Supplementary Material:

Energy-based Out-of-distribution Detection

A Detailed Experimental Results

We report the performance of OOD detectors on each of the six OOD test datasets in Table 4 (CIFAR-10) and Table 5 (CIFAR-100).

		FPR95	AUROC	AUPR
Dataset				
\mathcal{D}_{out}^{test}		+	↑	\uparrow
	Softmax score [14]	59.28	88.50	97.16
	Energy score (ours)	52.79	85.22	95.41
Texture	ODIN [24]	49.12	84.97	95.28
	Mahalanobis [23]	15.00	97.33	99.41
	OE [15]	12.94	97.73	99.52
	Energy fine-tuning (ours)	5.34	98.56	99.68
	Softmax score [14]	48.49	91.89	98.27
	Energy score (ours)	35.59	90.96	97.64
SVHN	ODIN [24]	33.55	91.96	98.00
	Mahalanobis [23]	12.89	97.62	99.47
	OE [15]	4.36	98.63	99.74
	Energy fine-tuning (ours)	1.04	99.41	99.89
	Softmax score [14]	59.48	88.20	97.10
	Energy score (ours)	40.14	89.89	97.30
Dia	ODIN [24]	57.40	84.49	95.82
Places365	Mahalanobis [23]	68.57	84.61	96.20
	OE [15]	19.07	96.16	99.06
	Energy fine-tuning (ours)	9.00	97.48	99.35
	Softmax score [14]	30.80	95.65	99.13
	Energy score (ours)	8.26	98.35	99.66
LSUN-C	ODIN [24]	15.52	97.04	99.33
	Mahalanobis [23]	39.22	94.15	98.81
	OE [15]	2.89	99.49	99.90
	Energy fine-tuning (ours)	1.67	99.32	99.86
	Softmax score [14]	52.15	91.37	98.12
LOUN	Energy score (ours)	27.58	94.24	98.67
LSUN	ODIN [24]	26.62	94.57	98.77
Resize	Mahalanobis [23]	42.62	93.23	98.60
	OE [15]	5.59	98.94	99.79
	Energy fine-tuning (ours)	1.25	99.39	99.88
iSUN	Softmax score [14]	56.03	89.83	97.74
	Energy score (ours)	33.68	92.62	98.27
	ODIN [24]	32.05	93.50	98.54
	Mahalanobis [23]	44.18	92.66	98.45
	OE [15]	6.32	98.85	99.77
	Energy fine-tuning (ours)	1.60	99.33	99.87

Table 4: OOD Detection performance of CIFAR-10 as in-distribution for each OOD test dataset. The Mahalanobis score is calculated using the features of the second-to-last layer. **Bold** numbers are superior results.

B Details of Experiments

Software and Hardware. We run all experiments with PyTorch and NVIDIA Tesla V100 DGXS GPUs.

Number of Evaluation Runs. We fine-tune the models once with a fixed random seed. Following OE [15], reported performance for each OOD dataset is averaged over 10 random batches of samples.

Average Runtime On a single GPU, the running time for energy fine-tuning is around 6 minutes; each training epoch takes 34 seconds. The evaluation time for all six OOD datasets is approximately 4 minutes.

