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A Expanded Literature Review

Reference Price Effects and Monopolist Pricing. Consumer reference effects have been validated
empirically in many works including [47, 48, 30, 7]. This motivated a wide range of research
including [32, 22, 42, 3, 39] that studies optimal dynamic monopolistic pricing under different
demand and reference price update models, where the single firm has complete information on
consumer demand as well as how reference prices update. There are also very recent works that
address the dynamic pricing problem with consumer reference effects under uncertain demand.
[7] utilizes real retail data and concludes the inclusion of exposure effects to sales or number of
consumers15 when considering reference price formations leads to more accurate forecasts in demand,
and proposes a pricing policy using dynamic programming. [17] couples the problem of monopolistic
dynamic pricing with reference effects and online demand learning. In our work, similar to [7, 17],
firms do not know the demand functions and how the reference prices are formed. But, while in
[7, 17], the form of demand model is known to the firm (monopolist) that aims to estimate model
parameters, our work assumes competition between firms that do not know the form of demand and
hence run OMD algorithms to set their prices. Additionally, the algorithms proposed in [7] and [17]
aim to increase revenue from the firm’s perspective, while our work focuses on analyzing market
stability for long-run competitions under reference effects.

Pricing in Competitive Markets without Reference Effects. A large stream of work studies static
price competitions and characterizes structural properties of corresponding equilibria (for example,
see [8, 24, 4]). Other works such as [1, 33, 23] study oligopolistic dynamic pricing under various
inventory, market, or product characteristics. Nevertheless, these two lines of works are oblivious
to consumer reference effects. In this work, we jointly tackle the dynamic pricing problems in
competitive markets with reference price effects when the firms lack the knowledge of demand
functions and reference price dynamics.

Pricing in Competitive Markets with Reference Effects. Similar to our work, the works of [16]
and [21] also consider price competitions under reference effects. [16] considers a similar linear
demand model and an identical reference price update dynamic, but the work only provides theoretical
analysis on the two-firm, two-period price competition setting, for which they characterize the unique
sub-game perfect Nash Equilibrium. On the other hand, [21] studies multiple-firm single-period price
competition equipped with different reference price effects in consumers’ demand (e.g. the reference
price is specified by the lowest posted price). Additionally, both of these works study the complete
information setting. In contrast to these two papers, our work studies price competitions over an
infinite time horizon where reference prices adjust over time, and provides theoretical guarantees
for the convergence of pricing strategies under the partial information setting. Finally, our work
is the first study that provides theoretical analyses on long-term market stability of repeated price
competitions in the presence of consumer reference effects.

Convergence in Games with Descent Methods. In addition to [34, 10, 35] that we discussed in
Section 1, here we also review related literature that study convergence in games where multiple
agents adopt descent methods. [43] studies finding a Nash Equilibrium of concave games via
having each agent run projected gradient descent under complete information, i.e., agents know each
others’ payoff functions and decision constraints. [40] studies a distributed network optimization
problem to optimize a sum of convex objective functions corresponding to multiple agents. Our paper
distinguishes itself from this line of work from two aspects: unlike the two aforementioned works,
(i) our model involves a varying underlying state (i.e., reference prices) dependent on all agents’
historical decisions, and can be modeled as a sequence of decisions made by an inflexible virtual
agent that adopts descent methods with a constant step size; (ii) the agents (i.e., firms) in our model do

15Exposure effects in reference price formation refer to considering reference prices as a weighted average of
all historical prices, where weights depend on factors such as sales or number of consumers.
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not have any information on one another’s revenue function or how reference prices update. Finally,
[6] considers multiple budget-constrained bidders participating in repeated second price auctions by
adopting so-called adaptive pacing strategies, which is equivalent to the subgradient descent method.
In their setting, the subgradient for each bidder’s objective is a function of all bidders’ decisions
as well as its budget rate (i.e. total fixed budget divided by a given time horizon), which can be
thought of as an underlying model state that remains constant over time.16 In contrast, in our setting,
the gradient oracle each firm receives is not only a function of all firms’ decisions, but also of the
reference price which varies over time according to firms’ past decisions, making our analysis more
challenging.

B Appendix for Section 3

Additional Definitions. We define the best-response mapping as ψ : P3 → P2 such that
ψ(p, r) = (ψ1(p2, r), ψ2(p1, r)). Then, we can rewrite the set of best-response profiles w.r.t.
reference price r, defined in Equation (4), as B(r) =

{
p ∈ P2 : p = ψ(p, r)

}
. Note that for any

SNE (p∗, r∗), we must have p∗ ∈ B(r∗), and p∗ is a fixed point of the mapping ψ(·, r∗).

B.1 Proof of Theorem 3.1

(i) By first order conditions, we know that

argmax
p∈R

πi(p, p−i, r) =
αi + δip−i + γir

2βi
.

Hence, due to boundary constraints on the decision set P and the revenue function being quadratic,
we have

ψi(p−i, r) = argmax
p∈P

πi(p, p−i, r) = ΠP

(
αi + δip−i + γir

2βi

)
,

where ΠP : R → P is the projection operator such that ΠP(z) = zI{z ∈ P}+ pI{z < p}+ p̄I{z >
p̄}. Hence, ψi(p−i, r) is a nondecreasing function in p−i and r, which further implies ψ(p, r) is
nondecreasing in p and r. Again, recall for any x,y, the relationships x ≤ y and y ≤ x are
component-wise comparisons.

We now follow a similar proof to that of Tarski’s fixed point theorem: consider the set B+(r) ={
p ∈ P2 : p ≤ ψ(p, r)

}
. It is apparent that this set is nonempty because (p, p) ∈ B+(r). Fix any

p ∈ B+(r). Then, we have p ≤ ψ(p, r) which further implies ψ(p, r) ≤ ψ (ψ(p, r), r) since
ψ(p, r) is nondecreasing in p. Hence ψ(p, r) ∈ B+(r). By taking U(r) = supB+(r) (this is
possible since all p ∈ B+(r) are bounded), we have p ≤ U(r) so p ≤ ψ(p, r) ≤ ψ(U(r), r).
This further implies U(r) ≤ ψ(U(r), r) because U(r) is the least upper bound of B+(r), and thus
U(r) ∈ B+(r). This allows us to conclude ψ(U(r), r) ≤ U(r) and hence U(r) = ψ(U(r), r),
which means U(r) = supB+(r) is a fixed point of the mapping ψ(·, r). Thus, U(r) belongs in the
set of best-response profiles B(r), confirming B(r) is not empty.

Next, we show that B(r) is an ordered set with total ordering if it is not a singleton. To do so,
consider any p, q ∈ B(r) and without loss of generality assume p1 > q1. Since p1 = ψ1(p2, r) and
q1 = ψ1(q2, r), by monotonicity of ψ1(·, r) we have p2 > q2. Thus, p > q and B(r) is an ordered
set with total ordering.

(ii) In the proof of (i), we showed that U(r) = sup
{
p ∈ P2 : p ≤ ψ(p, r)

}
is a fixed point of the

best-response mappingψ(·, r) for any r which allows us to concludeU(r) is the largest best-response
profile, i.e., U(r) = maxB(r), and hence pt = U(rt). Furthermore, since ψ(p, r) is increasing in
r, we know thatU(·) = sup

{
p ∈ P2 : p ≤ ψ(p, ·)

}
is also an increasing function. In the following,

we will argue that the reference prices rt is monotonically increasing or decreasing, which implies
pt = U(rt) is also monotonic, and hence converges since prices and reference prices are bounded.

We write U(r) = (U1(r), U2(r)). At t = 1, if θ1p1,1 + θ2p2,1 = θ1U1(r1) + θ2U2(r1) ≥ r1, then
the reference price at t = 2 satisfies the following equation

r2 = ar1 + (1− a) (θ1p1,1 + θ2p2,1) ≥ r1 .

16Note to run OMD algorithms in [6], agents need to know the length of the time horizon. Such knowledge is
not required in our setting.
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By the monotonicity of U(·), we have pi,2 = Ui(r2) ≥ Ui(r1) = pi,1 for i = 1, 2. Thus,

r3 = ar2 + (1− a) (θ1p1,2 + θ2p2,2)

≥ ar1 + (1− a) (θ1p1,1 + θ2p2,1)

= r2 .

A simple induction argument thus shows {rt}t is a nondecreasing sequence. Since rt ≤ p̄ for any
t ∈ N, we know that {rt}t converges to some number r+ ∈ [p, p̄] when θ1p1,1 + θ2p2,1 ≥ r1.
Furthermore, we observe that limt→∞ψ(U(rt), rt) = ψ(U(r+), r+) by the definition of ψ. Also,
from (i) we have ψ(U(rt), rt) = U(rt) and ψ(U(r+), r+) = U(r+) because U(r) is a fixed point
of ψ(·, r) for any r. Hence, limt→∞U(rt) = U(r+), which implies {pt = U(rt)}t converges to
U(r+). Note that convergence is monotonic because U(·) is nondecreasing. Therefore,

θ1U1(r+) + θ2U2(r+) = lim
t→∞

θ1U1(rt) + θ2U2(rt) = lim
t→∞

rt+1 = r+ ,

which implies (U(r+), r+) is an SNE. We can thus conclude that if θ1p1,1 + θ2p2,1 = θ1U1(r1) +
θ2U2(r1) ≥ r1, firms’ prices and reference prices converge monotonically to an SNE (U(r+), r+).

