).
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3.2 Balancing VI for causal estimation
Our next goal is to establish a mechanism that enables covariate balance. Further denote qt(z) =∫
qφ(z|x, t)pd(x|T = t) dx. To achieve better balance for subsequent causal estimation, one seeks

to match the confounder distributions between treatment groups, i.e., q1 should be close to q0. To this
end, we augment the original ELBO with a distribution discrepancy score D(q0 ‖ q1), resulting in

`BV-NICE , `V-NICE(pθ, qφ)− λD(q0 ‖ q1) (5)
as our objective for balancing VI (BV-NICE), where λ > 0 specifies the regularization strength.
Choice of discrepancy score While the marginal densities of q0 and q1 are intractable, it is
relatively easy to acquire samples from them. This motivates leveraging adversarial distribution
matching strategies to (indirectly) optimize the discrepancy through a mini-max game. Hence, we
indirectly assess D(q0 ‖ q1) via the use of a critic function (the max step), and then update the model
accordingly to reduce the discrepancy (the min-step). In this study, we appeal to the KL-divergence
as our discrepancy measure, which can be recast in its Fenchel dual form as [18, 80]

DKL(q0 ‖ q1) = Eq0 [log q0 − log q1] = max
ν>0
{Eq0 [log ν]− Eq1 [ν] + 1}, (6)

and note the maximizer ν∗ satisfies ν∗ = q
p . This choice is motivated by the following considerations:

• Easy implementation relative to integral probability metric (IPM)-based schemes
• It also bounds generalization performance (Sec 3.3)
• This approach also encourages parameter sharing as the ELBO involves a KL term

Note that this choice is not restrictive, as practitioners are free to choose their favorite distribution
matching schemes, such as Wasserstein [75, 6], MMD [25, 48], JSD [24, 87] or other f -divergence
[57, 78], that possess other appealing properties. See the SM for a more thorough discussion.

To implement KL-matching, we model log ν as a deep neural network ϑψ(z), as our critic function,
where ψ denotes the network parameters. This gives the following neural estimator for the KL term2

D̂KL(q0 ‖ q1) = max
ψ
{EZ∼q0 [ϑψ(Z)]− EZ′∼q1 [exp(ϑψ(Z ′))]} (7)

In our case, the distributions are characterized by a neural sampler via the reparameterization trick,
e.g., qφ(z|x) as Gφ(ξ,x), ξ ∼ p(ξ). Gradients of the sampler can be easily obtained by directly
differentiating D̂KL wrt φ.

3.3 Practical implementation
Random feature encoder To enable flexible encoding of latent features, we employ a neural
sampler rφ′(z|x). The rφ′(z|x) can either be explicit with a tractable likelihood [39, 40], or implicit
that maps x and noise to a latent sample, i.e., z = Gφ′(ξ,x), ξ ∼ U([−1, 1]k). We choose implicit
feature encoder as it produces better results.

Algorithm 1 BV-NICE
Empirical data p̂d = {(xi, yi, ti)}ni=1, imbalance λ
for k = 1, 2, · · · do

(x, y, t) ∼ p̂d, z′ ∼ p(z), zφ = Gφ(ξ,x), ξ ∼ p(ξ)

φk+1 ← ∇φ{log pθ(t, y|zφ)− ϑψ(x, zφ) % Encoder

−λ[ϑ̃ψ̃(zt=0
φ )− exp(ϑ̃ψ̃(zt=1

φ ))]} % Balancing

θk+1 ← ∇θ{log pθ(t, y|zφ)} % Model
ψk+1 ← ∇ψ{ϑψ(x, zφ)− exp(ϑψ(x, z′))} % Critic

ψ̃k+1 ← ∇ψ̃{ϑ̃ψ̃(zt=0
φ )− exp(ϑ̃ψ̃(zt=1

φ ))} % Critic

end for

Another empirical decision is whether to include
treatment and outcome in the encoder. Both
choices induce a valid lower bound. While the
inclusion is practiced in Louizos et al. [50], we
argue otherwise. First, it complicates inference
procedure and introduces additional approxima-
tion error, as auxiliary models must be intro-
duced to sample the latent. Second, the casual
effect identification requires that the assignment
is independent with potential outcomes condi-
tional on the covariates. The inclusion of out-
come in the encoder will, on the contrary, poten-

tially introduce bias and violates the unconfoundedness assumption [70, 77].
Practical variants Modifications to the original VI procedure are often considered by practitioners
for better performance, as compensation mechanism to correct for potential model mis-specification.
We consider two variants that are more principally derived: β-VAE [30] and AAE [54]. The former
seeks to address the potential vanishing KL, while the later explicitly targets the mismatch between the
aggregated posterior and prior. Both strategies diminishes the role of KL term in ELBO, which often
compromises empirical performance via synthesizing uninformative latents to reduce the mismatch
to the prior. Implementation details are included in SM.

