
A Interpolation Gaurantees

Claim 1 Restated. Let µ̃ ∈ U and g̃ ∈ L2(µ) be near-optimal solutions to a continuous time Fourier
Fitting problem with ridge regression:

‖F∗µ̃ g̃ − (y + z)‖2T + ε‖g̃‖2µ̃ ≤ C min
µ∈U

min
g∈L2(µ)

[
‖F∗µg − (y + z)‖2T + ε‖g‖2µ

]
Let Û ⊆ U be the subset of PDFs that are able of representing y exactly. Then, letting ỹ = F∗µ̃ g̃,

‖y − ỹ‖2T ≤ 2(C + 1)‖z‖2T + 2Cε min
µ∈Û
y=F∗µh

‖h‖2µ

Proof. Letting y = F∗µhµ for all µ ∈ Û , we know that

min
µ∈U

min
g∈L2(µ)

[
‖F∗µg − (y + z)‖2T + ε‖g‖2µ

]
≤ min

µ∈Û

[
‖F∗µhµ − (y + z)‖2T + ε‖hµ‖2µ

]
= min

µ∈Û

[
‖z‖2T + ε‖hµ‖2µ

]
= ‖z‖2T + εmin

µ∈Û
‖hµ‖2µ

So, using our pair µ̃, g̃, we have
‖F∗µ̃ g̃ − (y + z)‖2T + ε‖g̃‖2µ̃ ≤ C‖z‖2T + Cεmin

µ∈Û
‖hµ‖2µ

Next, by the triangle inequality, and recalling that ỹ = F∗µ̃ g̃,

‖ỹ − y‖T − ‖z‖T ≤ ‖F∗µ̃ g̃ − (y + z)‖T

‖ỹ − y‖T ≤ ‖z‖T +
√
C‖z‖2T + Cεmin

µ∈Û
‖hµ‖2µ

‖ỹ − y‖2T ≤ 2(C + 1)‖z‖2T + 2Cεmin
µ∈Û
‖hµ‖2µ

where the last line uses the AM-GM inequality to bound

2 · ‖z‖T ·
√
C‖z‖2T + Cεmin

µ∈Û
‖hµ‖2µ ≤ ‖z‖2T + C‖z‖2T + Cεmin

µ∈Û
‖hµ‖2µ

B Spectral Mixture Bounds

We are allowed to use c ∈ [0,W ], σ ∈ [m,M ], and w ∈ [0, 1], where 0 < m < M , and want to have
at most O(1) error from our discretization. We start by showing that without loss of generality, we
should always take w to be the all-ones vector.
Lemma 1. Let µ1 and µ2 be associated with kernel operators Kµ1

and Kµ2
such that Kµ1

� Kµ2
.

Then,
min

g∈L2(µ1)
‖F∗µ1

g − ȳ‖2T + ε‖g‖2µ1
≤ min
g∈L2(µ2)

‖F∗µ2
g − ȳ‖2T + ε‖g‖2µ2

Proof. For now, consider a arbitrary µ. Note from Lemma 38 of [AKM+19], we know that the
minimizer of

min
g∈L2(µ)

‖F∗µg − y‖2T + ε‖g‖2µ

has the form ĝ = Fµ(Kµ + εIT )−1ȳ. Then, we can write

F∗µ ĝ = Kµ(Kµ + εIT )−1ȳ

‖F∗µ − ȳ‖2T = 〈Kµ(Kµ + εIT )−1ȳ − ȳ,Kµ(Kµ + εIT )−1ȳ − ȳ〉T
= ‖ȳ‖2T − 2〈ȳ,Kµ(Kµ + εIT )−1ȳ〉T + 〈Kµ(Kµ + εIT )−1ȳ,Kµ(Kµ + εIT )−1ȳ〉T

‖ĝ‖2µ = 〈Kµ(Kµ + εIT )−1ȳ,Kµ(Kµ + εIT )−1ȳ〉T
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Noting that all the inner products on the last two lines share the same right hand side, we find that the
value of the true minimizer is

