
Appendix

A Attention Mechanism

In this section, we give a brief overview of the most commonly used attention mechanisms.

Dot-product attention is an attention mechanism that takes in m queries Q ∈ Rm×dk and maps them
to outputs using n key-value pairs K ∈ Rn×dk , V ∈ Rn×dk . The output is a weighted sum of values
with each value’s weight being determined by the dot product of the corresponding key with the
query:

Attention(Q,K,V) = WV ∈ Rm×dv ,with W = softmax(QKT /
√
dk) ∈ Rm×n.

Intuitively, for each query, attention computes an aggregated vector based on its relevance to the
key-value pairs.

Multi-head attention, first introduced in [68], extends a single dot-product attention to multiple
attentions. It first projects the original keys, values and queries onto H different keys, values and
queries. And dot attention is applied for each of these H projections. The final values are calculated
by taking a linear transformation of the concatenated different head-specific values:

MultiHead(Q,K,V) := concat (head1, . . . , headH)W,

headh := Attention(QWQ
h ,KWK

h ,VWV
h ).

The multiple heads allow the attention mechanism to learn richer representations by combining
representations from different subspaces.

For sequential data, self-attention defines a key-value-query tuple for each datum in a sequence
so that they can attend to each other. Combined with multi-head attention, one could apply a
feed-forward network right after with residual connection to make up a multi-head self-attention
sub-block. By stacking up multiple multi-head self-attention sub-blocks, one could formulate a
multi-layer Transformer encoder [68] that allows extracting feature representations hierarchically
through modeling interactions between input representations at different levels and maps a sequence
of data to a sequence of final feature representations for downstream tasks. It is most commonly
used as the fundamental functional block of the powerful Transformer type of models that achieves
state-of-the-art performance on many NLP tasks [68, 10].

B Proof of Proposition 1

We start by defining permutation equivariant and permutation invariant functions.
Definition 1. Let Sn be the set of all permutations of indices {1, 2, · · · , n}. A function f : Xn → Yn
is permutation equivariant if and only if for any permutation π ∈ Sn, f(πx) = πf(x).
Definition 2. Let Sn be the set of all permutations of indices {1, 2, · · · , n}. A function f : Xn → Y
is permutation invariant if and only if for any permutation π ∈ Sn, f(πx) = f(x).

Next, we start the proof.

Proof. We assume our neural network takes in the l-th dataset D(l) as input. By definition of the
multi-head self-attention mechanism, it is obvious that a single multi-head self-attention sublock is
permutation equivariant. From [76] we know stacks of permutation equivariant layers are still permu-
tation equivariant. Therefore, for every dimension, the input/output data {(x(l)

i,d, y
(l)
i )}Nli=1 are always

mapped to the same corresponding {h(l)
i,d}

Nl
i=1 regardless of their order. Further if AggregateFunction

is permutation invariant, we have h
(l)
local,d invariant of the order of data points for each dimension.

As the LocalTransformer is sharing the same weights for all dimensions,{h(l)
local,d}

Dl
d=1 will remain

equivariant with regards to permutation of dimensions. Next {h(l)
local,d}

Dl
d=1 are passed through

stacks of multi-head self-attention subblocks which is permutation equivariant, therefore the final
{h(l)

global,d}
Dl
d=1 are permutation equivariant. Again the weight sharing of the final MLP ensures
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that the final predicted spectral density hyperparameters {θ(l)d }
Dl
d=1 are permutation equivariant with

regards to data dimensions. They are also permutation invariant with regards to data points, as
{h(l)

local,d}
Dl
d=1 are invariant of the order of input/output data.

C Experimental Details and Results

C.1 Synthetic Training Dataset Generation

In our experiments, our training dataset is constructed by sampling multiple sets of input/output data
from synthetically generated GPs with stationary kernel functions. For each GP, its data dimensionality
is sampled uniform randomly from 2∼15. To sample flexible kernel functions, we randomly generate
mixtures of Gaussians to represent its spectral density. The weights of the Gaussian mixtures are
drawn from Dirichlet distribution and the lengthscales (i.e., 1/

√
2πσ(d),m’s) are sampled from a

log-uniform distribution. The number of mixtures is set to 10 and the concentration parameter of the
Dirichlet distribution are set to 1. The input of the data points {x(l)

i }
Nl
i=1 are generated from a Poisson

point process within the hypercube [−1, 1]Dl with average density being 30. The data output values
{y(l)i }

Nl
i=1 are generated from priors of the GP with its specified kernel function. The observation

noise is i.i.d. randomly sampled from N (0, 0.01). We generate 10000 sets of input/output data to
be used as the whole dataset, of which we do a split with 50% used for training and the rest for
validation. It is worth noting that although our AHGP neural model is trained on datasets with relative
small size (∼30), the trained neural model is able to generalize on real-world datasets of much larger
size, which is presented in details in Section 5. This also shows the effectiveness of the inductive bias
introduced in our hierarchical attention network.

