
Appendix A A descent lemma for neural networks

Lemma 1. Consider a continuously differentiable function L : Rn ! R that maps W 7! L(W).
Suppose that parameter vector W decomposes into L parameter groups: W = (W1,W2, ...,WL),
and consider making a perturbation �W = (�W1,�W2, ...,�WL). Let ✓l measure the angle

between �Wl and negative gradient �gl(W) := �rWlL(W). Then:

L(W +�W)� L(W) �
LX

l=1

kgl(W)kF k�WlkF

cos ✓l � max

t2[0,1]

kgl(W + t�W)� gl(W)kF
kgl(W)kF

�
.

Proof. By the fundamental theorem of calculus,

L(W +�W)� L(W) =
LX

l=1

gl(W)T�Wl +

Z 1

0

⇥
gl(W + t�W)� gl(W)

⇤T
�Wl dt.

The result follows by replacing the first term on the righthand side by the cosine formula for the dot
product, and bounding the second term via the integral estimation lemma.

Lemma 2. Let L be a continuously differentiable loss function for a neural network of depth L that

obeys deep relative trust. Consider a perturbation �W = (�W1,�W2, ...,�WL) to the parameters

W = (W1,W2, ...,WL) with layerwise bounded relative size, meaning that k�WlkF /kWlkF ⌘
for l = 1, ..., L. Let ✓l measure the angle between �Wl and �gl(W). The perturbation will decrease

the loss function provided that for all l = 1, ..., L:

⌘ < (1 + cos ✓l)
1
L � 1.

Proof. Using the gradient reliability estimate from deep relative trust, we obtain that:

max
t2[0,1]

kgl(W + t�W)� gl(W)k2
kgl(W)k2

 max
t2[0,1]

LY

k=1

✓
1 +

kt�WkkF
kWkkF

◆
�1

LY

k=1

✓
1 +

k�WkkF
kWkkF

◆
�1.

To guarantee descent, we require that the bracketed term in Lemma 1 is positive for all l = 1, ..., L.
By the previous inequality, this will occur provided that for all l = 1, ..., L:

LY

k=1

✓
1 +

k�WkkF
kWkkF

◆
< 1 + cos ✓l.

Since k�WkkF /kWkkF ⌘ for k = 1, ..., L, this inequality will be satisfied provided that (1 +
⌘)L < 1 + cos ✓l. After a simple rearrangement, we are done.

13

Appendix B A perturbation analysis of the multilayer perceptron

We begin by fleshing out the analysis of the two-layer scalar network (Equation 3), since this example
already goes a long way to exposing the relevant mathematical structure.

Consider f : R ! R defined by f(x) = a · b · x for a, b 2 R. Also consider perturbed function
ef(x) = ea ·eb · x where ea := a+�a and eb := b+�b. The relative difference obeys:

| ef(x)� f(x)|
|f(x)| =

�����
eaebx� abx

abx

����� =
����
(a+�a)(b+�b)� ab

ab

���� =
����

✓
1 +

�a

a

◆✓
1 +

�b

b

◆
� 1

����

✓
1 +

|�a|
|a|

◆✓
1 +

|�b|
|b|

◆
� 1.

Our main theorem will generalise this argument to more involved cases:
Theorem 1. Let f be a multilayer perceptron with nonlinearity ' and L weight matrices {Wl}Ll=1.

Let ef be a second network with the same architecture but different weight matrices {fWl}Ll=1. For

convenience, define layerwise perturbation matrices {�Wl := fWl �Wl}Ll=1.

Further suppose that the following two conditions hold:

1. Transmission. There exist ↵,� � 0 such that 8x, y:

↵ · kxk2 k'(x)k2 � · kxk2;
↵ · kx� yk2 k'(x)� '(y)k2 � · kx� yk2.

2. Conditioning. All matrices {Wl}Ll=1, {fWl}Ll=1 and perturbations {�Wl}Ll=1 have condition

number (ratio of largest to smallest singular value) no larger than .