2Note that we have dropped the constant term for clarity.
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Inferring causal effects Given a new observation x, we wish to infer the expected effect τ(x) for
a given intervention under the learned model. Since under BV-NICE causal effect τ(z) is defined
based on the latent variable z rather than the observed x, the estimation of the causal effect becomes
a two-stage process. In the first stage we infer the hidden z given x, and in the second stage we
average over the latent variables to estimate the causal effect for x. An estimate of the causal effect is
given by τ(x) ≈ 1

m

∑
j τ(z′j), z

′
j ∼ qφ(z|x).

Counterfactual cross-validation with R-residual. A major obstacle in counterfactual reasoning
is that due to the absence of counterfactual observations, models can not be validated directly. In our
setting, we applied R-loss to hold out factual observations to cross-validation our model. Although it
may seem similar to the CV applied in standard machine learning, a key distinction should be noted:
that our CV target is explicitly defined wrt the counterfactual estimates. As noted in Nie and Wager
[56], Schuler et al. [73], factual residual does not effectively assess counterfactual performance,
resulting biased or unreliable estimation.

3.4 Generalization bounds for BV-NICE
We provide theoretical justification for the use of KL balancing. In particular, we show that the
counterfactual generalization error can be bounded by the factual error plus a KL-term of the
representation distributions between the treatment groups, adjusted by the variance of the conditional
outcome model. We also provide additional discussions on other theoretical aspects in the SM.
Definition 3.1. The expected loss for the unit and treatment pair (z, t) is

`h(z, t) =

∫
Y
L(Yt, h(z, t)))p(Yt|z) dYt, (8)

where L(y;h) denotes some loss wrt observation y and hypothesis h, and z is parameterized via the
stochastic encoder qφ(z|x). The expected factual and counter factual losses of h and φ are:

εF(h, φ) ,
∫
Z×{0,1}

`h(z, t)pφ(z, t) dz dt, εCF(h, φ) ,
∫
Z×{0,1}

`h(z, t)pφ(z, 1− t) dz dt, (9)

where pφ(z, t) =
∫
qφ(z|x, y, t)pd(x, y, t) dx dy. The expected factual treated (t = 1) and control

(t = 0) losses are

εt=1
F (h, φ) ,

∫
Z
`h,φ(z, 1)q1(z) dz, εt=0

F (h, φ) ,
∫
Z
`h,φ(z, 0)q0(z) dz (10)

where qt(z) is the aggregated approximate posterior of z given t defined as in Sec 3.2
Definition 3.2. Precision of estimating heterogeneous effects (PEHE) for a causal effect estimator τ̂
is defined as εPEHE(τ̂) , E‖τ̂ − τ‖2L2(P), where L2(P) is the L2 norm wrt feature density P(x).

The following statements assert the generalization error for PEHE can be bounded by the factual
error plus a KL-discrepancy term, adjusted by the variance of outcome.
Lemma 3.3. Let qt, t ∈ {0, 1} be the marginal aggregated approximate posterior distributions
defined as in Sec 3.2, u , p(T = 1) is the prevalence of treatment, and h : R× {0, 1} → Y is a
hypothesis. Assume ‖lh(z, t)‖∞ ≤M for t = {0, 1}. Then we have

εCF (h, φ) ≤ (1− u) · εt=1
F (h, φ) + u · εt=0

F (h, φ) +
1

2M

√
1

2
DKL (q0||q1) (11)

Theorem 3.4. Under the conditions of Lemma 3.3, and assuming the loss L defines lh,Φ is the
squared loss L(y, y′) = (y− y′)2, and define σY , maxt∈{0,1} EZ [(Y (t)−E[Y (t)|Z])2], we have:

εPEHE (h,Φ) ≤ 2εt=0
F (h,Φ) + 2εt=1

F (h,Φ) +
1

M

√
1

2
DKL (q0||q1)− 4σ2

Y (12)