C.2 Training Details

Our model is trained with PyTorch using the Adam [32] optimizer with a fixed learning rate and a
batch size of 64. A description of our model architecture is provided in Table 2, 3. We also apply 0.1
dropout to self-attention and the MLPs. The number of Gaussian mixtures in the spectral density
prediction is fixed at 10. To validate the effectiveness of our neural network model, we minimize the
efforts of hyperparameter tuning during training. The only hyperparameters we tuned are learning rate
({10−3, 10−4, 10−5, 10−6}) and number of layers in LocalTransformer and GlobalTransformer
(2∼8). The hyperparameters are tuned based on performance on the validation set.

Embed each (x
(l)
i,d, y

(l)
i ) to 256 dim

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

AggregateFunction: Average pooling

Table 2: LocalTransformer architecture and AggregateFunction

Since spectral mixture kernel assume the variance of the kernel function is normalized, we standardize
the function values {y(l)i }

Nl
i=1. We also standardize the data input {x(l)

i }
Nl
i=1 as a standard procedure.

During training, we find the validation performance is most sensitive to learning rate and increasing
layers of the Transformers slightly helps. The final model is trained for 200 epochs with batch size
64, learning rate 10−5 and 8 layers in both Local and Global Transformer. The training is done on an
NVIDIA GTX 1080 Ti GPU. All the evaluation experiments are run using one core of an Intel(R)
Core(TM) i7-6850K CPU for CPU runtime comparisons and an NVIDIA GTX 1080 Ti GPU for
GPU runtime comparisons.
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Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

Transformer sublayer (4 heads, representation dim 256, feedforward dim 512)

MLP for predicting weights, means and variances (each with hidden dim [256, 128])

Table 3: GlobalTransformer architecture and the final MLP

C.3 Is the Model Actually Learning?

Our method (AHGP) has demonstrated competitive performance across different applications. How-
ever, is the neural model really learning? In this section, we will construct experiments to conduct
a sanity-check on this empirically. In the experiments, we augment each dataset by adding a new
feature dimension to each datapoint. We test with two extreme cases: 1. an i.i.d random Gaussian
noise and 2. the exact same label of the data point. The new dimension is also standardized and
treated just like normal features. And then we apply our trained neural model on the augmented
regression datasets.

One should expect a sensible model to predict the noise dimension with large lengthscales, as the
dimension does not contain any useful information and should be discarded by assigning large
lengthscales. Meanwhile, the label dimension should be identified with the smallest lengthscales
because they carry the most information across all dimensions. Table 4 shows a summary of the
weighted lengthscales predicted by our model on the regression benchmarks. Results show that our
model is able to consistently identify the noise dimension with very large lengthscales and the label
dimension with the smallest lengthscales, which suggests that our model is learning generalizable
representations.

DATASET Boston Concrete Energy Wine Yacht Kin8nm Naval PowPlant

Noise dim. len. 163.14±1.61 185.74±3.88 180.71±0.91 87.31±3.84 217.94±4.67 129.77±1.81 148.88±0.59 118.65±2.46
Label dim. len. 1.77±0.00 1.71±0.00 1.51±0.00 1.40±0.01 1.15±0.01 1.46±0.00 1.37±0.00 1.63±0.00

Table 4: Predicted weighted lengthscales of noise and label dimensions

C.4 Regression Benchmarks

For SGPR methods, the number of inducing points is set to 10% of the number of training data. The
full comparisons with the CPU-based baselines in terms of test RMSE, test log marginal likelihood
and hyperparameter selection runtime are presented in Table 5, 6, 7.