‖F∗µ − ȳ‖2T + ε‖ĝ‖2µ = ‖ȳ‖2T + 〈−2ȳ +Kµ(Kµ + εIT )−1ȳ + ε(K + εIT )−1ȳ,Kµ(Kµ + εIT )−1ȳ〉T
= ‖ȳ‖2T + 〈(−2(Kµ + εIT ) +Kµ + εIT )(Kµ + εIT )−1ȳ,Kµ(Kµ + εIT )−1ȳ〉T
= ‖ȳ‖2T + 〈−1 · (Kµ + εIT ) · (Kµ + εIT )−1ȳ,Kµ(Kµ + εIT )−1ȳ〉T
= ‖ȳ‖2T − 〈ȳ,Kµ(Kµ + εIT )−1ȳ〉T
= 〈ȳ, IT −Kµ(Kµ + εIT )−1ȳ〉T (3)

Then, since we know that the kernel operator Kµ � 0, we conclude that IT −Kµ(Kµ + εIT )−1 �
0 for all kernel operators Kµ. Additionally, note that Equation 3 is in the analogous form to
xᵀAx for matrices. In particular, if we decrease the semidefinite order of IT −Kµ(Kµ + εIT )−1,
then we decrease the overall minimum value for all signals ȳ. Since Kµ1 � Kµ2 , we know that
Kµ1

(Kµ1
+ εIT )−1 � Kµ2

(Kµ2
+ εIT )−1, and hence

〈ȳ, IT −Kµ2(Kµ2 + εIT )−1ȳ〉T ≤ 〈ȳ, IT −Kµ1(Kµ1 + εIT )−1ȳ〉T
Or, equivalently,

min
g∈L2(µ1)

‖F∗µ1
g − ȳ‖2T + ε‖g‖2µ1

≤ min
g∈L2(µ2)

‖F∗µ2
g − ȳ‖2T + ε‖g‖2µ2

We now show why this tell us to pick the all-ones vector for SM Kernels:

Corollary 4. Let µc,σ,w(ξ) be a spectral mixture PDF with weights w ∈ [0, 1]q . Then, the spectral
mixture with the same means and lengthscales µc,σ(ξ) achieves uniquely less error:

min
g∈L2(µc,σ,w)

‖F∗c,σ,wg − ȳ‖2T + ε‖g‖2c,σ,w ≤ min
g∈L2(µc,σ)

‖F∗c,σg − ȳ‖2T + ε‖g‖2c,σ

Proof. Note that the Kernel operator associated with µc,σw is Kc,σ,w =
∑q
j=1 wjKcj ,σj . Since

wj ≤ 1, we find that Kc,σ,w �
∑q
j=1Kcj ,σj = Kc,σ, the kernel operator associated with the all

ones weight vector. So, by Lemma 1, we complete the proof.

With this reduction in place, we move onto consider the means and lengthscales of our kernel. We
are allowed to use means c ∈ [0,W ] and lengthscales σ ∈ [m,M ], where 0 < m < M , and want to
have at most O(1) error from our discretization. We achieve this with additive mean step sizes and
multiplicative lengthscale step sizes,:

C = {0, ρm, 2ρm, . . . , (k − 2)ρm,W}
S = {m, (1 + γ)m, (1 + γ)2m, . . . , (1 + γ)`−3m,M, (1 + γ)M}

Note that the step sizes for both the means and lengthscales are left in terms of the minimum
lengthscale. The set C guarantees that any ĉ ∈ [0,W ] has c̃ ∈ C such that

|c̃− ĉ| ≤ ρm (4)

Additionally, set S guarantees that any σ̂ ∈ [m,M ] has σ̃ ∈ S such that

σ̃

(1 + γ)2
≤ σ̂ ≤ σ̃

1 + γ
< σ̃ (5)

Notably, we do not allow σ̂ to be arbitrarily close to σ̃, but instead guarantee a multiplicative gap
between the two. This is why the maximum value of S is greater than M . There are k =

⌊
W
ρm

⌋
means in C and ` =

⌊
ln(2M/m)
ln(1+γ)