Following a symmetric argument, if θ1p1,1 + θ2p2,1 < r1, we can show that {rt}t is a nonincreasing
sequence. Since rt ≥ p for any t ∈ N, we know that {rt}t converges to some number r− ∈ [p, p̄].
Similar to the previous arguments, we can conclude that prices and reference prices converge
monotonically to an SNE (U(r−), r−).

B.2 Proof of Lemma 3.2

Let (p∗, r∗) ∈ (p, p̄)3 be an interior SNE, whose existence is guarantied by Assumption 1. Since
revenue functions are quadratic, first order conditions at the interior best-response profiles should
hold, which means the derivative of revenue functions at the interior best-responses p∗1 = ψ1(p

∗
2, r

∗)
and p∗2 = ψ2(p

∗
1, r

∗) should be 0:

∂π1(p
∗, r∗)

∂p1
=
∂π2(p

∗, r∗)

∂p2
= 0 ,

which leads to the relationship α1 − 2β1ψ1(p
∗
2, r

∗) + δ1p
∗
2 + γ1r

∗ = α2 − 2β2ψ2(p
∗
1, r

∗) + δ2p
∗
1 +

γ2r
∗ = 0. Solving for the best-response equations, we get

p∗1 = ψ1(p
∗
2, r

∗) =
α1 + δ1p

∗
2 + γ1r

∗

2β1
, p∗2 = ψ2(p

∗
1, r

∗) =
α2 + δ2p

∗
1 + γ2r

∗

2β2
. (7)

Finally, the definition of an SNE guaranties r∗ = θ1p
∗
1 + θ2p

∗
2. Thus, solving for (p∗, r∗), we obtain

the unique solution

p∗i =
2αiβ−i − αiθ−iγ−i + α−i (δi + θ−iγi)

(2β1 − θ1γ1) (2β2 − θ2γ2)− (θ2γ1 + δ1) (θ1γ2 + δ2)
i = 1, 2

r∗ =
θ1 (2α1β2 + α2δ1) + θ2 (2α2β1 + α1δ2)

(2β1 − θ1γ1) (2β2 − θ2γ2)− (θ2γ1 + δ1) (θ1γ2 + δ2)
.

(8)

This implies that under Assumption 1, the interior SNE is unique. We remark that for any i = 1, 2,
because βi ≥ m(δi + γi) > 0 and m ≥ 2 > 1 we have 2βi − θiγi > βi − θiγi > δi + γi − θiγi =
θ−iγi + δi. Hence, p∗i , r

∗ > 0.

C Appendix for Section 4

C.1 Proof of Proposition 4.1

First of all, it is easy to see prices at the first period are identical between Algorithm 1 and 2:
pi,1 = argmaxp∈P Ri for i = 1, 2 and pn,1 = r1. We now use induction to show price trajectories
of the two algorithms are identical via considering the induction hypothesis that prices and reference
prices are the same up to period t ∈ N+.
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Note that Rn(z) =
1
2z

2 implies R′
n(z) = z. Then, the proxy variable update step for nature is

yn,t+1 = pn,t − (1− a)
∂π̃n(p)

∂pn

∣∣∣
p=p1,t,p2,t,pn,t

= pn,t − (1− a) (pn,t − θ1p1,t − θ2p2,t)

= art + (1− a) (θ1p1,t + θ2p2,t)

= rt+1.

Since yn,t+1 = rt+1 ∈ P the projection step for nature is trivial, which means pn,t+1 = yn,t+1 =
rt+1. Furthermore, it is not difficult to see that prices p1,t+1 = Πp∈P(y1,t+1) and p2,t+1 =
Πp∈P(y2,t+1) are identical between the two algorithms under the induction hypothesis. This implies
that Algorithm 2 indeed recovers the prices and reference prices produced by Algorithm 1.

C.2 Proof of Proposition 4.2

Directly considering first order conditions for the cost functions {π̃i}i=1,2,n, we have the system of
equations

0 =
∂π̃1(p1, p2, pn)

∂p1
= 2β1p1 − (α1 + δ1p2 + γ1r)

0 =
∂π̃2(p1, p2, pn)

∂p2
= 2β2p2 − (α2 + δ2p1 + γ2r)

0 =
∂π̃n(p1, p2, pn)

∂pn
= pn − (θ1p1 + θ2p2) .

Solving these equations results in a unique solution that is identical to that in Equation (8), which is
the unique interior SNE according to Lemma 3.2. Since the SNE is an interior point of (p, p̄)3, it is
the unique PSNE of the induced static 3-firm game.

D Appendix for Section 5

D.1 Additional Definitions

Definition D.1 (Bregman Divergence). The Bregman divergence D : C × C → R+ associated with
convex set C ⊂ R, and convex and continuously differentiable function R : C → R is defined as

D(x, y) := R(x)−R(y)−R′(y)(x− y) ≥ 0 ,

where the inequality follows from convexity of R. Furthermore, if R is σ-strongly convex, then
D(x, y) ≥ σ2

2 (x− y)2.

Note that Di is the Bregman divergence associated with regularizer Ri used by firm i = 1, 2, and Dn

is Bregman divergence associated with regularizer Rn used by nature.

Definition D.2. Let g∗i be the partial derivative of the cost function π̃i w.r.t. pi evaluated at the
interior SNE (p∗, r∗), i.e. for i = 1, 2, n

g∗i =
∂π̃i(p1, p2, pn)

∂pi

∣∣∣
p1=p∗

1 ,p2=p∗
2 ,pn=r∗

.

D.2 Proof for Theorem 5.1

The proof of this theorem is divided into two parts. In the first part, we show that the price profiles
(pt, rt) converge as t → ∞ under the condition limt→∞ ϵi,t = 0, i ∈ {1, 2}. In the second part,
under the additional conditions limT→∞

∑T
t=1 ϵi,t = ∞ and limT→∞

∑T
t=1 ϵ

2
i,t < ∞, we show

that the price profiles converge to the unique interior SNE.
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First part: Convergence of prices and reference prices. Recall that gi,t = gi(pi,t, rt) =
2βipi,t − (αi + δip−i,t + γirt), and pi,t and p−i,t are both bounded. Hence, because for i = 1, 2,
limt→∞ ϵi,t = 0 and {ϵi,t}t is nonincreasing, we have for any small ϵ > 0 there exist tϵ ∈ N such

that |ϵi,tgi,t| ≤ σ2
i ϵ
6 for all t ≥ tϵ. Our goal is to show that for t ≥ tϵ, |pi,t+1 − pi,t| is small.

For t ≥ tϵ,

|pi,t+1 − pi,t| ≤ |pi,t+1 − yi,t+1|+ |yi,t+1 − pi,t|
(a)

≤ |pi,t+1 − yi,t+1|+
ϵ

6
. (9)

To see why inequality (a) holds recall that yi,t+1 is the proxy variable in Step 5 of Algorithm 1 such
that R′

i(yi,t+1)−R′
i(pi,t) = ϵi,tgi,t. Hence,

σ2
i |yi,t+1 − pi,t| ≤ |R′

i(yi,t+1)−R′
i(pi,t)| = |ϵi,tgi,t| ≤

σ2
i ϵ

6
, t > tϵ, i = 1, 2 ,

which implies that |yi,t+1 − pi,t| ≤ ϵ
6 , as desired. Here, the first inequality holds because:

σ2
i (yi,t+1 − pi,t)

2
(a)

≤ (R′
i(yi,t+1)−R′

i(pi,t)) (yi,t+1 − pi,t)

≤ |R′
i(yi,t+1)−R′

i(pi,t)| · |yi,t+1 − pi,t| ,

where (a) follows from summing up Ri(yi,t+1) − Ri(pi,t) ≥ R′
i(pi,t)(yi,t+1 − pi,t) +

σ2
i

2 (yi,t+1 − pi,t)
2 and Ri(pi,t)−Ri(yi,t+1) ≥ R′

i(yi,t+1)(pi,t − yi,t+1) +
σ2
i

2 (yi,t+1 − pi,t)
2 due

to strong convexity.

By Equation (9), for t ≥ tϵ,

|pi,t+1 − pi,t| ≤ |pi,t+1 − yi,t+1|
(
I{yi,t+1 < p}+ I{yi,t+1 ∈ P}+ I{yi,t+1 > p̄}

)
+
ϵ

6

= |pi,t+1 − yi,t+1|
(
I{yi,t+1 < p}+ I{yi,t+1 > p̄}

)
+
ϵ

6
, (10)

where the equality holds because under the event yi,t+1 ∈ P , no projection occurs and hence,
yi,t+1 = pi,t+1. In the first of the proof, we bound the first two terms in the right hand side, i.e.,
|pi,t+1 − yi,t+1| I{yi,t+1 < p} and |pi,t+1 − yi,t+1| I{yi,t+1 > p̄}.