This result bears resemblance to the generalization bound proved in Shalit et al. [75]. The key
difference is that we have replaced the IPM bound with a KL bound. The original implementation
of CFR used the Sinkhorn iterations or MMD computed their IPM, which scales quadratically wrt
mini-batch size. Our Fenchel dual KL estimation scales linearly wrt sample size, and consequently
more scalable. And the new assumption on `h,φ ∈ L∞ is generally easily satisfied in practice, while
the RKHS assumed by CFR is difficult to verify.
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4 Related Work
Bayesian causal estimation can be classified based on how the uncertainty is accounted for.
Classical approaches place uncertainty on the model itself, with prominent examples such as BART
[17]. To flexibly model the complex causation, Bayesian nonparametric (BNP) schemes have become
popular [31]. Alaa and van der Schaar [4] investigated the fundamental limit of information rate
for BNP causal models. Closest to this paper is the work of causal estimation VAE (CE-VAE)
[50], where latent variables are introduced to account for the uncertainty, with the model learned
through variational Bayesian analysis. Our work enhances CE-VAE by infusing additional causal
perspectives into its construction: we explicitly address the covariate balancing issue and elaborate
how VI connects toR-learning, based on which a reformulated ELBO is derived. Also highly relevant
are the works of Bayesian counterfactual risk minimization (CRM) [85, 49], where KL-divergence
on the policy (model) distributions is regularized to upper bound excess risk. Our BV-NICE differs in
promoting representation balance to reduce generalization risk.

Representation learning has drawn considerable attention in counterfactual inference. Early
work explored the use of shrinkage estimators, such as LASSO [12] and elastic-net [9]. Recently,
nonlinear representation learning has gained considerable momentum in recognition of growing
data complexity [48]. Popular strategies include kernelization [48], neural encoding [37], and
representation embedding [82]. While most approaches adopt a deterministic design [48, 75, 2],
stochastic variants are considered in the works of CE-VAE [50], CE-GAN [45] and CE-IB [59],
which enable additional flexibility and better matching, and consequently improved generalization
[39]. Distinct from prior arts, BV-NICE directly targets representations for causal estimation and
balancing rather than focusing on predictive performance [56]. See the SM for further discussions
and causal perspectives on invariant representation learning [89, 90, 7].
Generative causal learning is an emerging subject in causal inference. The burgeoning field
of generative modeling provides ample new tools and inspiration for causal modeling. GAN-
based variants have been most successful in finding direct applications for counterfactual practice
[1, 42, 58, 87, 11], and to a lesser extent with variational schemes [50, 59, 62]. Indirectly, the
counterfactual literature has also greatly benefited from borrowing tools originally developed for
generative modeling [75], such as distribution matching schemes [25, 6]. Our work presents a
principled attempt to integrate generative and causal views, by bringing together counterfactual
reasoning, variational learning and adversarial matching.

Covariate balancing is challenged by the fragility of conventional schemes applied to modern
datasets. As discussed previously, matching criteria often fail in the presence of nuisance noise
[52], while the use of weighting strategies are limited by their restrictive linear assumptions [9],
unreliable propensity estimates [37], or unscalable numerical schemes [29]. This motivates a variety
of work exploring representation learning with direct regularization of imbalance metrics, such as
Mahalanobis, Wasserstein, and MMD measures [9, 13, 93, 94], to learn a proper representation, and
possibly in conjunction with a (learned) weighting strategy [37, 35], to mitigate the representation
mismatch. A generalization argument was provided by Shalit et al. [75] to support such practice.
While some works demonstrate the gains from adopting a sophisticated balancing criteria [86], here
we advocate the use of a simple, flexible KL-balancing under a generative framework.

Hidden confounding is detrimental to many representation learning and covariate balancing meth-
ods that posit the ignorability or unconfoundedness assumption [65]. The residual confounding due to
noisy measurement and unobserved confounders remains as major challenges in practice, threatening
the validity of causal estimation [26]. Sensitivity analysis is advised to assess the potential effect of
unmeasured confounders on causal estimates [67, 22]. Extensive investigations have been done on
robust recovery of (equivalent) causal graphs with the presence of unobserved latents [53, 76, 84], and
potential synergies can be exploited between recent advances in causal discovery and counterfactual
reasoning. Limited by space, we defer an extended discussion on this to the SM.