⌋
lengthscales in S. We now discretize a SM kernel of q Gaussian

modes by rounding to means in C and lengthscales in S:
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Lemma 2.

min
c∈Cq
σ∈Sq

min
g∈L2(µc,σ)

‖F∗c,σg − ȳ‖2T + ε‖g‖2c,σ ≤ C min
c∈[0,W ]q

σ∈[m,M ]q

min
g∈L2(µc,σ)

‖F∗c,σg − ȳ‖2T + ε‖g‖2c,σ

(6)

Where C = (1 + γ)2 exp(ρ
2

2 ·
1

1− 1
(1+γ)2

).

If we want a factor of 3 error, we can take γ = ρ = 0.5, so that C ≈ 2.8178 < 3. This makes |C| =
O(Wm ) and |S| = O(log(M/m)), so that the discretize space of q SM kernels has O((Wm log(Mm ))q)
choices of hyperparameter to consider.

Proof. Let ĉ, σ̂, and ĝ be the minimizers of the right hand side of Inequality 6. Let

p(ξ; c, σ) := 1√
2πσ2

e−
(ξ−c)2

2σ2 be the Gaussian PDF with mean c and lengthscale σ2. Further, let
p(ξ; c,σ) :=

∑q
j=1 p(ξ, cj , σj) be the sum of the Gaussians described in c and σ. This allows us to

write dµc,σ(ξ) = p(ξ; c,σ)dξ.

Let c̃ and σ̃ be the discretizations of ĉ and σ̂ using the schemes from Equation 4 and Equation 5. Let
g̃ be the following rounding of ĝ:

g̃(ξ) := ĝ(ξ) · p(ξ; ĉ, σ̂)

p(ξ; c̃, σ̃)

Then, this particular rounding implies that the Inverse Fourier Transform of g̃ preserves the Inverse
Fourier Transform of ĝ:

[F∗c̃,σ̃ g̃](t) =

∫
R
g̃(ξ)e2πiξtdµc̃,σ̃(ξ)

=

∫
R
ĝ(ξ) · p(ξ; ĉ, σ̂)

p(ξ; c̃, σ̃)
· e2πiξt · p(ξ, c̃, σ̃) · dξ

=

∫
R
ĝ(ξ) · p(ξ; ĉ, σ̂) · e2πiξt · dξ

=

∫
R
ĝ(ξ)e2πiξtdµĉ,σ̂(ξ)

= [F∗ĉ,σ̂ ĝ](t)

So, we immediately know that ‖F∗c̃,σ̃ g̃ − ȳ‖2T = ‖F∗ĉ,σ̂ ĝ − ȳ‖2T . All we need to do now is bound the
power of g̃ with respect to c̃ and σ̃:

‖g̃‖2c̃,σ̃ =

∫
R
|g̃(ξ)|2dµc̃,σ̃(ξ)

=

∫
R
|ĝ(ξ)|2

(
p(ξ; ĉ, σ̂)

p(ξ; c̃, σ̃)

)2

p(ξ; c̃, σ̃) dξ

=

∫
R
|ĝ(ξ)|2 p(ξ; ĉ, σ̂)

p(ξ; c̃, σ̃)
p(ξ; ĉ, σ̂) dξ

≤ C
∫
R
|ĝ(ξ)|2p(ξ; ĉ, σ̂) dξ

= C‖ĝ‖2ĉ,σ̂

The inequality uses the fact that p(ξ;c,σ̂)
p(ξ;c,σ̃) ≤ C for all ξ, proven below.