DATASET GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP(Ours)
Boston 2.960±0.506 3.027±0.506 2.710±0.482 2.971±0.487 2.723±0.387
Concrete 3.573±0.848 4.747±0.386 3.695±0.805 4.907±0.393 3.448±0.448
Energy 0.488±0.036 0.503±0.058 0.483±0.044 1.728±1.233 0.515±0.071
Wine 0.577±0.027 0.661±0.028 0.580±0.028 0.690±0.038 0.580±0.035
Yacht 0.868±0.567 0.821±0.283 0.681±0.288 0.845±0.387 0.460±0.265
Kin8nm 0.080±0.003 0.080±0.004 0.085±0.004 0.093±0.009 0.199±0.008
Naval 0.000±0.000 0.001±0.001 0.000±0.000 0.006±0.002 0.002±0.000
PowPlant 3.250±0.299 4.097±0.348 2.977±0.210 4.068±0.221 4.234±0.242

Table 5: Test RMSE on regression benchmarks: CPU-based methods

The comparisons of AHGP with the GPU-based baselines are presented in Fig. 5 and Table 8, 9, 10.
Results are similar to comparisons with the CPU-based baselines in the main section. Note that GPy-
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DATASET GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP (Ours)
Boston -2.649±0.364 -3.527±1.086 -2.538±0.281 -2.939±0.642 -2.367±0.115
Concrete -2.656±0.637 -3.435±0.238 -2.690±0.574 -3.757±0.579 -3.460±1.334
Energy -1.059±0.019 -1.103±0.046 -1.079±0.028 -2.534±0.557 -0.837±0.215
Wine -0.427±0.058 -4.331±1.328 -0.410±0.053 -1.053±0.051 -0.321±0.075
Yacht -1.573±0.254 -1.526±0.108 -1.500±0.077 -1.979±0.742 -0.997±0.092
Kin8nm 1.119±0.044 0.655±0.177 1.020±0.054 0.748±0.198 0.192±0.039
Naval 6.157±0.267 5.433±1.063 6.211±0.011 3.643±0.164 5.393±0.102
PowPlant -2.591±0.115 -3.831±0.330 -2.475±0.060 -2.936±0.047 -3.112±0.151

Table 6: Test log-likelihood on regression benchmarks: CPU-based methods

DATASET GPy-SM GPy-SM-Sp GPy-SMP GPy-SMP-Sp AHGP(Ours)
Boston 83.56±65.67 60.16±9.98 1731.96±525.13 984.17±282.21 1.24±0.16
Concrete 545.08±195.05 138.01±36.99 3307.03±1484.01 1103.31±68.64 2.66±0.05
Energy 43.05±16.51 76.30±5.50 424.39±124.63 284.02±376.79 1.78±0.30
Wine 1629.73±796.54 397.35±163.41 3961.91±1617.62 2380.69±885.05 14.04±1.59
Yacht 18.68±8.44 64.87±1.12 61.56±26.95 233.75±157.30 0.22±0.01
Kin8nm 3391.64±958.03 350.49±69.52 2999.11±1036.25 2435.50±169.28 13.13±0.84
Naval 915.49±881.60 786.15±163.73 17070.97 ± 5960.81 4955.79 ± 2251.73 25.25±0.57
PowPlant 1869.34±1616.23 314.33±74.13 2131.19±490.66 281.75±207.83 7.19±0.55

Table 7: Runtime (in seconds) on regression benchmark: CPU-based methods

Torch baselines perform slightly worse than GPy baselines, since GPyTorch uses conjugate gradient
method to approximately solve for matrix inverse instead of doing the Cholesky decomposition. In
comparison, PyT-AD-SMP uses Cholesky decomposition and generally achieves better performance
than GPT-SMP.
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Figure 5: Comparison of AHGP against the GPU-based baselines on regression benchmarks. In (c),
the numbers are the differences of the corresponding method’s test RMSE with the best RMSE on the
respective dataset. Note that for Naval, the RMSEs are all very close to 0 except PyT-AD-SMP which
runs out of GPU memory.