Consistency and identifiability are key concepts of parallel interest to generalizability. Beyond
the common assumption of strong ignorability, conditions to ensure identifiability in the presence of
latent variables have been adequately discussed in D’Amour [21], Miao et al. [55] and the references
therein, and we note their settings are drastically simpler than what’s assumed by BV-NICE. Most
related to this work are the emerging theories on the identifiability for latent variables under the
general framework assumed by variational inference [38]. While a full exposition on the topic in the
context of causal inference is beyond the scope of this study, we refer readers to our SM for some
preliminary discussions.
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5 Experiments
We consider a wide range of semi-synthetic and real-world tasks to validate our models experimentally.
Details of the experimental setup are described the SM, and our code is available from https:
//github.com/DannieLu/BV-NICE. Importantly, we want to experimentally unveil aspects that
are important for the design of generative causal models. More analyses can be found in the SM.

5.1 Experimental setups Table 1: Comparison of performance on semi-synthetic datasets

IHDP1000 ACIC2016√
εPEHE IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE

OLS 0.29± .09 0.30± .11 0.52± .13 0.65± .16
CFR 1.47± .35 1.46± .36 0.52± .14 0.90± .26

BART 0.30± .08 0.33± .11 0.58± .12 0.70± .17
CAUSAL RF 0.63± .24 0.63± .26 0.68± .32 0.81± .40
BV-NICE 0.20 ± .04 0.20 ± .06 0.50 ± .13 0.62 ± .17

Model architecture, hyper-parameter
tuning and data pre-processing For
all instantiations, we use fully-connected
multi-layer perceptrons (MLP) as our flexi-
ble learner. We randomly sample model ar-
chitectures (number of layers, hidden units)
and other hyper-parameters (learning rate,
batch-size, regularization strength, etc.). For practical cross-validation, we use 7/3 split for training
and validation respectively, and rely on validation outcome RMSE to set best configuration 3.
Datasets To extensively validate the proposed procedure in a realistic setup, we consider the following
four datasets: (i) IHDP1000 [31]: a semi-synthetic dataset with 1, 000 simulations of different
treatment and outcomes mechanism. (ii) ACIC2016 [20]: a benchmark dataset released by Atlantic
Causal Inference Competition, which involves 77 semi-synthetic datasets with 100 replications each.
(iii) JOBS [44]: a real-world dataset with binary outcomes, a small portion of the data comes from
randomized trials. (iv) SHRP2 [27]: a 3-year case-cohort study of driver behavior and environmental
factors at the onset of crashes and under normal driving conditions, derived from over 1 million hours
of continuous video recordings. Detailed descriptions of these datasets can be found in the SM.

Evaluation metrics To quantitatively assess the performance of competing causal inference proce-
dures, we consider the following performance metrics from the literature: (i), ITE accuracy as quanti-
fied by εPEHE ; (ii) policy riskRpol , 1−πf ·E[Y (1)|f(X) = 1)]−(1−πf ) ·E[Y (1)|f(X) = 0)]
[75], where f(x) : X → {0, 1} denotes a decision rule whether to apply the treatment and πf denotes
the portion of population receives the treatment under f(x). Note that policy risk only applies to
datasets with RCT.

Baseline solutions To compare, the following strong or popular causal estimation baselines are
considered: linear regression (OLS, with the T -learner setup); Bayesian Additive Regression Trees
(BART) [17], Causal Random Forests (Causal RF) [83], and Counterfactual Regression (CFR) [75].

5.2 Dissecting VI for counterfactual reasoning
We first investigate which factors greatly impact the performance to support decision choices for
the construction of generative causal models. In particular, we seek answers to the following points
through the lens of empirical experiments: (a) level of uncertainty in feature representation; (b)
degree of balancing (overlapping); (c) sorts of distributional regularizations.
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Figure 2: Impact of imbalance and randomness in fea-
ture representation. Normalized

√
εPEHE reported,

lower is better ↓. Upper: Sensitivity to (L) imbalance
λ, (R) randomness η. Lower: Projections of the under-,
proper- and over-balanced feature.

To see how representation uncertainty affect per-
formance, we introduce a randomness parame-
ter η ≥ 0, that scales the noise input to the our
stochastic feature encoder, i.e., z = G(η · ξ,x).
We carried out grid search for configuration of
(λ, η) on both IHDP and ACIC. In Figure 2,
we plot the response curves for imbalance pa-
rameter and randomness parameter, with their
respective counterpart fixed at optimal. Optimal
results, as measured by εPEHE , appear at some
moderate level of imbalance and representation
randomness. This is consistent with theoretical
predictions, because perfectly balanced repre-
sentation (large λ, Fig 2C), compromise the dis-
criminative power of latent representation, while

under balanced representation (small λ, Fig 2A), are subject to the selection bias.