First, we bound the ratio p(ξ;ĉ1,σ̂1)
p(ξ;c̃1,σ̃1) . Note that

p(ξ; ĉ1, σ̂1)

p(ξ; c̃1, σ̃1)
=
σ̃1

σ̂1
exp

(
(ξ − c̃1)2

2σ̃2
1

− (ξ − ĉ1)2

2σ̂2
1

)
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With some calculus, we can show that the maximum of the right hand side occurs when ξ =
σ̂2
1 c̃1−σ̃

2
1 ĉ1

σ̂2
1−σ̃2

1

and attains hence maximum value

p(ξ; ĉ1, σ̂1)

p(ξ; c̃1, σ̃1)
≤ σ̃1

σ̂1
exp

(
1

2
· (c̃1 − ĉ1)2

σ̃2
1 − σ̂2

1

)
We can then use our rounding schemes from Equation 4 and Equation 5 to say

• σ̃1

σ̂1
≤ σ̃1

σ̃1
(1+γ)2

= (1 + γ)2

• σ̃2
1 − σ̂2

1 ≥ σ̃2
1 −

σ̃2
1

(1+γ)2 = σ̃2
1(1− 1

(1+γ)2 ) ≥ m2(1− 1
(1+γ)2 )

• (c̃1 − ĉ1)2 ≤ ρ2m2

With these three bounds, we conclude

p(ξ; ĉ1, σ̂1)

p(ξ; c̃1, σ̃1)
≤ (1 + γ)2 exp(

ρ2

2
· 1

1− 1
(1+γ)2

) = C

Finally, we complete the proof by noting

p(ξ; ĉ, σ̂)

p(ξ; ĉ, σ̃)
=

∑n
j=1 p(ξ; ĉj , σ̂j)

p(ξ; c̃, σ̃)

≤
∑n
j=1 C · p(ξ; c̃j , σ̃j)

p(ξ; c̃, σ̃)

= C ·
∑n
j=1 p(ξ; c̃j , σ̃j)

p(ξ; c̃, σ̃)

= C · p(ξ; c̃, σ̃)

p(ξ; c̃, σ̃)

= C

C Multiple Prior Subsampling Bounds

C.1 Proof for the Matrix Case

First, we introduce the matrix version of the ridge leverage function, first introduced in [AM15]:

Definition 3. For a matrixA ∈ Rn×d, we define the ε-ridge leverage score for row i as

τi,ε(A) := max
{α∈Rd:‖α‖2>0}

|[Aα]i|2

‖Aα‖22 + ε‖α‖22

We first import a result from [CMM17] that shows how ridge leverage score sampling spectrally
embeds matrices:

Imported Theorem 1 (Theorem 5 from [CMM17]). LetA ∈ Rn×d and ε ≥ 0. Let rows r1, . . . , rm
be sampled iid proportionally to τ̃ε(i), where τ̃ε(i) ≥ τi,ε(A). Define s̃ :=

∑m
i=1 τ̃ε(i). Let

S ∈ Rm×n be the sample and rescale matrix: [S]i,j =
√

s
mτ̃ε(i)

·1[ri=j]. Then if m = O( s log(s/δ)
∆2 ),

with probability 1− δ we have

(1−∆)(AᵀA− εI) � AᵀSᵀSA+ εI � (1 + ∆)(AᵀA+ εI)

Then we move onto the theorem we want to prove:
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Theorem 5. Let A1, . . . ,AQ ∈ Rm×d and b ∈ Rd. Fix ridge parameter ε ≥ 0. Sample rows
r1, . . . , rn ∝ τ̃ε where τ̃ε is an upper bound for the ε-ridge leverage scores of all pairs of design
matrices conjoined: τ̃ε(i) ≥ τi,ε([Aj ,Ak]) for all j, k. Let s̃ε =

∑m
i=1 τ̃ε(i). Build a sample-and-

rescale matrix S ∈ Rn×m : Sj,k =
√

s̃ε
nτ̃ε(j)

1[rj=k]. Then let k̃, x̃ solve the subsampled regression
problem:

k̃, x̃ := argmin
k∈[Q],x∈Rd

‖SAkx− Sb‖22 + ε‖x‖22

If n = O(s̃ε log( s̃εδ ·Q)), then with probability 1− δ we have

‖Ak̃x̃− b‖22 + ε‖x̃‖22 ≤ (72 + 18/δ) min
k∈[Q]

min
x∈Rd

‖Akx− b‖+ ε‖x‖22

The proof of Theorem 1 closely mirrors that of Theorem 5, except that Theorem 1 additionally bounds
the Fourier version of the pairwise leverage scores τi,ε([Aj ,Ak]) and proves a new operator spectral
embedding guarantee to handle this case.