To bound |pi,t+1 − yi,t+1| I{yi,t+1 < p}, similar to Equation (9) we use |pi,t − yi,t+1| ≤ ϵ
6 for

t ≥ tϵ which implies pi,t − yi,t+1 ≤ ϵ
6 . Thus,

yi,t+1 ≥ pi,t −
ϵ

6

(a)

≥ p− ϵ

6
. (11)

where (a) holds because pi,t ≥ p for any i, t. On the other hand, under the event yi,t+1 < p, projection
occurs and therefore we have pi,t+1 = p.

This yields

|pi,t+1 − yi,t+1| I{yi,t+1 < p} =
(
p− yi,t+1

)
I{yi,t+1 < p}

(a)

≤
(
p− p+

ϵ

6

)
=
ϵ

6
, (12)

where (a) follows from Equation (11).

Using a similar argument as above to bound |pi,t+1 − yi,t+1| I{yi,t+1 > p̄}, we have
|pi,t+1 − yi,t+1| I{yi,t+1 > p̄} ≤ ϵ

6 under the event yi,t+1 > p̄.

Hence, plugging these upper bounds back into Equation (9), we can show that for any ϵ > 0 and
t ≥ tϵ

|pi,t+1 − pi,t| ≤ ϵ

6
+
ϵ

6
+
ϵ

6
=

ϵ

2
, i = 1, 2 . (13)
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Now, for any t ≥ tϵ we have∣∣∣∣∣∣rt+1 −
∑
i=1,2

θipi,t+1

∣∣∣∣∣∣ =

∣∣∣∣∣∣art − (1− a)
∑
i=1,2

θipi,t −
∑
i=1,2

θipi,t+1

∣∣∣∣∣∣ (14)

≤ a

∣∣∣∣∣∣rt −
∑
i=1,2

θipi,t

∣∣∣∣∣∣+
∑
i=1,2

θi |pi,t − pi,t+1| (15)

≤ a

∣∣∣∣∣∣rt −
∑
i=1,2

θipi,t

∣∣∣∣∣∣+ ϵ

2
, (16)

where the final inequality follows from Equation (13). Telescoping from t down to tϵ, we have∣∣∣∣∣∣rt+1 −
∑
i=1,2

θipi,t+1

∣∣∣∣∣∣ ≤ at−tϵ+1

∣∣∣∣∣∣rtϵ −
∑
i=1,2

θipi,tϵ

∣∣∣∣∣∣+ ϵ

2

t∑
τ=tϵ

aτ−tϵ

≤ at−tϵ+1

∣∣∣∣∣∣rtϵ −
∑
i=1,2

θipi,tϵ

∣∣∣∣∣∣+ ϵ

2(1− a)

≤ at−tϵ+1(p̄− p) +
ϵ

2(1− a)
.

Letting t→ ∞ and ϵ→ 0 concludes
∑

i=1,2 θipi,t → rt for t→ ∞.

Second part: Convergence to the SNE. The proof of this part is inspired by the proof of Theorem
4.6 in [35]. However, in that proof, they rely on the Nash Equilibria of the game being variationally
stable, or more strictly speaking, the gradient of the virtual 3-player game (consisting of firms and
nature) g : R3

+ → R3
+ s.t. g(p) = (∂π̃i/∂pi)i=1,2,n to be a monotone mapping. In this proof, we do

not rely on such structural assumption for the virtual 3-player game (see discussion in Section 5.3).

The proof of this theorem is split into two steps. First, we show that for any ϵ > 0, the price profile
(p1,t, p2,t) must enter an ϵ-neigborhood of the SNE prices (p∗1, p

∗
2) infinitely many times. In the

second step, we show that when (p1,t, p2,t) enters the ϵ-neigborhood with small enough step sizes, it
must remain their forever.

Before we begin, we first introduce a lemma that would be used in both steps:
Lemma D.1. Assume for any i = 1, 2, βi ≥ m (δ1 + δ2 +max{γ1, γ2}) for m ≥ 1 as described in
Section 2. Consider the 2-by-2 matrix M

M =

(
2β1 − θ1γ1 −(δ1 + θ2γ1)
−(δ2 + θ1γ2) 2β2 − θ2γ2

)
M +M⊤ =

(
4β1 − 2θ1γ1 −(δ1 + δ2 + θ2γ1 + θ1γ2)

−(δ1 + δ2 + θ2γ1 + θ1γ2) 4β2 − 2θ2γ2

)
,

(17)

Then, for any x ̸= 0 ∈ R2, x⊤Mx > 0. Furthermore, for any ϵ > 0, define an ϵ-neighborhood
around (p1, p2) ∈ R2 : Nϵ(p1, p2) = {x ∈ R2 :

∑
i=1,2Di(xi, pi) < ϵ} where Di(x, y) =

R(x)−R(y)−R′(y)(x− y) is the Bregman divergence w.r.t. Ri. Assuming the regularizers satisfy
the reciprocity condition, i.e. whenever x→ y for x, y ∈ R we have Di(x, y) → 0, there exists some
absolute constant Cϵ > 0 such that

(x− p)⊤M (x− p) ≥ Cϵ ,∀x /∈ Nϵ(p1, p2) . (18)

Proof. Since, βi ≥ m (δ1 + δ2 +max{γ1, γ2}) for m ≥ 1, the sum of the first row of M +M⊤ =
4β1 − 2θ1γ1 − (δ1 + δ2 + θ2γ1 + θ1γ2) > 0. Similarly, the sum of the second row of M +M⊤ is
also strictly greater than 0, and hence M +M⊤ is a symmetric strict diagonally dominant matrix,
and hence positive definite.17 Therefore, for any x ∈ R2 and x ̸= 0, we have x⊤ (M +M⊤)x > 0.
Since x⊤Mx = x⊤M⊤x, this implies our desired result x⊤Mx > 0

17A symmetric square matrix has real eigenvalues, and a diagonally dominant square matrix has eigenvalues
whose real parts are positive. Hence M +M⊤ has positive eigenvalues, and is thus positive definite.
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We now show Equation (18). The reciprocity condition implies that there exists some ηϵ > 0 such
that when ∥x − p∥ < ηϵ, it holds that

∑
i=1,2Di(xi, pi) < ϵ. Hence, for any x /∈ Nϵ(p1, p2), it

must be the case that ∥x− p∥ ≥ ηϵ. So, for x /∈ Nϵ(p1, p2), we have

(x− p)⊤M (x− p) =
1

2
(x− p)⊤

(
M +M⊤) (x− p)

≥ 1

2
λmin(M +M⊤)∥x− p∥2

≥ 1

2
λmin(M +M⊤)η2ϵ := Cϵ,

where λmin(M +M⊤) is the minimum eigenvalue of the matrix M +M⊤ (which is positive due to
the fact that M +M⊤ is positive definite).

Now, returning to the proof for Theorem 5.1.

Step 1: show (p1,t, p2,t) must enter an ϵ-neigborhood of the SNE prices (p∗1, p
∗
2) infinitely

many times. We use a contradiction argument. Fix any ϵ > 0 and let Cϵ > 0 be the absolute
constant defined in Lemma D.1. Assume by contradiction that (p1,t, p2,t) only visits Nϵ(p

∗
1, p

∗
2) ={

p ∈ R2 : ∥p− (p∗1, p
∗
2)∥ < ϵ

}
finitely many times, i.e. there exists some tN s.t. ∥(p1,t, p2,t) −

(p∗1, p
∗
2)∥ ≥ ϵ for all t ≥ tN . Further, in the first part of this theorem we showed that

∑
i=1,2 θipi,t →

rt, so without loss of generality (by taking tN large enough), we can also assume for some small
η > 0 such that 2ηγ(p̄− p) < Cϵ (where γ = max{γ1, γ2}), we have

∣∣∣rt −∑i=1,2 θipi,t

∣∣∣ ≤ η for
all t ≥ tN .