		FPR95	AUROC	AUPR
Dataset				
\mathcal{D}_{out}^{test}		↓	\uparrow	\uparrow
	Softmax score [14]	83.29	73.34	92.89
	Energy score (ours)	79.41	76.28	93.63
Texture	ODIN [24]	79.27	73.45	92.75
	Mahalanobis [23]	39.39	90.57	97.74
	OE [15]	61.11	84.56	96.19
	Energy fine-tuning (ours)	57.01	87.40	96.95
	Softmax score [14]	84.59	71.44	92.93
	Energy score (ours)	85.82	73.99	93.65
SVHN	ODIN [24]	84.66	67.26	91.38
	Mahalanobis [23]	57.52	86.01	96.68
	OE [15]	65.91	86.66	97.09
	Energy fine-tuning (ours)	28.97	95.40	99.05
	Softmax score [14]	82.84	73.78	93.29
	Energy score (ours)	80.56	75.44	93.45
Diagon 265	ODIN [24]	87.88	71.63	92.56
r laces505	Mahalanobis [23]	88.83	67.87	90.71
	OE [15]	57.92	85.78	96.56
	Energy fine-tuning (ours)	51.23	89.71	97.63
	Softmax score [14]	66.54	83.79	96.35
	Energy score (ours)	35.32	93.53	98.62
LSUN-C	ODIN [24]	55.55	87.73	97.22
	Mahalanobis [23]	91.18	69.69	92.27
	OE [15]	21.92	95.81	99.08
	Energy fine-tuning (ours)	16.04	96.97	99.34
	Softmax score [14]	82.42	75.38	94.06
I SUN	Energy score (ours)	79.47	79.23	94.96
LSUN	ODIN [24]	71.96	81.82	95.65
RESIZE	Mahalanobis [23]	21.23	96.00	99.13
	OE [15]	69.36	79.71	94.92
	Energy fine-tuning (ours)	64.83	81.95	95.25
	Softmax score [14]	82.80	75.46	94.06
iSUN	Energy score (ours)	81.04	78.91	94.91
	ODIN [24]	68.51	82.69	95.80
	Mahalanobis [23]	26.10	94.58	98.72
	OE [15]	72.39	78.61	94.58
	Energy fine-tuning (ours)	67.23	79.36	94.37

Table 5: OOD Detection performance of CIFAR-100 as in-distribution for each specific dataset. The Mahalanobis scores are calculated from the features of the second-to-last layer. **Bold** numbers are superior results.

Energy Bound Parameters The optimal m_{in} is -23 for CIFAR-10 and -27 for CIFAR-100. The optimal m_{out} is -5 for both CIFAR-10 and CIFAR-100.

		OOD	FPR95	AUROC	AUPR
	fine-tune?	dataset			
$\mathcal{D}_{ ext{in}}^{ ext{test}}$		$\mathcal{D}_{ ext{out}}^{ ext{test}}$	\downarrow	\uparrow	\uparrow
			Softmax score [14] / Energy score (ours)		
WideResNet SVHN	X	iSUN	17.63 / 8.30	97.27 / 98.26	99.47 / 99.66
		Places365	19.26 / 9.55	97.02 / 98.15	99.40 / 99.63
		Texture	24.32 / 17.92	95.64 / 96.17	98.96 / 99.00
		CIFAR-10	18.77 / 9.13	97.10 / 98.23	99.43 / 99.65
		LSUN-Crop	31.60 / 26.02	94.40 / 94.59	98.79 / 98.75
		LSUN-Resize	23.57 / 12.03	96.55 / 97.69	99.32 / 99.54
		average	22.52 / 13.83	96.33 / 97.18	99.23 / 99.37
			OE fine-tune [15] / Energy fine-tune (ours)		
WideResNet SVHN	1	iSUN	0.56 / 0.01	99.82 / 99.99	99.96 / 100.00
		Places365	2.65 / 0.36	99.43 / 99.88	99.89 / 99.97
		Texture	7.29 / 3.89	98.60 / 99.20	99.69 / 99.82
		CIFAR-10	2.14 / 0.17	99.50 / 99.90	99.90 / 99.98
		LSUN-Crop	10.93 / 10.26	97.96 / 97.82	99.56 / 99.46
		LSUN-Resize	0.63 / 0.00	99.82 / 99.99	99.96 / 100.00
		average	4.03 / 2.45	99.19 / 99.46	99.83 / 99.87

Table 6: OOD detection performance comparison using softmax-based vs. energy-based approaches. We use WideResNet [43] to train on the in-distribution dataset SVHN with its training set only. We show results for both using the pretrained model (top) and applying fine-tuning (bottom). All values are percentages. \uparrow indicates larger values are better, and \downarrow indicates smaller values are better. **Bold** numbers are superior results.

Figure 4: (a) We show the effect of T on a CIFAR-10 pre-trained WideResNet. The FPR (at 95% TPR) increases with larger T. (b) Effect of margin parameters m_{in} and m_{out} during energy fine-tuning (WideResNet). The x-axes are on a log scale.