Proof. First, we define the norm ‖(y;x)‖22,ε := ‖y‖22 + ε‖x‖22. Then let k̂ and x̂ be the true
minimizers for the full optimization problem:

k̂, x̂ := argmin
k∈[Q],x∈Rd

‖(Akx− b;x)‖22,ε

By the triangle inequality, and the inverse triangle inequality, we have for anyAk and any x,

‖(S(Akx− b);x)‖2,ε ∈ ‖(S(Ak̂x̂−Akx); x̂− x)‖2,ε ± ‖(S(Ak̂x̂− b); x̂)‖2,ε

We bound these two terms separately, starting with the latter. Letting b̂⊥ := Ak̂x̂− b, we have

E[‖S(Ak̂x̂− b)‖22] = E[‖Sb̂⊥‖22] = E[b̂
ᵀ
⊥S

ᵀSb̂⊥] = b̂
ᵀ
⊥ E[SᵀS]b̂⊥

And since E[SᵀS] = I , we find E[‖(S(Ak̂x̂−b); x̂)‖22,ε] = ‖b̂⊥‖22 +ε‖x̂‖22 = ‖(Ak̂x̂−b; x̂)‖22,ε.
Hence, by Markov’s inequality, we have

‖(S(Ak̂x̂− b); x̂)‖2,ε ≤
√

2

δ
‖(Ak̂x̂− b; x̂)‖2,ε

with probability 1− δ
2 .

Next, note that for constant ∆ and for anyAj ,Ak we have

‖(S[Aj Ak]v;v)‖2,ε ∈ (1±∆) ‖([Aj Ak]v;v)‖2,ε for all v ∈ R2d

with probability 1− δ
2 . This follows directly from the definition of the ridge norm and the fact that S

is generated using upper bounds for leverage scores for [Aj Ak], following Imported Theorem 1.
Then, we find∣∣∣∣(S(Ak̂x̂−Akx) ; x̂− x

)∣∣∣∣
2,ε

=
∣∣∣∣(S [Ak̂ Ak]

[
x̂
−x
]

;
[

x̂
−x
] )∣∣∣∣

2,ε

∈ (1±∆)
∣∣∣∣( [Ak̂ Ak]

[
x̂
−x
]

;
[

x̂
−x
] )∣∣∣∣

2,ε

= (1±∆)
∣∣∣∣(Ak̂x̂−Akx ; x̂− x

)∣∣∣∣
2,ε

Further, by the triangle and inverse triangle inequalities, we have

‖(Ak̂x̂−Akx ; x̂− x)‖2,ε ∈ ‖(Akx− b ;x)‖2,ε ± ‖(Ak̂x̂− b ; x̂)‖2,ε

Putting these last two inequalities together, we find that allAk and x have∣∣∣∣(S(Ak̂x̂−Akx) ; x̂− x
)∣∣∣∣

2,ε
∈ (1±∆)

∣∣∣∣(Akx− b ; x
)∣∣∣∣

2,ε
± (1 + ∆)

∣∣∣∣(Ak̂x̂− b ; x̂
)∣∣∣∣

2,ε
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Then, using this bound, alongside the Markov bound and the original triangle inequality, we find∣∣∣∣(S(Akx− b) ; x
)∣∣∣∣

2,ε
∈
∣∣∣∣(S(Ak̂x̂−Akx) ; x̂− x

)∣∣∣∣
2,ε
±
∣∣∣∣(S(Ak̂x̂− b) ; x̂

)∣∣∣∣
2,ε

=
∣∣∣∣(S(Ak̂x̂−Akx) ; x̂− x

)∣∣∣∣
2,ε
±
√

2
δ

∣∣∣∣(Ak̂x̂− b ; x̂
)∣∣∣∣

2,ε

⊆
(

(1±∆)
∣∣∣∣(Ak̂x̂− b ; x̂

)∣∣∣∣
2,ε
± (1 + ∆)