We start by deducing a recurrence relationship between Di(p
∗
i , pi,t+1) and Di(p

∗
i , pi,t) as followed:

Di(p
∗
i , pi,t+1)

(a)

≤ Di(p
∗
i , pi,t)− ϵi,t (g

∗
i − gi,t) (p

∗
i − pi,t) +

(ϵi,t)
2
g2i,t

2σi

= Di(p
∗
i , pi,t)− ϵi,t

(
2βip

∗
i − δip

∗
−i + γir

∗ − 2βipi,t − δip−i,t + γirt
)
(p∗i − pi,t) +

(ϵi,t)
2
g2i,t

2σi
(b)

≤ Di(p
∗
i , pi,t)

− ϵi,t

2βip
∗
i − δip

∗
−i + γi

∑
j=1,2

θjp
∗
j

− 2βipi,t − δip−i,t + γi

∑
j=1,2

θjpj,t

 (p∗i − pi,t)

+ ϵi,tηγi
(
p̄− p

)
+

(ϵi,t)
2
g2i,t

2σi

= Di(p
∗
i , pi,t)− ϵi,t

(
(2βi − θiγi) (p

∗
i − pi,t)− (δi + θ−iγi)

(
p∗−i − p−i,t

))
(p∗i − pi,t)

+ ϵi,tηγi
(
p̄− p

)
+

(ϵi,t)
2
g2i,t

2σi
,

(19)

where in (a) we directly evoked Corollary E.1.1; and in (b) we used the fact that r∗ =
∑

j=1,2 θjp
∗
j

according to the definition of the SNE, and
∣∣∣rt −∑j=1,2 θjpj,t

∣∣∣ ≤ η for t ≥ tN . Summing the
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above over i = 1, 2 and recalling ϵi,t = ϵt we have

∑
i=1,2

Di(p
∗
i , pi,t+1)

(a)

≤
∑
i=1,2

Di(p
∗
i , pi,t)− ϵt (p

∗ − pt)⊤M (p∗ − pt) + 2ϵtηγ
(
p̄− p

)
+

(ϵt)
2
c2

σ

(b)

≤
∑
i=1,2

Di(p
∗
i , pi,t)− ϵtCϵ + 2ϵtηγ

(
p̄− p

)
+

(ϵt)
2
c2

σ

=
∑
i=1,2

Di(p
∗
i , pi,t)− ϵt

(
Cϵ − 2ηγ

(
p̄− p

))
+

(ϵt)
2
c2

σ

(20)

where in (a) we take some finite c2 > maxi∈{1,2},t∈N+ g2i,t for all i, t by recalling Equation (5) which
states gi,t = gi(pt, rt) = 2βipi,t − (αi + δip−i,t + γirt), and that pi,t, rt are bounded within [p, p]
for all i, t. Also recall γ = max{γ1, γ2} and σ = min{σ1, σ2}. In (b) we applied Lemma D.1 since
∥(p1,t, p2,t)− (p∗1, p

∗
2)∥ ≥ ϵ for all t ≥ tN .

Telescoping Equation (20) from some large time period T + 1 down to tN we get

0 ≤
∑
i=1,2

Di(p
∗
i , pi,T+1)

≤
∑
i=1,2

Di(p
∗
i , pi,tN )−

(
Cϵ − 2ηγ

(
p̄− p

)) T∑
t=tN

ϵt +
c2
σ

T∑
t=tN

(ϵt)
2
. (21)

Rearranging terms in Equation (21) and dividing both sides by
∑T

t=tN
ϵt we get the following:

−
∑

i=1,2Di(p
∗
i , pi,tN )∑T

t=tN
ϵt

≤ −
(
Cϵ − 2ηγ

(
p̄− p

))
+
c2
σ

·
∑T

t=tN
ϵ2t∑T

t=tN
ϵt
.

Since
∑

i=1,2Di(p
∗
i , pi,tN ) and tN are finite, the condition limT→∞

∑T
t=1 ϵt = ∞ im-

plies that limT→∞
∑T

t=tN
ϵt = ∞, and the condition limT→∞

∑T
t=1 ϵ

2
t < ∞ implies that

limT→∞
∑T

t=tN
ϵ2t <∞. Hence,

∑T
t=tN

ϵ2t∑T
t=tN

ϵt
= 0 as T → ∞. Finally, because Cϵ−2ηγ

(
p̄− p

)
> 0

due to our definition of η, as T → ∞, the above left hand side goes to zero and the right hand side
goes to −

(
Cϵ − 2ηγ

(
p̄− p

))
< 0. This is a contradiction, implying that (p1,t, p2,t) must enter an

Nϵ(p
∗
1, p

∗
2) infinitely many times.

Step 2: show when (p1,t, p2,t) enters an ϵ-neigborhood of the SNE prices (p∗1, p
∗
2) for large t

(small step size), it must stay in the neighborhood. Here, we will show that for any ϵ > 0, if
(p1,t, p2,t) ∈ Nϵ(p

∗
1, p

∗
2) for some large t, then (p1,τ , p2,τ ) ∈ Nϵ(p

∗
1, p

∗
2) for all τ ≥ t. In fact, we

only need to show that (p1,t, p2,t) ∈ Nϵ(p
∗
1, p

∗
2) implies (p1,t+1, p2,t+1) ∈ Nϵ(p

∗
1, p

∗
2) for large t,

and the rest follows from an induction argument.

Consider two scenarios, namely (p1,t, p2,t) ∈ N ϵ
2
(p∗1, p

∗
2) and (p1,t, p2,t) ∈ Nϵ(p

∗
1, p

∗
2)/N ϵ

2
(p∗1, p

∗
2).

Scenario 1: If (p1,t, p2,t) ∈ N ϵ
2
(p∗1, p

∗
2), consider some tη > 0 such that when t ≥ tη, we have∣∣∣rt −∑i=1,2 θipi,t

∣∣∣ ≤ η for some small η that satisfies ϵ
2 > 2ηγ

(
p̄− p

)
. Following the same

8



deduction as in Equation (20), we have

∑
i=1,2

Di(p
∗
i , pi,t+1) ≤

∑
i=1,2

Di(p
∗
i , pi,t)− ϵt (p

∗ − pt)⊤M (p∗ − pt) + 2ϵtηγ
(
p̄− p

)
+

(ϵt)
2
c2

σ

(a)

≤ ϵ

2
+ 2ϵtηγ

(
p̄− p

)
+

(ϵt)
2
c2

σ

=
ϵ

2
+ ϵt

(
2ηγ

(
p̄− p

)
+
ϵtc2
σ

)
(b)

≤ ϵ .
(22)

In (a) we used Lemma D.1 such that (p∗ − pt)⊤M (p∗ − pt) ≥ 0, and the fact that (p1,t, p2,t) ∈
N ϵ

2
(p∗1, p

∗
2) so by definition of an ϵ-neighborhood (see Lemma D.1)

∑
i=1,2Di(p

∗
i , pi,t+1) ≤ ϵ

2 . In

(b), we considered large t such that ϵt < min
{
1, σ

c2

(
ϵ
2 − 2ηγ

(
p̄− p

))}
and used the definition of

η such that ϵ
2 > 2ηγ

(
p̄− p

)
.

Scenario 2: If (p1,t, p2,t) ∈ Nϵ(p
∗
1, p

∗
2)/N ϵ

2
(p∗1, p

∗
2), let C ϵ

2
be defined as in Lemma D.1. Consider

some t′η > 0 such that when t ≥ t′η , we have
∣∣∣rt −∑i=1,2 θipi,t

∣∣∣ ≤ η for some small η that satisfies

C ϵ
2
> 2ηγ

(
p̄− p

)
. Following the same deduction as in Equation (20), we have

∑
i=1,2

Di(p
∗
i , pi,t+1) ≤

∑
i=1,2

Di(p
∗
i , pi,t)− ϵt

(
C ϵ

2
− 2ηγ

(
p̄− p

))
+

(ϵt)
2
c2

σ

≤ ϵ− ϵt
(
C ϵ

2
− 2ηγ

(
p̄− p

))
+

(ϵt)
2
c2

σ
,

where the final inequality follows from (p1,t, p2,t) ∈ Nϵ(p
∗
1, p

∗
2). Taking large t such that ϵt <

σ
c2

(
C ϵ

2
− 2ηγ

(
p̄− p

))
we get

∑
i=1,2Di(p

∗
i , pi,t+1) ≤ ϵ.

Combining the above two scenarios, we showed that for any t > 0 such that t ≥ max{tη, t′η}
and ϵt ≤ min

{
1, σ

c2

(
ϵ
2 − 2ηγ

(
p̄− p

))
, σ
c2

(
C ϵ

2
− 2ηγ

(
p̄− p

))}
, (p1,t, p2,t) ∈ Nϵ(p

∗
1, p

∗
2) im-

plies (p1,t+1, p2,t+1) ∈ Nϵ(p
∗
1, p

∗
2) and hence (p1,τ , p2,τ ) ∈ Nϵ(p

∗
1, p

∗
2) for all large enough τ (by

induction).