Then a) for all non-zero inputs x 2 Rn0 , the relative functional difference obeys:

k ef(x)� f(x)k2
kf(x)k2

✓
�

↵
2

◆L
"

LY

k=1

✓
1 +

k�WkkF
kWkkF

◆
� 1

#
.

And b) the layer-l-to-output Jacobian satisfies:��� @ ef
@ehl

� @f
@hl

���
F��� @f

@hl

���
F

✓
�

↵
2

◆L�l
"

LY

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
� 1

#
.

Though we shall prove the two parts of this theorem separately, the following lemma shall help in
both cases.
Lemma 3 (Relative matrix-matrix conditioning). Consider any two matrices fM,M 2 Rn⇥m

with

condition number bounded by . Then for any matrix X and any non-zero matrix Y :

kfMXkF
kMY kF

 2 kfMkF kXkF
kMkF kY kF

.

Proof. Denote the singular values of M by �1 � �2 � ... � �n and the singular values of fM by
e�1 � e�2 � ... � e�n. Observe that by letting fM and M act on the columns of X and Y (denoted xi

and yj respectively) we have:

kfMXk2F
kMY k2F

=

P
i kfMxik22P
j kMyjk22

e�2
1

P
i kxik22

�2
n

P
j kyjk22

=
e�2
1kXk2F

�2
nkY k2F

.

Since it holds that �1/�n and e�1/e�n , we obtain the following inequalities:

kfMk2F =
nX

i=1

e�2
i � ne�2

n � n
e�2
1

2
.

kMk2F =
nX

i=1

�2
i n�2

1 n2�2
n.

14

To complete the proof, we substitute these two results into the first inequality to yield:

kfMXkF
kMY kF

 e�1kXkF
�nkY kF

 2 kfMkF kXkF
kMkF kY kF

.

With this tool in hand, let us proceed to prove part a) of Theorem 1.

Proof of Theorem 1 part a). To make an inductive argument, we shall assume that the result holds
for a network with L� 1 layers. Extending to depth L, we have:

k ef(x)� f(x)k2
kf(x)k2

=
k(' � fWL) � ehL�1(x)� (' �WL) � hL�1(x)k2

k(' �WL) � hL�1(x)k2

 �

↵

kfWL
ehL�1(x)�WLhL�1(x)k2

kWLhL�1(x)k2
(assumption on ')

=
�

↵

k�WL
ehL�1(x) +WL(ehL�1(x)� hL�1(x))k2

kWLhL�1(x)k2

 �

↵

k�WL
ehL�1(x)k2 + kWL(ehL�1(x)� hL�1(x))k2

kWLhL�1(x)k2
(triangle inequality)

 �

↵
2

"
k�WLkF
kWLkF

kehL�1(x)k2
khL�1(x)k2

+
kehL�1(x)� hL�1(x)k2

khL�1(x)k2

#
. (Lemma 3)

Whilst the second term may be bounded by the inductive hypothesis, we shall now show that the first
term obeys:

kehL�1(x)k2
khL�1(x)k2

✓
�

↵
2

◆L�1 L�1Y

k=1

✓
1 +

k�WkkF
kWkkF

◆
.

We argue as follows:

kehL�1(x)k2
khL�1(x)k2

=
k'(fWL�1

ehL�2(x))k2
k'(WL�1hL�2(x))k2

 �

↵

kfWL�1
ehL�2(x)k2

kWL�1hL�2(x)k2
(assumption on ')

 �

↵
2 kfWL�1kF

kWL�1kF
kehL�2(x)k2
khL�2(x)k2

(Lemma 3)

 �

↵
2 kWL�1kF + k�WL�1kF

kWL�1kF
kehL�2(x)k2
khL�2(x)k2

(triangle inequality)

=
�

↵
2

✓
1 +

k�WL�1kF
kWL�1kF

◆
kehL�2(x)k2
khL�2(x)k2

.

The statement follows from an obvious induction on depth. Substituting this result and the inductive
hypothesis back into the bound on k ef(x)� f(x)k2/kf(x)k2, we obtain:

k ef(x)� f(x)k2
kf(x)k2

✓
�

↵
2

◆L
"
k�WLkF
kWLkF

L�1Y

k=1

✓
1 +

k�WkkF
kWkkF

◆
+

L�1Y

k=1

✓
1 +

k�WkkF
kWkkF

◆
� 1

#

=

✓
�

↵
2

◆L
"

LY

k=1

✓
1 +

k�WkkF
kWkkF

◆
� 1

#
.

Let us now proceed to the second part of Theorem 1.