∣∣∣∣(Akx− b ; x
)∣∣∣∣

2,ε

)
±
√

2
δ

∣∣∣∣(Ak̂x̂− b ; x̂
)∣∣∣∣

2,ε

= (1±∆)
∣∣∣∣(Akx− b ; x

)∣∣∣∣
2,ε
±
(

1 + ∆ +
√

2
δ

) ∣∣∣∣(Ak̂x̂− b ; x̂
)∣∣∣∣

2,ε

Note that the above bound holds for any choice of Ak and any x. To simplify the constants a bit,

let c0 :=
(

1 + ∆ +
√

2
δ

)
, L(k,x) := ‖(Akx− b ;x)‖2,ε, and L(k,x) := ‖(S(Akx− b) ;x)‖2,ε.

Then, the previous bound state that

L(k,x) ∈ (1±∆)L(k,x)± c0L(k̂, x̂)

If we take k = k̃ and x = x̃, and rearrange terms, we find

L(k̃, x̃) ≤ 1

1−∆
L(k̃, x̃) +

c0
1−∆

L(k̂, x̂)

≤ 1

1−∆
L(k̂, x̂) +

c0
1−∆

L(k̂, x̂)

≤ 1

1−∆

(
(1 + ∆)L(k̂, x̂) + c0L(k̂, x̂)

)
+

c0
1−∆

L(k̂, x̂)

=
1 + ∆ + 2c0

1−∆
L(k̂, x̂)

=
1 + ∆ + 2

(
1 + ∆ +

√
2
δ

)
1−∆

L(k̂, x̂)

=
3 + 3∆ + 2

√
2
δ

1−∆
L(k̂, x̂)

If we take ∆ = 1
3 and square both sides, we find

‖Ak̃x̃− b‖22 + ε‖x̃‖22 ≤

(
6 + 3

√
2

δ

)2 (
‖Ak̂x̂− b‖22 + ε‖x̂‖22

)
Noting by the AM-GM inequality that (a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2, we can upper bound

the above approximation factor with
(

6 + 3
√

2
δ

)2

≤ (72 + 18
δ ), completing the proof.

C.2 Proof for the Operator Case

We start with preliminary definitions for randomized operator analysis.

C.2.1 Ridge Leverage Scores

To achieve near optimal sample complexity for kernel interpolation (i.e within logarithmic factors of
the statistical dimension), recent work shows that it suffices to select time samples independently at
random, according to a carefully chosen non-uniform distribution [CKPS16, AKM+19]. In particular,
we use the well studied ridge leverage function [AM15, MM17, PBV18], which is defined as follows:

Definition 4 (Ridge leverage function). For any Hilbert space H, time length T > 0, ε ≥ 0, and
bounded linear operator A : H → L2(T ) the ε-ridge leverage function for t ∈ [0, T ] is:

τA,ε(t) =
1

T
· max
{α∈H: ‖α‖H>0}

|[Aα](t)|2

‖Aα‖2T + ε‖α‖2H
. (7)
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Note that when A is an inverse Fourier transform operator, the integral of the ridge leverage function
is equal to the statistical dimension of the corresponding kernel – i.e. if A = F∗µ then sµ,ε =∫ T

0
τA,ε(t)dt. This fact generalizes a well known claim for matrices and is proven in [AKM+19].

The ridge leverage score captures how important a time point t is for A: it is large if there are low
energy functions (small ‖α‖2H) in the span of the operator that are highly concentrated at t – i.e. when
the function Aα has large magnitude at t compared to its average magnitude over [0, T ].

The Universal Sampling Distribution (Definition 2) is called Universal because when A = F∗µ is any
inverse Fourier transform operator, recent work [CP19a, AKM+19] shows that τA,ε is tightly upper
bounded by τ̃α:

Claim 2 (Theorem 17 of [AKM+19]). For any PDF µ and corresponding inverse Fourier transform
operator F∗µ,

τF∗µ,ε(t) ≤ τ̃α(t)

for all t ∈ [0, T ], as long as α ≥ csµ,ε for some universal constant c > 0.