D.3 Proof of Theorem 5.2

Following the same deduction in Equation (19) we have

Di(p
∗
i , pi,t+1) ≤ Di(p

∗
i , pi,t)− ϵi,t

(
2βi (p

∗
i − pi,t)

2 − δi
(
p∗−i − p−i,t

)
(p∗i − pi,t)

−γi (r∗ − rt) (p
∗
i − pi,t)) +

(ϵi,tgi,t)
2

2σi
(a)

≤ Di(p
∗
i , pi,t)− ϵi,t

(
4βi − δi

2
(p∗i − pi,t)

2 − δi
2

(
p∗−i − p−i,t

)2)
+ ϵi,tγi (r

∗ − rt) (p
∗
i − pi,t) +

(ϵi,tgi,t)
2

2σi
.

where in (a) we used the basic inequalityAB ≤ (A2+B2)/2 forA = p∗−i−p−i,t andB = p∗i −pi,t.
Now, consider the step-size sequences {ϵi,t}t that satisfy

1

t+ 1
· 10

4βi − δi
≤ ϵi,t ≤ 1

t+ 1
· 2

max{δi, γi}
, i = 1, 2 . (23)
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Equation (23) holds due to the fact that βi > m(δi + γi) > 0 and m ≥ 2, which further implies
2 (4βi − δi) > 8m(δi + γi)− 2δi > 10(δi + γi) > 10max{δi, γi}. This leads to

Di(p
∗
i , pi,t+1)

≤ Di(p
∗
i , pi,t)−

5

t+ 1
(p∗i − pi,t)

2
+

1

t+ 1

(
p∗−i − p−i,t

)2
+

2

t+ 1
(r∗ − rt) (p

∗
i − pi,t) +

(ϵi,tgi,t)
2

2σi
(a)

≤ Di(p
∗
i , pi,t)−

5

t+ 1
(p∗i − pi,t)

2
+

1

t+ 1

(
p∗−i − p−i,t

)2
+

2

t+ 1
(r∗ − rt) (p

∗
i − pi,t) +

c2
2(t+ 1)2

,

where in (a) we take some c2 > maxi∈{1,2},t∈N+
4g2

i,t

σi max{δi,γi}2 for all i, t by using the fact that
pi,t, rt ∈ P . Summing across i = 1, 2, we have∑

i=1,2

Di(p
∗
i , pi,t+1)

≤
∑
i=1,2

Di(p
∗
i , pi,t)−

4

t+ 1
∥p∗ − pt∥2 +

2

t+ 1
(r∗ − rt) (p

∗
1 − p1,t + p∗2 − p2,t) +

c2
(t+ 1)2

(a)

≤
∑
i=1,2

Di(p
∗
i , pi,t)−

2

t+ 1
∥p∗ − pt∥2 +

1

t+ 1
(r∗ − rt)

2
+

c2
(t+ 1)2

,

where in inequality (a) we applied C(A+B) ≤ C2

2 + (A+B)2

2 ≤ C2

2 +A2 +B2 for A = p∗1 − p1,t,
B = p∗2 − p2,t and C = r∗ − rt.

When Ri(z) = z2, we have Di(p, p
′) = (p− p′)2. Therefore, denoting xt =

∑
i=1,2Di(p

∗
i , pi,t) =

∥p∗ − pt∥2 for i = 1, 2 and xn,t = (r∗ − rt)
2, the equation above yields

xt+1 ≤
(
1− 2

t+ 1

)
xt +

1

t+ 1
xn,t +

c2
(t+ 1)2

. (24)

We will show via induction that xt ≤ c
t for some c > 0 and any t ∈ N+. The proof is constructive

and will rely on the following definitions, whose motivations will later be clear.

Fix ρa =
⌈

a
1−a

⌉
+ 1, ta =

⌈ a
1−a (ρa+1)

ρa− a
1−a

⌉
, and take any θ̄ such that max {θ1, θ2} < θ̄ < 1. Here,

⌈x⌉ = min{y ∈ N+ : y ≥ x} for any x ∈ R. Note that ρa is bounded as a is bounded away from 1.

Next, define

tθ := min

{
τ ∈ N+ : τ ≥ ρa and

(ρa + 1) log(τ − ρa − 1)

τ
≤ θ̄

max{θ1, θ2}
− 1

}
(25)

u := (1− a)max{θ1, θ2}
ρa+ta−1∑

τ=1

a−τ

τ
. (26)

Note that tθ is bounded because max{θ1, θ2} is bounded away from one. Further, since ρa and θ̄ are
constant, and log(t) = o(t), it is easy to see that tθ exists. Furthermore, define

t̃ := min

{
τ > max {ρa + ta, tθ} :

(t− ρa) ·

(
2(p̄− p)2 + u ·

2t · (p̄− p)2 + c2 + 1

1− θ̄

)
< a−t , for ∀t ≥ τ

}
,

c :=
2t̃(p̄− p)2 + c2 + 1

1− θ̄
.

Note that t̃ must exist because the left hand side is quadratic in t, while the right hand side is
exponential in t for a ∈ (0, 1). We provide an illustration for the size of c w.r.t. memory parameter a
and max{θ1, θ2} in Figure 2b of Appendix D.7.
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Note that the definition of t̃ and c implies that the following three equations hold

at
(
2(p̄− p)2 + uc

)
<

1

t− ρa
∀t ≥ t̃ (27)

2t̃(p̄− p)2 + c2 + 1 + θ̄c = c (28)

c > 2t̃(p̄− p)2 . (29)

Here, Equation (27) is due to the following: plugging the definition of c into that of t̃ we get

(t̃− ρa) ·
(
2(p̄− p)2 + uc

)
< a−t̃, and since c =

2t̃(p̄−p)2+c2+1

1−θ̄
≤ 2t·(p̄−p)2+c2+1

1−θ̄
for any t ≥ t̃ >

ρa, we have

(t− ρa)
(
2(p̄− p)2 + uc

)
≤ (t− ρa)

(
2(p̄− p)2 + u ·

2t · (p̄− p)2 + c2 + 1

1− θ̄

)
(a)
< a−t ,

where (a) follows from the definition of t̃. Equation (28) directly follows from the definition of c. Equa-

tion (29) follows because θ̄ ∈ (0, 1) and hence c =
2t̃(p̄−p)2+c2+1

1−θ̄
> 2t̃(p̄−p)2+c2+1 > 2t̃(p̄−p)2.

Hence, this implies that xt ≤ 2(p̄− p)2 < c
t for any t = 1 . . . t̃, where we recall xt = ∥p∗ − pt∥2.

Consider t ≥ t̃. We will now show via induction that xt+1 ≤ c/(t+1) using our induction hypothesis
that xτ ≤ c/τ holds for all τ = 1, . . . , t. Note that the base case xt ≤ 2(p̄ − p)2 < c

t for any
t = 1 . . . t̃ is trivially true as we just discussed. Then, multiplying t(t + 1) on both sides of the
recurrence relation in Equation (24) and telescoping from t̃ to t, we have

t(t+ 1)xt+1 ≤ (t− 1)txt + txn,t + c2

≤ (t− 2)(t− 1)xt−1 +

t∑
τ=t−1

txn,τ + 2c2

...

≤ (t̃− 1)t̃ · xt̃ +
t∑

τ=t̃

τxn,τ + (t− t̃+ 1)c2

≤ (t̃− 1)t̃ · xt̃ +
t∑

τ=t̃

τxn,τ + tc2 . (30)

We will now bound xn,τ for all τ = t̃ . . . t. Using the definition r∗ = θ1p
∗
1 + θ2p

∗
2, we get

r∗ − rτ+1 = r∗ − arτ − (1− a) (θ1p1,τ + θ2p2,τ )

= a (r∗ − rτ )− (1− a) (θ1 (p
∗
1 − p1,τ ) + θ2 (p

∗
2 − p2,τ )) .

By convexity, we further have for any τ = 1 . . . t,

xn,τ+1 = (r∗ − rτ+1)
2 ≤ axn,τ + (1− a) (θ1 (p

∗
1 − p1,τ ) + θ2 (p

∗
2 − p2,τ ))

2

≤ axn,τ + (1− a)
(
θ1 (p

∗
1 − p1,τ )

2
+ θ2 (p

∗
2 − p2,τ )

2
)

≤ axn,τ + (1− a)max{θ1, θ2}xτ
(a)

≤ axn,τ + (1− a)max{θ1, θ2}
c

τ
,
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where (a) follows from the induction hypothesis, i.e., xτ ≤ c/τ holds for all τ = 1 . . . t. Using a
telescoping argument, we then have for any t ≥ t̃,

xn,t+1 ≤ axn,t + (1− a)max{θ1, θ2}
c

t

≤ a2xn,t−1 + (1− a)cmax{θ1, θ2}
t∑

τ=t−1

at−τ

τ

...

≤ atxn,1 + (1− a)cmax{θ1, θ2}
t∑

τ=1

at−τ

τ

= atxn,1 + (1− a)atcmax{θ1, θ2}

(
ρa+ta−1∑

τ=1

a−τ

τ
+

t∑
τ=ρa+ta

a−τ

τ

)
(a)
= at (xn,1 + uc) + (1− a)atcmax{θ1, θ2}

t∑
τ=ρa+ta

a−τ

τ

≤ at
(
2(p̄− p)2 + uc

)
+ (1− a)atcmax{θ1, θ2}

t∑
τ=ρa+ta

a−τ

τ

(b)

≤ 1

t− ρa
+ (1− a)atcmax{θ1, θ2}

t∑
τ=ρa+ta

a−τ

τ

(c)

≤ 1 + max{θ1, θ2}c
t− ρa

.