15

Proof of Theorem 1 part b). By Proposition 1, the layer-l-to-output Jacobian Jl satisfies:

Jl :=
@f(x)

@hl
= �0

LWL · �0
L�1WL�1 · ... · �0

l+1Wl+1

where �0
k := diag

h
'0�Wkhk�1(x)

�i
. Denote the perturbed version eJl by the product:

eJl :=
@ ef(x)
@hl

= (�0
L +��0

L)(WL +�WL) · ... · (�0
l+1 +��0

l+1)(Wl+1 +�Wl+1).

For the purpose of an inductive argument, let us define the tail Tl of the Jacobian to satisfy:

Jl = �0
LWLTl

and similarly for the perturbed version eTl. The inductive hypothesis then becomes:

k eTl � TlkF
kTlkF

✓
�

↵
2

◆L�l�1
"

L�1Y

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
� 1

#
.

We need to extend this to Jl. First note that by taking limits of the condition on the nonlinearity, we
obtain that 0 ↵ '0(x) � for all x. This implies that for all layers l the entries of the diagonal
matrix �0

l lie between ↵ and � and the maximum entry of the diagonal matrix ��0
l is no larger than

� � ↵. We shall use this information along with the triangle inequality and Lemma 3 to obtain the
following:

k eJl � JlkF
kJlkF

=
k(�0

L +��0
L)(WL +�WL) eTl � �0

LWLTlkF
k�0

LWLTlkF

=
k��0

L(WL +�WL) eTl + �0
L[(WL +�WL) eTl �WLTl]kF

k�0
LWLTlkF

 k��0
L(WL +�WL) eTlkF + k�0

L[(WL +�WL) eTl �WLTl]kF
k�0

LWLTlkF

 (� � ↵)k(WL +�WL) eTlkF + �k(WL +�WL) eTl �WLTlkF
↵kWLTlkF

 (� � ↵)k(WL +�WL) eTlkF + �k�WL
eTlkF + �kWL(eTl � Tl)kF

↵kWLTlkF

 2 (� � ↵))kWL +�WLkF k eTlkF + �k�WLkF k eTlkF + �kWLkF k eTl � TlkF
↵kWLkF kTlkF

 2

"
� � ↵

↵

✓
1 +

k�WLkF
kWLkF

◆
k eTlkF
kTlkF

+
�

↵

k�WLkF
kWLkF

k eTlkF
kTlkF

+
�

↵

k eTl � TlkF
kTlkF

#
.

The last term may be bounded using the inductive hypothesis, but we must still bound k eTlkF /kTlkF .
To economise on notation, let us construct the argument for Jl rather than Tl:

k eJlkF
kJlkF

=
ke�0

L
fWL

eTlkF
k�0

LWLTlkF
 �

↵

kfWL
eTlkF

kWLTlkF
 �

↵
2 kfWLkF

kWLkF
k eTlkF
kTlkF

 �

↵
2

✓
1 +

k�WLkF
kWLkF

◆
k eTlkF
kTlkF

.

By a simple induction, we then obtain:

k eJlkF
kJlkF

LY

k=l+1

�

↵
2

✓
1 +

k�WkkF
kWkkF

◆
=) k eTlkF

kTlkF

L�1Y

k=l+1

�

↵
2

✓
1 +

k�WkkF
kWkkF

◆
.

Since � > ↵, we are free to relax the latter bound to:

k eTlkF
kTlkF

✓
�

↵
2

◆L�l�1 L�1Y

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
.

16

Similarly we are free to insert one additional factor of �/↵ into the first term of the bound on
k eJl � JlkF /kJlkF , to obtain:

k eJl � JlkF
kJlkF

 �

↵
2

"
� � ↵

↵

✓
1 +

k�WLkF
kWLkF

◆
k eTlkF
kTlkF

+
k�WLkF
kWLkF

k eTlkF
kTlkF

+
k eTl � TlkF

kTlkF

#

We now substitute in the inductive hypothesis and the bound on k eTlkF /kTlkF to obtain:

k eJl � JlkF
kJlkF

✓
�

↵
2

◆L�l
"

� � ↵

↵

✓
1 +

k�WLkF
kWLkF

◆
+

k�WLkF
kWLkF

+ 1

� L�1Y

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
� 1

#

=

✓
�

↵
2

◆L�l
"✓

1 +
� � ↵

↵

◆✓
1 +

k�WLkF
kWLkF

◆ L�1Y

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
� 1

#

=

✓
�

↵
2

◆L�l
"

LY

k=l+1

�

↵

✓
1 +

k�WkkF
kWkkF

◆
� 1

#
,

which is what needed to be shown.