We then state a known operator subsampling result from [AKM+19] which is based on the ridge
leverage scores of Definition 4. The proof of this result adapts a bound on sums of random operators
by [Min17], and uses the upper bound of Claim 2. A similar result is proven in [Bac17].

Lemma 3 (Lemma 43 in [AKM+19]). Consider a bounded linear operator A : H → L2(T ).
Let τ̃A,ε(t) be a function with τ̃A,ε(t) ≥ τA,ε(t) for all t ∈ [0, T ] and let s̃A,ε =

∫ T
0
τ̃A,ε(t)dt.

Let n = c · ∆−2s̃A,ε log(s̃A,ε/δ) for sufficiently large fixed constant c and select t1, . . . , tn by
drawing each randomly from [0, T ] with probability proportional to τ̃A,ε(t). For j ∈ 1, . . . , s, let

wj =
√

s̃A,ε
nT ·τ̃A,ε(tj) . Let A : H → Cn be the operator defined by [Ag]j = [Ag](tj) · wj . With

probability (1− δ),

(1−∆)(G + εIH) � A∗A + εIH � (1 + ∆)(G + εIH).

C.2.2 Concentration of Concatenated Fourier Operators

With Lemma 3 in place, our goal in this section is prove a specific approximation result for randomly
subsampling rows from the the concatenation of two inverse Fourier transform operators, F∗µ1

and
F∗µ2

. Specifically, let ⊕ denote the standard direct sum operation between Hilbert spaces. I.e.
[α, β] ∈ H1 ⊕H2 if α ∈ H1 and β ∈ H1. For finitely bounded PDFs µ1 and µ2 the concatenated
operator Fµ1,µ2

: L2(µ1)⊕ L2(µ2)→ L2(T ) is defined as:

F∗µ1,µ2
[α, β] = F∗µ1

α+ F∗µ2
β.

Note that the adjoint of F∗µ1,µ2
is Fµ1,µ2f = (Fµ1f,Fµ2f).

Our goal is to approximateF∗µ1,µ2
by an operator with a finite number of rows. Such an approximation

could be obtained directly from Lemma 3. However, applying that result requires an upper bound on
the ridge leverage scores (Definition 4) of F∗µ1,µ2

. Our first technical result of this section is to show
that such an upper bound can be obtained using the universal sampling distribution of Definition 2.
We prove:

Lemma 4. For any bounded PDFs µ1, µ2 on R let, A = F∗µ1,µ2
where F∗µ1,µ2

is a concatenated
inverse Fourier transform operator as defined above for any ε > 0,

τA,ε(t) ≤ τ̃α(t)

as long as α ≥ c ·max [sµ1,ε, sµ2,ε] for some fixed constant c.

Proof. Let µ̄ = µ1+µ2

2 and let Ā = 2F∗µ̄. We establish the lemma by proving

τA,ε(t) ≤ τĀ,ε(t) (8)

Once we have this bound, we can apply Claim 2 to observe that τĀ,ε(t) ≤ τ̃α(t) as long as long as
α ≥ c · sµ̄,ε. Finally, from Lemma 51 in [AKM+19], we have that sµ̄,ε ≤ 2 max [sµ1,ε, sµ2,ε], which
gives the lemma because τ̃α(t) is strictly increasing with α.
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So, we are left to prove (8). Referring to Definition 4 and noting that ‖[α, β]‖2H1⊕H2
= ‖α‖2H1

+

‖β‖2H2
, we can do so by upper bounding for all t ∈ [0, T ]:

1

T
· max
{[α,β]∈L2(µ1)⊕L2(µ2): ‖α‖2µ1+‖β‖2µ2>0}

∣∣[F∗µ1,µ2
[α, β]](t)

∣∣2
‖Fµ1,µ2 [α, β]‖2T + ε‖α‖2µ1

+ ε‖β‖2µ2

. (9)