DATASET GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP(Ours)
Boston 3.150±0.674 4.582±1.168 2.906±0.488 3.294±0.900 4.647±1.133 2.723±0.387
Concrete 6.295±1.071 7.568±0.558 3.710±0.742 6.393±0.877 7.290±0.535 3.448±0.448
Energy 0.485±0.041 1.004±0.166 0.472±0.041 0.483±0.050 0.958±0.201 0.515±0.071
Wine 0.641±0.030 0.663±0.033 0.579±0.027 0.644±0.030 0.666±0.034 0.580±0.035
Yacht 0.678±0.315 2.597±1.149 0.622±0.265 0.681±0.316 2.514±1.539 0.460±0.265
Kin8nm 0.089±0.005 0.108±0.004 0.081±0.004 0.089±0.005 0.105±0.003 0.199±0.008
Naval 0.000±0.000 0.003±0.000 Out of memory 0.001±0.000 0.003±0.000 0.002±0.000
PowPlant 4.501±0.238 4.412±0.241 2.922±0.256 4.462±0.230 4.161±0.241 4.234±0.242

Table 8: Test RMSE on regression benchmarks: GPU-based methods
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DATASET GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP (Ours)
Boston -2.692±0.442 -12.440±5.930 -2.757±0.416 -2.687±0.439 -11.390±5.270 -2.367±0.115
Concrete -3.030±0.640 -3.347±0.107 -3.132±1.262 -3.095±0.720 -3.285±0.078 -3.460±1.334
Energy -1.073±0.020 -1.269±0.064 -1.496±0.400 -1.068±0.023 -1.266±0.067 -0.837±0.215
Wine -0.517±0.079 -1.067±0.129 -0.306±0.064 -0.527±0.076 -1.028±0.115 -0.321±0.075
Yacht -1.492±0.105 -2.416±0.634 -1.030±0.770 -1.492±0.106 -2.477±1.071 -0.997±0.092
Kin8nm 0.921±0.086 0.819±0.042 1.108±0.047 0.917±0.090 0.854±0.045 0.192±0.039
Naval 5.892±0.028 5.253±0.215 Out of memory 5.933±0.017 5.372±0.113 5.393±0.102
PowPlant -2.923±0.120 -2.903±0.135 -2.540±0.153 -2.920±0.150 -2.834±0.078 -3.112±0.151

Table 9: Test log-likelihood on regression benchmarks: GPU-based methods

DATASET GPT-SM GPT-SM-Sp PyT-AD-SMP GPT-SMP GPT-SMP-Sp AHGP(Ours)
Boston 10.99±0.05 4.80±0.04 4.19±1.16 10.33±0.07 8.83±0.47 0.05±0.00
Concrete 32.10±3.69 3.98±0.14 4.12±0.02 32.69±10.72 8.24±0.14 0.13±0.00
Energy 4.17±0.12 2.47±0.13 6.49±1.76 6.72±0.13 6.17±0.56 0.08±0.02
Wine 46.63±0.19 5.32±0.15 10.20±0.08 39.19±0.07 11.22±0.31 0.38±0.00
Yacht 2.37±0.16 4.01±0.16 1.64±0.05 2.53±0.15 9.96±0.20 0.02±0.00
Kin8nm 66.55±21.34 10.86±0.14 10.80±0.15 53.79±1.13 19.23±0.69 0.46±0.00
Naval 99.58±1.98 32.12±0.70 Out of memory 106.01±0.52 46.83±0.57 0.84±0.13
PowPlant 49.36±0.14 11.29±0.67 7.66±0.06 32.17±0.06 14.15±0.89 0.33±0.01

Table 10: Runtime (in seconds) on regression benchmark: GPU-based methods

C.4.1 Increasing the number of inducing points on sparse variational GP

To fully compare the sparse variational GP (SGPR) with our method, we conducted another exper-
iment by varying the number of inducing points used in SGPR. To illustrate the difference when
different number of inducing points is used, we pick the dataset Concrete on which we see an obvious
performance gap between GPy-SM (MLL-opt) and GPy-SM-Sp (SGPR). In the experiment, the
number of inducing points in GPy-SM-Sp is set to {10%, 20%, 40%, 60%, 80%, 100%} of the total
number of training data. The comparisons with GPy-SM and AHGP in terms of test RMSE, test
log-likelihood and run time is shown in Fig. 6 and Table 11. By increasing the number of inducing
points, the gap between SGPR and MLL-opt is gradually reduced, although a small gap remains even
when the number of inducing points is set to 100%. We also observe increased run times when then
number of inducing points is increased. As SGPR has a more complicated optimization problem than
MLL-opt, its run time is slower than MLL-opt when the number of inducing points is set to the same
as the training data.
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(b) CPU runtime ratio over AHGP

Figure 6: Comparison of SGPR (GPy-SM-Sp) with MLL-opt (GPy-SM) and AHGP. The percentage
represents how many inducing points (in terms of the number of training data) are used in SGPR.