Here, (a) follows from the definition of u in Equation (26); (b) follows from Equation (27); and (c)
follows from Lemma E.3 since t ≥ t̃ ≥ ρa + ta. Applying this upper bound on xn,t in Equation (30)
we have

t(t+ 1)xt+1

≤ (t̃− 1)t̃ · xt̃ + (1 +max{θ1, θ2}c)
t∑

τ=t̃

τ

τ − ρa − 1
+ tc2

= (t̃− 1)t̃ · xt̃ + (1 +max{θ1, θ2}c)
t∑

τ=t̃

(
1 +

ρa + 1

τ − ρa − 1

)
+ tc2

(a)

≤ (t̃− 1)t̃ · xt̃ + (1 +max{θ1, θ2}c) (t+ (ρa + 1) log(t− ρa − 1)) + tc2 .

where (a) follows from
∑t

τ=t̃
1

τ−ρa−1 ≤
∫ t

t̃−1
1

τ−ρa−1dτ ≤ log(t − ρa − 1) since t̃ ≥ ρa + 3.
Dividing both sides of the above equation by t(t+ 1), and using the fact that xt ≤ 2(p̄− p)2 for any
t, we have

xt+1 ≤

(
2(t̃− 1)t̃(p̄− p)2

t
+ c2

)
· 1

t+ 1
+

1 +max{θ1, θ2}c
(
1 + (ρa+1) log(t−ρa−1)

t

)
t+ 1

(a)

≤
2t̃(p̄− p)2 + c2 + 1 +max{θ1, θ2}c

(
1 + (ρa+1) log(t−ρa−1)

t

)
t+ 1

(b)

≤
2t̃(p̄− p)2 + c2 + 1 + θ̄c

t+ 1
(c)
=

c

t+ 1
.
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Here, (a) follows from the fact that t ≥ t̃, so
2(t̃−1)t̃(p̄−p)2

t + c2 ≤ 2t̃(p̄ − p)2 + c2; (b) follows
from t ≥ t̃ ≥ tθ so that (ρa+1) log(t−ρa−1)

t ≤ θ̄
max{θ1,θ2} − 1 according to Equation (25); finally, (c)

follows from Equation (28).

D.4 Proof of Theorem 5.3

Here, we first provide a roadmap for the proof. Evoking Corollary E.1.1, we get

Di(p
∗
i , pi,t+1) ≤ Di(p

∗
i , pi,t)− ϵi,t (g

∗
i − gi,t) (p

∗
i − pi,t) +

(ϵi,t)
2
(g∗i − gi,t)

2

2σi
. (31)

By bounding the first order term (g∗i − gi,t) (p
∗
i − pi,t) and the second order term (g∗

i −gi,t)
2

2σi
, we

achieve a recursive relation in the form of∑
i=1,2,n

Di(p
∗
i , pi,t+1) ≤

∑
i=1,2,n

Di(p
∗
i , pi,t) +

∑
i=1,2,n

κi,txi,t ,

where we recall the definition xi,t = (p∗i − pi,t)
2 for i = 1, 2, n as in the proof of Theorem 5.2,

and κi,t is some constant that takes negative values if the conditions in the theorem’s statement
are satisfied. We then argue if (pt, rt) does not converge to the SNE,

∑
i=1,2,nDi(p

∗
i , pi,t) will be

greater than some positive constant ϵ > 0 for all large enough t. Combining this with the above
recursive relationship, this further implies that the distance between the price profile (pt, rt) and the
SNE decreases by a positive constant for each period. This will eventually contradict the fact that
Bregman divergence is positive.

We start our proof by recalling Equation (5) which states gi(p, r) = 2βipi − (αi + δip−i + γir).
Hence,

g∗i − gi,t = 2βi (p
∗
i − pi,t)− δi

(
p∗−i − p−i,t

)
− γi (r

∗ − rt) .

Furthermore, for i = 1, 2, we have

(g∗i − gi,t)
2 ≤ 8β2

i xi,t + 4δ2i x−i,t + 4γ2i xn,t , (32)

where we used (A+B + C)2 ≤ 2A2 + 2(B + C)2 ≤ 2A2 + 4B2 + 4C2 for A = 2βi (p
∗
i − pi,t),

B = δi
(
p∗−i − p−i,t

)
, and C = γi (r

∗ − rt). Hence, we have

Di(p
∗
i , pi,t+1)

≤ Di(p
∗
i , pi,t)− ϵi,t

(
2βixi,t − δi

(
p∗−i − p−i,t

)
(p∗i − pi,t)− γi (r

∗ − rt) (p
∗
i − pi,t)

)
+

(ϵi,tgi,t)
2

2σi
(a)

≤ Di(p
∗
i , pi,t)− ϵi,t

(
2βixi,t −

δi
2
(xi,t + x−i,t)−

γi
2
(xn,t + xi,t)

)
+

(ϵi,tgi,t)
2

2σi

= Di(p
∗
i , pi,t)− ϵ1,t

(
4βi − δi − γi

2
xi,t −

δi
2
x−i,t −

γi
2
xn,t

)
+

(ϵi,tgi,t)
2

2σi

≤ Di(p
∗
i , pi,t)−

(
(4βi − δi − γi) ϵi,t

2
− 4β2

i (ϵi,t)
2

σi

)
xi,t

+

(
δiϵi,t
2

+
2δ2i (ϵi,t)

2

σi

)
x−i,t +

(
γiϵi,t
2

+
2γ2i (ϵi,t)

2

σi

)
xn,t . (33)

In the inequality (a), we used the basic inequality AB ≤ (A2 + B2)/2 twice, and the last in-
equality is obtained by invoking Equation (32). Furthermore, we have g∗n − gn,t = r∗ − rt −
(θ1 (p

∗
1 − p1,t) + θ2 (p

∗
2 − p2,t)). Thus,

(g∗n − gn,t)
2 ≤ 1

2
xn,t +

1

2
(θ1 (p

∗
1 − p1,t) + θ2 (p

∗
2 − p2,t))

2

(a)

≤ 1

2
xn,t +

1

2
(θ1x1,t + θ2x2,t) ,
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where (a) follows from θ1 + θ2 = 1 and convexity. By applying the above inequality in Equation
(31) with i = n, we have

Dn(p
∗
n, pn,t+1)

≤ Dn(p
∗
n, pn,t)− (1− a)

(
1

2
xn,t −

θ1
2
x1,t −

θ2
2
x2,t

)
+

((1− a)gn,t)
2

2

≤ Dn(p
∗
n, pn,t)−

(
1− a

2
− (1− a)2

4

)
xn,t

+

(
(1− a)θ1

2
+

(1− a)2θ1
4

)
x1,t +

(
(1− a)θ2

2
+

(1− a)2θ2
4

)
x2,t , (34)

where in the second inequality, we again use the inequality g2n,t ≤ 1
2xn,t +

1
2 (θ1x1,t + θ2x2,t).

Summing up Equations (33) (over i = 1, 2) and (34), and collecting terms yields∑
i=1,2,n

Di(p
∗
i , pi,t+1) ≤

∑
i=1,2,n

Di(p
∗
i , pi,t) +

∑
i=1,2,n

κi,txi,t , (35)

where the coefficient for xi,t is

κi,t =


− (4βi−δi−γi)ϵi,t

2 +
4β2

i ϵ
2
i,t

σi
+

δ−iϵ−i,t

2 +
2δ2−iϵ

2
−i,t

σ−i
+ (1−a)θi

2 + (1−a)2θi
4 , i = 1, 2

− 1−a
2 + (1−a)2

4 +
γ1ϵ1,t

2 +
2γ2

1ϵ
2
1,t

σ1
+

γ2ϵ2,t
2 +

2γ2
2ϵ

2
2,t

σ2
, i = n

(36)

Now, for i = 1, 2, consider taking step size ϵi,t = zσi

βi
(1− a), for some constant z > 0 that will be

determined later, and denote the corresponding κi,t as κi(z) (we drop the dependence on time t as
step sizes are constant), where for i = 1, 2,

κi(z)
(a)
= − (4βi − δi − γi) z

2βi
(1− a)σi + 4z2(1− a)2σi +

zδ−i

2β−i
(1− a)σ−i

+
2δ2−iz

2

β2
−i

(1− a)2σ−i +
(1− a)θi

2
+

(1− a)2θi
4

(b)

≤ −
(
4− 1

m

)
z

2
(1− a)σi + 4z2(1− a)σi +

z

2m
(1− a)σ−i +

2z2

m2
(1− a)σ−i +

3(1− a)

4

= (1− a)

((
4σi +

2σ−i

m2

)
z2 −

((
2− 1

2m

)
σi −

σ−i

2m

)
z +

3

4

)
:= (1− a)fi,m(z) . (37)

Here, in (a) we substitute ϵi,t = zσi

βi
(1 − a) for i = 1, 2; in (b) we use the fact that θi, a ∈ (0, 1)

(wich implies (1− a)2 ≤ 1− a) and βi > m(δi + γi) > mmax{δi, γi}.