3Note this is equivalent to the Robbinson residual validation.
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5.3 Evaluation on semi-synthetic and real datasets
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Figure 3: Result visualization on ACIC2016 (left,√
εPEHE) and JOBS (right, Rpol). Lower is better
↓. Index sorted for ACIC to facilitate visualization.

Table 1 summarizes the performance of BV-
NICE along with its competing solutions. For
both datasets, the proposed BV-NICE performs
strongly, giving best results both in terms of
in-sample and out-of-sample performance. In
Figure 3, we plot the mean

√
εPEHE computed

on ACIC2016 for each simulation type. The
dataset index is sorted based on out-of-sample
PEHE of BV-NICE. We can see that, with very
few exceptions, BV-NICE consistently outper-
forms its counterparts being compared. These
results underscore the importance of modeling representation uncertainty in CE estimation. Addition-
ally, we applied BV-NICE to the JOBS dataset, and show the policy risk curve in Figure 3. In the
inclusion rate regime [0.5, 0.9], BV-NICE gives significantly lower risks.

5.4 Traffic safety risk analysis with naturalistic driving data
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Figure 4: Cellphone risk modulation by exogenous
factors, larger values imply stronger risk reduction.

In our last experiment, we apply the proposed
BV-NICE to analyze the risk factors in traffic
safety [41, 19], in the hope that a fine-grained
picture of intervention effectiveness can better
inform driving safety regulations to reduce the
number of tragic events. Note this study is fur-
ther characterized by the challenge of rare-event
modeling, due to the exceptionally low inci-
dence rates of traffic accidents [28]. Only 1k
crashes were flagged and annotated by trained
analysts to represent the potential risk factors,
along with 20k normal driving baselines for con-
trol. Given the prevalence of smart phone usage
in modern life, our analysis concentrates on the
risk analysis of cellphone use during driving.
Following Lu et al. [51], 11 variables are included as confounders out of 84 variables originally
recorded by the study, with the inclusion criteria derived based on both domain knowledge and statis-
tical independence tests. In Figure 4, we visualize how exogenous factors modulates the heterogenous
risk distribution of cellphone use, in terms of expected reduction in incidence rate. We see restricting
cellphone use is most effective in reducing collisions in bad road conditions (e.g., snowy, wet, rainy,
foggy), followed by complex environments (e.g., parking lot crossing, intersections). More statistical
summaries and comparison to alternative causal effect estimators can be found in the SM.

6 Conclusion
This study revisits design principles for training objective of generative causal models. In particular,
we highlight the significance of covariate balancing and uncertainty of representation, which is largely
missing from prior investigations. We further present a strong causal inference procedure, called
BV-NICE, which bridges R-learning and variational inference. We extensively test our model on
realistic datasets, and our results reveal the intricate nature of practical causal estimation procedures.
While the empirical performance largely conforms to guiding principles, caution needs to be exercised
to avoid the pitfalls, which do not appear in violation of theoretical predictions, yet can severely
degrade performance. Further scrutiny is warranted for the study of robust causal estimation with
flexible learners, that ameliorates the burden of exhaustive search of parameters.
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Broader Impact

This study presents a novel generative causal inference framework, called BV-NICE, that brings
together ideas from both statistical and machine learning based causal modeling. By joining the
strength of variational inference, R-learning, and Fenchel mini-max learning, the resulting procedure
fully acknowledges the representation uncertainty and enables accurate, reliable direct estimation of
individualized causal effect in a flexible, scalable manner. Importantly, while there has been growing
consensus that generative causal modeling such as CE-VAE is more suited for many applications yet
with suboptimal performance, our research identifies the performance bottleneck and closes the gap
between generative causal schemes and state-of-the-art alternatives.

This work promises to have positive societal impacts into the future. And with the best intention in
the world, the author(s) wish this research will be applied to progress the course of humanity for the
good. Areas stand most likely to benefit from this research are personalized healthcare, public policy,
and transportation safety regulations. Variant of the proposed variational framework also promises
robustness against the algorithmic biases towards the minority populations, a major issue that draws
criticism for machine learning applications. This implies our model can be well suited for ensuring
social justice.
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