C.4.2 Why does AHGP sometimes have better predictive performance?

Surprisingly, AHGP performs even better than the MLL-opt approaches on dataset with fewer data
points (e.g., Yacht with n = 308) in terms both test RMSE and test log-likelihood. It is therefore
of great interest to investigate the underlying reason behind this phenomenon. One natural question
to ask would be: “Is AHGP learning a better kernel function than the optimized one on the training
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METHOD Test RMSE ↓ Test log-likelihood ↑ Runtime ↓
GPy-SM-Sp-10% 4.747±0.386 -3.435±0.238 138.01±36.99
GPy-SM-Sp-20% 4.277±0.268 -3.155±0.135 261.36±68.15
GPy-SM-Sp-40% 3.988±0.332 -2.999±0.184 620.73±118.55
GPy-SM-Sp-60% 3.878±0.464 -2.870±0.297 876.00±157.93
GPy-SM-Sp-80% 3.818±0.614 -2.699±0.175 1144.39±111.37
GPy-SM-Sp-100% 3.704±0.396 -2.690±0.144 1818.10±190.88
GPy-SM 3.573±0.848 -2.656±0.637 545.08±195.05
AHGP(Ours) 3.448±0.448 -3.460±1.334 2.66±0.05

Table 11: Comparison of test RMSE, test log-likelihood and runtime

data? Or is it some other reason?". We examine the marginal likelihood on the training data achieved
by AHGP and MLL-opt. It turns out the MLL-opt method still achieves a slightly better marginal
likelihood on the training data (1.04 v.s. 0.85). This demonstrates that MLL-opt method is doing a
good job in optimizing the marginal likelihood. However, its performance on test set shows that a
perfectly optimized kernel hyperparameter on a relative small number of training data can still lead to
overfitting. In comparison, AHGP only uses synthetic data during training and this training procedure
seems to add extra regularization effect which prevents kernel hyperparamter estimate of AHGP from
overfitting towards the training data and hence helps AHGP achieve a better performance on the in
test time.

C.5 Bayesian Optimization

We pick the best performing baselines on the regression benchmarks (GPy-SM, GPy-SM-Sp, PyT-
AD-SMP) and compare them with our method. The number of inducing points in GPy-SM-Sp is set
to 20. Standard test functions for global optimization [9] are used as the target functions for Bayesian
optimization. Five initial input points are randomly sampled and function values at the points are
evaluated; those input points with their function values serve as the initial input/output data of GP. At
the beginning of each BO iteration, hyperparameters are randomly reinitialized for all the baselines
and then optimized through MLL optimization. The full results are shown in Fig. 7, 8a and Table 12.

For comparison, we also implement another warmstart initialization strategy which sets the initial-
ization as the best hyperparameters from the previous BO iteration. The full results are shown in
Fig. 9, 8b and Table 13.
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Figure 7: Bayesian optimization performance comparison: random initialization strategy. Shaded
region indicates 0.5 standard deviations over 10 runs.
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(a) Random initialization strategy.
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(b) Warmstart initialization strategy.

Figure 8: Runtime on Bayesian optimization tasks.

FUNCTION GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)
Ackley 2275.32±343.28 5871.42±489.04 1288.16±70.09 47.86±3.66
Griewank 2192.96±1003.29 5863.13±626.95 1272.42±76.59 46.36±2.84
Hartmann3 614.48±169.35 5801.73±559.05 711.35±7.47 16.44±1.44
Hartmann6 1721.76±568.42 5935.85±503.19 961.31±24.82 28.65±2.44
Levy 3903.18±483.52 5707.24±628.55 1282.01±70.42 45.04±5.59
SixHumpCamel 1127.34±466.70 5898.18±608.69 625.29±4.76 12.84±1.66
Michalewicz10 1115.01±152.13 5891.81±461.76 1295.83±73.77 48.48±4.24
Michalewicz2 383.41±62.54 5762.95±486.45 629.56±4.56 13.10±1.57
Stybtang10 2826.95±581.05 5849.69±526.99 1276.52±77.09 50.12±3.14
Stybtang2 886.45±424.75 5776.96±588.76 633.21±10.43 12.80±1.63
Stybtang5 1119.24±186.60 6186.69±562.42 872.66±19.39 25.74±2.87

Table 12: Runtime (in seconds) on Bayesian optimization tasks: random initialization strategy
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Figure 9: Bayesian optimization performance comparison: warmstart initialization strategy. Shaded
region indicates 0.5 standard deviations over 10 runs.