17

Table 2: Test set results. We quote loss for the classifiers, FID [4] for the GAN, and perplexity for the
transformer—so lower is better. Training set results are given in Table 1.

Benchmark
SGD

⌘
Fromage

⌘
Adam

⌘ SGD Fromage Adam

CIFAR-10 0.1 0.01 0.001 0.545± 0.002 0.31± 0.020.31± 0.020.31± 0.02 0.76± 0.02
ImageNet 1.0 0.01 0.001 1.091± 0.0061.091± 0.0061.091± 0.006 1.126± 0.002 1.184± 0.009

GAN 0.01 0.01 0.0001 34± 2 16± 116± 116± 1 23.9± 0.9
Transformer 1.0 0.01 0.0001 169.6± 0.6169.6± 0.6169.6± 0.6 171.1± 0.3 172.7± 0.3

Appendix C Experimental details

We provide the code used to run the experiments at https://github.com/jxbz/fromage. All
experiments were run on a single NVIDIA Titan RTX GPU, except the ImageNet experiment which
was distributed across 8 NVIDIA V100 GPUs.

We will now summarise the key details of the experimental setup.

Figure 1: measuring the loss curvature

We train multilayer perceptrons of depth 2 and 16 with relu nonlinearity on the MNIST dataset
[39]. Each 28 px⇥ 28 px image is flattened to a 784 dimensional vector. All weight matrices of the
multilayer perceptron are of dimension 784⇥784, except the final output layer which is of dimension
784⇥ 10. To train the network, we minimise the softmax cross-entropy loss function on the network
output. We use the Fromage optimiser with an initial learning rate of 0.01 and reduce the learning
rate by a factor of 0.9 every epoch. A training minibatch size of 250 datapoints is used. We plot the
training accuracy over the 10 epochs of training, and smooth these training accuracy curves over a
window length of 5 iterations to improve their legibility.

During the 10 epochs of training we record 10 snapshots of the model weights. For the 2 layer
network, we record snapshots more frequently during the first epoch since this is when most of the
learning happens. The 16 layer network trains slower so we record snapshots once per epoch.

For each saved snapshot of the depth L 2 {2, 16} network, we now investigate properties of the loss
surface and gradient for perturbations to that snapshot. Specifically, for every layer in the network we
perturb the weights Wl along the full batch gradient direction gl. That is, for ⌘ 2 [0, 0.1] we record
the loss L(fW) and full batch gradient egl for perturbed networks with parameters given by:

fWl = Wl � ⌘ · gl ·
kWlkF
kglkF

(l = 1, ..., L).

We plot the loss L(fW) and relative change in gradient keg1�g1kF

kg1kF
for the first network layer as a

function of ⌘ 2 [0, 0.1].

Figure 2 (right): stability of weight norms

With the same experimental setup as for class-conditional GAN training (see below), we run a lesion
experiment on Fromage where we disable the 1/

p
1 + ⌘2 prefactor. This makes Fromage equivalent

to the LARS algorithm [6]. We plot the norms of all spectrally normalised layers in both the generator
and discriminator during 100 epochs of training.

Figure 3 (left): training multilayer perceptrons at large depth

With the same basic training setup as for Figure 1, this time we vary the depth of the multilayer
perceptron and benchmark SGD, Adam and Fromage. The main difference to the Figure 1 setup is
that this time we train for 100 epochs (to allow more time for learning to converge) and we decay the
learning rate by factor 0.95 every epoch, so that the learning rate has reduced by 2 orders of magnitude
after roughly 90 epochs of training. For each learning algorithm we run three initial learning rates at
each depth: for SGD we try ⌘ 2 {100, 10�1, 10�2}, for Fromage we try ⌘ 2 {10�1, 10�2, 10�3}

18

https://github.com/jxbz/fromage

and for Adam we try ⌘ 2 {10�2, 10�3, 10�4}. These values were found to be well-suited to each
algorithm in preliminary experiments. For Adam we set its �1 and �2 hyperparameters to the standard
values of 0.9 and 0.999 suggested by Kingma and Ba [3]. For SGD we set the momentum value
to 0.9, and a preliminary test suggested that this improved its performance versus switching off
momentum.