We follow a similar argument as above and obtain

κn(z)
(a)
= − 1− a

2
+

(1− a)2

4
+
zγ1σ1
2β1

(1− a) +
2z2γ21σ1
β2
1

(1− a)2

+
zγ2σ2
2β2

(1− a) +
2z2γ22σ2
β2
2

(1− a)2

(b)

≤ (1− a)

(
−1

4
+
zσ1
2m

+
2z2σ1
m2

+
zσ2
2m

+
2z2σ2
m2

)
= (1− a)

(
2

m2
(σ1 + σ2) z

2 +
1

2m
(σ1 + σ2) z −

1

4

)
:= (1− a)fn,m(z) , (38)

where in (a) we substitute ϵi,t = zσi

βi
(1− a) for i = 1, 2; in (b) we used the fact that θi, a ∈ (0, 1)

and βi > m(δi + γi) > mmax{δi, γi} for any i = 1, 2.
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Now, recall the definition Si,m = {z > 0 : fi,m(z) < 0}. Then, if we have ∩i=1,2,nSi,m ̸= ∅, taking
any s ∈ ∩i=1,2,nSi,m yields κi(s) < 0 for i = 1, 2, n. Hence, Equation (35) now becomes∑

i=1,2,n

Di(p
∗
i , pi,t+1) ≤

∑
i=1,2,n

Di(p
∗
i , pi,t) +

∑
i=1,2,n

κi(s)xi,t, κi(s) < 0 . (39)

Therefore, we know that ∑
i=1,2,n

Di(p
∗
i , pi,t+1) <

∑
i=1,2,n

Di(p
∗
i , pi,t) . (40)

Furthermore, by strong convexity,∑
i=1,2,n

Di(p
∗
i , pi,t) ≥

∑
i=1,2,n

σ2
i

2
(p∗i − pi,t)

2 ≥ mini=1,2,n σ
2
i

2
∥p∗ − pt∥.

Hence, for any small ϵ > 0, if there exists some tϵ ∈ N+ such that
∑

i=1,2,nDi(p
∗
i , pi,tϵ) ≤

ϵ·mini=1,2,n σ2
i

2 , then by Equation (40),
∑

i=1,2,nDi(p
∗
i , pi,t) ≤

ϵ·mini=1,2,n σ2
i

2 for all t ≥ tϵ, which

further implies ∥p∗ − pt∥ ≤ ϵ for all t ≥ tϵ. Hence (pt, rt)
t→∞−→ (p∗, r∗).

Thus, it remains to show that for any small ϵ > 0, there exists tϵ > 0 such that∑
i=1,2,nDi(p

∗
i , pi,tϵ) < ϵ. We will prove this by contradiction. If this is not the case, there

exists ϵ > 0, and
∑

i=1,2,nDi(p
∗
i , pi,t) ≥ ϵ for all t ≥ 0. Define R(z1, z2, z3) =

∑
i=1,2,3Ri(zi)

for any z1, z2, z3 ∈ R, and slightly abuse the notation to define D : R3 × R3 → R as the Bregman
divergence with respect to R. In the rest of this proof for simplicity we also write p∗ = (p∗1, p

∗
2, r

∗)
and pt = (p1,t, p2,t, rt). A simple analysis shows D(p∗,pt) =

∑
i=1,2,nDi(p

∗
i , pi,t).

Since Ri is continuously differentiable (by definition of Bregman divergence), R is also continuously
differentiable, and hence it is easy to see for any x,y ∈ R3 there exists δ > 0 such that

D(x,y) < ϵ, ∀∥x− y∥ < δ.

Since we assumed D(p∗,pt) =
∑

i=1,2,nDi(p
∗
i , pi,t) ≥ ϵ for all t ≥ 0, the above implies ∥p∗ −

pt∥ ≥ δ for all t ≥ 0. Hence following Equation (39),

D(p∗,pt+1) ≤ D(p∗,pt) +
∑

i=1,2,n

κi(s) (p
∗
i − pi,t)

2

≤ D(p∗,pt) + max
i=1,2,n

κi(s)
∑

i=1,2,n

(p∗i − pi,t)
2

= D(p∗,pt) + max
i=1,2,n

κi(s) · ∥p∗ − pt∥2

(a)

≤ D(p∗,pt) + δ2 max
i=1,2,n

κi(s)

(b)

≤ D(p∗,p1) + tδ2 max
i=1,2,n

κi(s) ,

where (a) follows because κi(s) < 0 for i = 1, 2, n and ∥p∗ − pt∥ ≥ δ for all t ≥ 0; (b) follows
from a telescoping argument. Finally, maxi=1,2,n κi(s) < 0 implies the right hand side in the
above inequality goes to negative infinity as t goes to infinity. This implies that D(p∗,pt+1) =∑

i=1,2,nDi(p
∗
i , pi,t) ≤ −∞, which contradicts nonnegativity of Bregman divergence. Hence, for

any small ϵ > 0, there exists tϵ > 0 such that
∑

i=1,2,nDi(p
∗
i , pi,tϵ) < ϵ, concluding the proof.

D.5 Proof of Corollary 5.3.1

When σ1 = σ2 = σ, Equation (6) becomes

fi,m(z) =

{
2σ
(
2 + 1

m2

)
z2 − σ

(
2− 1

m

)
z + 3

4 i = 1, 2
4σ
m2 z

2 + σ
mz −

1
4 i = n

.
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Since in this case the function f1,m(z) and f2,m(z) are identical, we only consider f1,m(z). Note
that the function f1,m(z) has two distinct zero roots if and only if its discriminant is strictly greater
than 0, i.e.,

(
1− 1

2m

)2 − 3
2σ

(
2 + 1

m2

)
> 0 which is equivalent to σ > 6(2m2+1)

(2m−1)2 . Therefore, when
f1,m has two distinct zero roots, the smaller one is given by

z1 =
1− 1

2m −
√(

1− 1
2m

)2 − 3
2σ

(
2 + 1

m2

)
2
(
2 + 1

m2

)
=

1

σ
· 3/4

1− 1
2m +

√(
1− 1

2m

)2 − 3
2σ

(
2 + 1

m2

)︸ ︷︷ ︸
A

> 0. (41)

Similarly, the discriminant of fn,m (i.e., 1
m2 + 4

σm2 ) is always positive, so fn,m always has two zero
roots. The larger one is given by

z2 =
− 1

m +
√

1
m2 + 4

σm2

8
m2

=
1

σ
· 1/2

1
m +

√
1

m2 + 4
σm2︸ ︷︷ ︸

B

> 0. (42)

For any σ > 6(2m2+1)
(2m−1)2 , the two roots of f1,m(z) are both positive, while fn,m(z) always has one

positive root and one negative root. Hence, using a simple geometric argument regarding two
quadratic functions, it is easy to see that if z2 > z1, any s ∈ (z1, z2) satisfies f1,m(s), fn,m(s) < 0.

Now, consider z2 − z1 = 1
σ (B −A). Since we observe A is decreasing in σ and B is increasing in

σ, we have B −A is increasing in σ. By direct calculations, we see that when σ =
(2m2+7)

2

8m3−36m+8 > 0,
z1 = z2 (i.e., B −A = 0). Therefore because B −A is increasing in σ, we conclude B −A > 0 for
any

σ > σ0 := max

{
6(2m2 + 1)

(2m− 1)2
,

(
2m2 + 7

)2
8m3 − 36m+ 8

}
,

which implies z2 > z1 for any σ > σ0.

In sum, we conclude for any m > 2, if σ > σ0, there exists s > 0 that depends on σ and m such
that fi,m(s) < 0 for i = 1, 2, n, and by Theorem 5.3, this implies that there exist constant step sizes
under which prices and reference prices converge to the unique interior SNE.

D.6 Proof of Theorem 5.4

When Ri(x) =
σ
2x

2 for i = 1, 2, we have σ1 = σ2 = σ, and Equation (6) becomes

fi,m(z) =

{
2σ
(
2 + 1

m2

)
z2 − σ

(
2− 1

m

)
z + 3

4 , i = 1, 2
4σ
m2 z

2 + σ
mz −

1
4 , i = n

.

We define hi,m(z) := fi,m(z)/2σ for i = 1, 2 and hn,m(z) := fn,m(z), i.e.

hi,m(z) =

{(
2 + 1

m2

)
z2 −

(
1− 1

2m

)
z + 3

8σ i = 1, 2
4σ
m2 z

2 + σ
mz −

1
4 i = n

. (43)

Note that for any i = 1, 2, n, fi,m(z) < 0 if and only if hi,m(z) < 0. Hence, according to

Corollary 5.3.1, we know that when m > 2 and σ > σ0 = max

{
6(2m2+1)
(2m−1)2 ,

(2m2+7)
2

8m3−36m+8

}
, for any

M ∈ (z1, z2) (defined in Equations (41) and (42)) we have fi,m(s) < 0 for i = 1, 2, n, which implies
hi,m(s) < 0 for i = 1, 2, n. Furthermore, via a simple geometric argument, the quadratic functions
h1,m (with two positive zero roots) and hn,m (with two zero roots, one positive and one negative)
have a unique intersection point s̃ ∈ (z1, z2). Define H := h1,m(s̃) = h2,m(s̃) = hn,m(s̃) < 0.
Furthermore, since minm≥0 hn,m(z) = − 1

4 , we have

−1

4
≤ H = h1,m(s̃) = h2,m(s̃) = hn,m(s̃) < 0 .
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Now, note that when R1(x) = R2(x) = σ
2x

2, D1(p, p
′) = D2(p, p

′) = σ
2 (p − p′)2. Also recall

Rn(x) =
1
2x

2, so Dn(p, p
′) = 1

2 (p− p′)2. Hence,
∑

i=1,2,nDi(p
∗
i , pi,t) =

1
2 (σxt + xn,t), where

we define xt = ∥p∗ − pt∥2 and xn,t = (r∗ − rt)
2 as in the proof of Theorem 5.3. Hence, by taking

ϵi,t =
σs̃(1−a)

βi
, and continuing from Equation (39), we get

1

2
(σxt+1 + xn,t+1) ≤ 1

2
(σxt + xn,t) +

∑
i=1,2,n

κi(s̃)xi,t

(a)

≤ 1

2
(σxt + xn,t) + (1− a)

∑
i=1,2,n

fi,m(s̃)xi,t

(b)
=

1

2
(σxt + xn,t) + (1− a)

∑
i=1,2

σhi,m(s̃)xi,t + hn,m(s̃)xn,t


(c)
=

1

2
(σxt + xn,t) + (1− a)H · (σxt + xn,t)

=
1

2
(1 + 2(1− a)H) (σxt + xn,t) .