To evaluate our method on real-world Bayesian optimization problems, we additionally applied our
method to tuning learning and model hyperparameters of logistic regression via BO. The goal is
to find the hyperparameters that achieves the highest test accuracy when a fixed amount of time
is used for training. We experiment on the task of training logistic regression on MNIST data
with stochastic gradient descent. The training involves four hyperparameters: learning rate, `2
regularization parameter, `1 regularization parameter and mini-batch size. We present the results
in Fig. 10 and Table 14. AHGP achieves comparable test accuracy with the strongest baselines
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FUNCTION GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)
Ackley 92.12±49.74 4381.99±2374.99 1933.38±517.41 51.35±2.11
Griewank 115.26±45.74 4066.03±1975.20 1998.14±864.66 49.59±5.81
Hartmann3 91.61±37.23 1501.48±1299.30 792.04±74.54 19.51±0.98
Hartmann6 82.10±35.08 3957.00±2495.70 1853.98±751.37 31.47±0.92
Levy 114.29±60.44 5024.81±1751.92 2022.96±461.09 49.18±5.91
SixHumpCamel 101.05±66.46 912.45±634.74 957.04±375.30 14.90±0.44
Michalewicz10 103.03±64.24 4005.42±2546.93 2133.61±1378.63 51.78±1.84
Michalewicz2 47.00±19.18 311.37±209.75 622.09±36.82 15.16±0.42
Stybtang10 126.53±109.21 4692.10±2186.68 1952.56±806.56 48.05±5.44
Stybtang2 119.43±105.15 969.05±945.01 734.70±219.21 14.38±0.26
Stybtang5 120.84±64.67 4655.30±1802.18 1482.06±504.21 27.35±1.28

Table 13: Runtime (in seconds) on Bayesian optimization tasks: warmstart initialization strategy

(GPy-SM, PyT-AD-SMP) while being much faster. The SGPR baseline, however, has a lower test
accuracy and much longer runtime.
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Figure 10: Bayesian optimization for training logistic regression on MNIST.

GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)
195.90 ± 99.81 1067.70±41.40 23.85±0.45 1.23±0.06

Table 14: Runtime (in seconds) on Bayesian optimization for training logistic regression on MNIST

C.6 Bayesian Quadrature

For all the tasks, we start with 10 initial points and their function values. The function values are
standardized. And the results are reported on the standardized function values. Random initialization
strategy is used for GP hyperparameters at the start of each outer iteration. The number of inducing
points in GPy-SM-Sp is set to 20. The full runtime results are reported in Table 15.

FUNCTION GPy-SM GPy-SM-Sp PyT-AD-SMP AHGP(Ours)
Circular Gaussian 1.59±0.68 66.90±23.00 0.57±0.03 0.03±0.00
Hennig1D 0.90±0.17 29.77±19.83 0.22±0.01 0.02±0.00
Hennig2D 1.03±0.19 72.47±26.82 0.54±0.05 0.03±0.00
Sombrero2D 1.02±0.26 75.42±20.06 0.53±0.02 0.03±0.00

Table 15: Runtime (in seconds) on Bayesian quadrature tasks

C.7 Model Sensitivity

To evaluate the sensitivity of our method with regards to the random initialization during training,
we run 10 different trials with the same training hyperparameters. The 10 different trained models
are evaluated on the regression benchmarks. For each trained model, the same 10 data-splits are
used. The average test RMSEs by the different trained models are reported in Fig. 11. For better
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visualization, we scaled the median of the RMSEs to 1 for each regression task. In general, AHGP is
not very sensitive to the randomness involved in deep learning training. We also observe a slightly
bigger variation on dataset with fewer data points.
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Figure 11: Violin plot of the test RMSEs evaluated with the 10 trained models. (The violin plot
shows the probability density of the RMSEs, smoothed by a kernel density estimator.)

22