Figure 3 (right): learning rate tuning

For each benchmark (full details below) we conduct a learning rate grid search. For each learning rate
in {10�4, 10�3, 10�2, 10�1, 100} we plot the error after a fixed number of epochs. No learning rate
decay schedule is used here. In the CIFAR-10 classification experiment, we record training loss at
epoch 50. In the GAN experiment, we record FID between the training set and generated distribution
at epoch 100. In the transformer experiment, we record training perplexity at epoch 10.

Class-conditional generative adversarial network training

We train a class-conditional generative adversarial network with projection discriminator [33, 37] on
the CIFAR-10 dataset [42]. Whilst our architecture is custom, it attempts to replicate the network
design of Brock et al. [5]. We use the hinge loss for training, following Miyato and Koyama [37].
We train for 120 epochs at batch size 256, and divide the learning rate by 10 at epoch 100. We make
one discriminator (D) step per generator (G) step. We use equal learning rates in G and D. For all
algorithms we tune the initial learning rate on a logarithmic scale (over powers of 10).

To report accuracy, we use the FID score [4]. In essence, this score measures the distance between two
sets of images by measuring the difference in the first and second moments of their representations
at the penultimate layer of an inception_v3 [43] classification network. It is intended to measure
a notion of semantic distance between two sets of images. We report the FID score between the
generated distribution and both the train and test set of CIFAR-10 to provide some indication of
how well the learning generalises. We do not use post-processing techniques that have been found
to improve FID scores such as the truncation trick [5] which adjusts the input distribution to the
generator at test time with a tunable hyperparameter, or by reporting FID scores on an exponential
moving average of the generator [44] which also introduces an extra tunable hyperparameter.

ImageNet classification

We train the resnet50 network [40] on the ImageNet 2012 ILSVRC dataset [45] distributed over 8
V100 GPUs. We use a batch size of 128 images per GPU, meaning that the total batch size is 1024.
The network is trained for a total of 90 epochs, with the learning rate decayed by a factor of 10 after
every 30 epochs. A standard data augmentation scheme is used. The initial learning rate is tuned
over the set {10�3, 10�2, 10�1, 100, 101} based on the best top-1 accuracy on the validation subset.
The final results are reported on the test subset for three runs with different random initialization
seeds. For the Adam optimiser, the �1 and �2 parameters are set to their default values of 0.9 and
0.999 as recommended by Kingma and Ba [3]. For SGD, the weight decay coefficient is set to 10�4

as recommended by He et al. [40].

Wikitext-2 transformer

We train a small transformer network [46] on the Wikitext-2 dataset [47]. The code is borrowed from
the Pytorch examples repository at this https url. The network is trained for 20 epochs, with the
learning rate decayed by 10 at epoch 10. Perplexity is recorded on both the training and test sets. We
found that without regularisation, Fromage would heavily overfit the training set. We were able to
correct this behaviour by bounding each layer’s parameter norm to be smaller than its initial value.

CIFAR-10 classification

We train a resnet18 network [40] on the CIFAR-10 dataset [42]. We train for 350 epochs and divide
the learning rate by 10 at epochs 150 and 250. For data augmentation, a standard scheme is used
involving random crops and horizontal flips. We report training and test loss. Again, we found that
without regularisation, Fromage would heavily overfit the training set. And again, we were able to
correct this behaviour by bounding each layer’s parameter norm to be smaller than its initial value.

19

https://github.com/pytorch/examples

	Introduction
	Entendámonos...
	The distance between networks
	Descent under deep relative trust
	Frobenius matched gradient descent
	Empirical study
	Discussion
	A descent lemma for neural networks
	A perturbation analysis of the multilayer perceptron
	Experimental details