Here, (a) follows from upper bounding κi(z) with fi,m(z) for any z > 0 and i = 1, 2, n in Equations
(37) and (38) within the proof of Theorem 5.3; (b) follows from the definition of hi,m in Equation
(43); (c) follows from the definition of H := hi,m(s̃) ∈ [− 1

4 , 0) for i = 1, 2, n and xt = x1,t + x2,t.

Using a telescoping argument, we have

σxt < σxt + xn,t ≤ (1 + 2(1− a)H)
t
(σx1 + xn,1) ≤ (σx1 + xn,1)

(
1 + a

2

)t

,

where the final inequality follows from 0 < 1 + 2(1 − a)H ≤ 1+a
2 since H ∈ [− 1

4 , 0). Finally,
because x1 ≤ 2

(
p̄− p

)2
and xn,1 ≤

(
p̄− p

)2
, we have

xt <

(
x1 +

1

σ
xn,1

)(
1 + a

2

)t

≤ 1 + 2σ

σ

(
p̄− p

)2(1 + a

2

)t

.

D.7 Supplementary Figures for Section 5

(a) (b)

Figure 2: (a) σ0 as a function of sensitivity margin m, where σ0 is defined in Corollary 5.3.1 (b)
Illustration of absolute constant c in Theorem 5.2 w.r.t. memory parameter a and max{θ1, θ2}. All
other model parameters take respective values as in Example 1, and firm i = 1, 2 again adopts
regularizer Ri(z) =

1
2z

2.
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E Supplementary Lemmas of Section 5

Lemma E.1. For i = 1, 2, n and any z̃ ∈ P , we have for any t ∈ N+,

Di(z̃, pi,t+1) ≤ Di(z̃, pi,t) + ϵi,t · gi,t (z̃ − pi,t) +
(ϵi,tgi,t)

2

2σi
. (44)

Proof. In the projection step of Algorithm 1, we have pi,t+1 = ΠP(yi,t+1). Since we are working
with one-dimensional decision sets, it is easy to see that ΠP(yi,t+1) = argminp∈P Di(p, yi,t+1)

due to convexity of Ri. Recalling the definition R′
i(p) =

dRi(z)
dz

∣∣∣
z=p

, we have

pi,t+1 = argmin
p∈P

Di(p, yi,t+1) = argmin
p∈P

Ri(p)−Ri(yi,t+1)−R′
i(yi,t+1)(p− yi,t+1)

= argmin
p∈P

Ri(p)− p ·R′
i(yi,t+1)

(a)
= argmin

p∈P
Ri(p)− p · (R′

i(pi,t)− ϵi,tgi,t)

= argmin
p∈P

Ri(p)−Ri(pi,t)−R′
i(pi,t) (p− pi,t) + p · ϵi,tgi,t

= argmin
p∈P

Di(p, pi,t) + p · ϵi,tgi,t .

Here (a) follows from the proxy update step in Algorithm 1. Now, evoking Lemma E.2 (ii) by taking
x = p, f(p) = p · ϵi,tgi,t, z = pi,t, y = z̃ ∈ P , we have

Di(z̃, pi,t+1) ≤ Di(z̃, pi,t) + ϵi,tgi,t (z̃ − pi,t+1)−Di(pi,t, pi,t+1) .

It then follows that

Di(z̃, pi,t+1)

≤ Di(z̃, pi,t) + ϵi,tgi,t (z̃ − pi,t) + ϵi,tgi,t (pi,t − pi,t+1)−Di(pi,t, pi,t+1)

(a)

≤ Di(z̃, pi,t) + ϵi,tgi,t (z̃ − pi,t) + ϵi,tgi,t (pi,t − pi,t+1)−
σi
2
(pi,t − pi,t+1)

2

≤ Di(z̃, pi,t) + ϵi,tgi,t (z̃ − pi,t) +
(ϵi,tgi,t)

2

2σi
,

where (a) follows from strong convexity of Ri.

Corollary E.1.1. Under Assumption 1, let (p∗, r∗) be the unique interior SNE as illustrated in
Lemma 3.2, then for i = 1, 2, n,

g∗i =
∂π̃i
∂pi

∣∣∣
p=p∗,r=r∗

= 0 , (45)

and for any t ∈ N+

Di(p
∗
i , pi,t+1) ≤ Di(p

∗
i , pi,t)− ϵi,t (g

∗
i − gi,t) (p

∗
i − pi,t) +

(ϵi,tgi,t)
2

2σi
. (46)

Proof. Similar to the proof of Lemma 3.2 and Proposition 4.2, the SNE (p∗, r∗) must satisfy first
order conditions w.r.t. quadratic cost function π̃1, π̃2, π̃n, respectively, due to the fact that it lies in
the interior of the decision set. So g∗i = 0 for i = 1, 2, n.

Furthermore, Evoking Lemma E.1 by replacing z with p∗i and combining g∗i = 0 yields the second
part of the proof.

Lemma E.2 (Lemma 3.1 and 3.2 of [15]). LetD : C×C → R+ be the Bregman divergence associated
with convex function R on the convex set C: D(x, y) = R(x)−R(y)−R′(y)(x− y) ,∀x, y ∈ C.
Then,

(i) For any x, y, z ∈ C, D(x, y) +D(y, z) = D(x, z) + (R′(z)−R′(y)) (x− y)⟩.
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(ii) Let f : C → R be any convex function and z ∈ C. If x∗ = argminx∈C {f(x) +D(x, z)},
then for any y ∈ C, we have f(y) +D(y, z) ≥ f(x∗) +D(x∗, z) +D(y, x∗).

The proofs for the above lemma are very standard and we will omit them in this paper.

Lemma E.3. Let a ∈ (0, 1), ρa =
⌈

a
1−a

⌉
+ 1, and ta =

⌈ a
1−a (ρa+1)

ρa− a
1−a

⌉
. Then, for any t ≥ ρa + ta,

we have
t∑

τ=ρa+ta

a−τ

τ
≤ 1

1− a
· a−t

t− ρa
.

Proof of Lemma E.3. We adopt an induction argument with hypothesis
∑t

τ=ρa+ta
a−τ

τ ≤ 1
1−a ·

a−t

t−ρa
.

For the base case, consider t = ρa+ ta. We can easily see a−(ρa+ta)

ρa+ta
< 1

1−a ·
a−(ρa+ta)

ta
. Now assume

that the induction hypothesis holds for some some t ≥ ρa + ta. We will show
∑t+1

τ=ρa+ta
a−τ

τ ≤
1

1−a · a−(t+1)

t−ρa+1 . We start with

t+1∑
τ=ρa+ta

a−τ

τ
≤ 1

1− a
· a−t

t− ρa
+
a−(t+1)

t+ 1
=

a−(t+1)

1− a
·
(

a

t− ρa
+

1− a

t+ 1

)
.

Furthermore,

a

t− ρa
+

1− a

t+ 1
− 1

t− ρa + 1
= a

(
1

t− ρa
− 1

t− ρa + 1

)
+ (1− a)

(
1

t+ 1
− 1

t− ρa + 1

)
=

1

t− ρa + 1

(
a

t− ρa
− (1− a)ρa

t+ 1

)
=

1

t− ρa + 1
· (a− ρa(1− a)) t+ (1− a)ρ2a + a

(t− ρa)(t+ 1)

(a)

≤ 0 ,

where (a) follows from ρa =
⌈

a
1−a

⌉
+ 1 > a

1−a and the fact that

(1− a)ρ2a + a

ρa(1− a)− a
=
ρ2a +

a
1−a

ρa − a
1−a

= ρa +
a

1−a (ρa + 1)

ρa − a
1−a

< ρa + ta ≤ t.

Therefore, we can conclude that
t+1∑

τ=ρa+ta

a−τ

τ
≤ 1

1− a
· a−(t+1)

t− ρa + 1
,

which is the desired result.
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