For any particular t ∈ [0, T ], let α∗ ∈ L2(µ1) and β∗ ∈ L2(µ1) be the maximizers of (9). We are
going to define a function w to satisfy Āw = F∗µ1,µ2

[α∗, β∗]. In particular, we can set

w(ξ) = (µ1(ξ) + µ2(ξ))+ (µ1(ξ)α∗(ξ) + µ2(ξ)β∗(ξ))

where for a s ∈ R, s+ evaluates to 0 when s = 0 and 1/s otherwise. We have that (9) is equal to:

1

T
·

∣∣[Āw](t)
∣∣2

‖Āw‖2T + ε‖α∗‖2µ1
+ ε‖β∗‖2µ2

. (10)

Next we bound ‖w‖2µ̄ =
∫
ξ∈R w(ξ)2µ̄(ξ)dξ. We have that for all ξ,

w(ξ)2µ̄ =
1

2
(µ1(ξ) + µ2(ξ))+ · (µ1(ξ)α∗(ξ) + µ2(ξ)β∗(ξ))

2

≤ (µ1(ξ) + µ2(ξ))+ ·
(
µ1(ξ)2α∗(ξ)2 + µ2(ξ)2β∗(ξ)2

)
≤ µ1(ξ)α∗(ξ)2 + µ2(ξ)β∗(ξ)2.

It follows that
∫
ξ∈R w(ξ)2µ̄(ξ)dξ ≤

∫
ξ∈R α

∗(ξ)2µ1(ξ)dξ +
∫
ξ∈R β

∗(ξ)2µ2(ξ)dξ = ‖α∗‖2µ1
+

‖β∗‖2µ2
. Substituting into (10), we actually have that (9) can be upper bounded by

1

T
·

∣∣[Āw](t)
∣∣2

‖Āw‖2T + ε‖w‖2µ̄
.

This quantity is of course only small than τĀ,ε(t), which completes the proof of (8).

The following theorem is a direct corollary of Lemma 3 and Lemma 4.

Theorem 6. Fix ∆ > 0 and δ > 0. Let µ1, µ2 be bounded PDFs. Let smax = max [sµ1,ε, sµ2,ε].
Let α = c0smax and n = c1∆−2smax log(smax) log(smax/δ) for fixed universal constants c0, c1.
Suppose n time samples t1, . . . , tn ∈ [0, T ] are sampled with probability proportional to τ̃α(t) and
F ∗µ1

and F ∗µ2
be the sampled versions of F∗µ1

and F∗µ2
satisfying for j = 1, . . . , n:

[F ∗µpg]j = wj ·
∫
R
g(ξ)e2πiξtjµp(ξ)dξ,

where wj =

√ ∫ T
0
τ̃α(t)dt

sT ·τ̃α(tj)
. Then with probability (1− δ),

(1−∆)(G + εI) � G̃ + εI � (1 + ∆)(G + εI)

where G = Fµ1,µ2
F∗µ1,µ2

and Ḡ = [Fµ2
;Fµ1

][F ∗µ2
,F ∗µ1

]. Here [Fµ2
;Fµ1

] : Cs → L2(µ1)⊕L2(µ2)
is the natural concatenation of Fµ2

and Fµ1
, and [F ∗µ2

,F ∗µ1
] is the concatenation of F ∗µ2

and F ∗µ1
.

Proof. By Lemma 4 τ̃α(t) strictly upper bounds the ε-ridge leverage scores of F∗µ1,µ2
as long as α is

set as in the theorem statement. Moreover, referring to Definition 2,
∫ T

0
τ̃α(t)dt ≤ O(α logα), so the

number of samples n in the theorem is sufficiently large to directly apply Lemma 3 to the bounded
linear operator F∗µ1,µ2

.
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C.2.3 Final Result for Linear Operators

Theorem 1 Restated. Let Ũ = {µ1, . . . , µQ} be a finite set of scaled PDFs. Let smax,ε be the
maximum of the PDFs’ statistical dimensions: sε = maxj sµj ,ε. Let t1, . . . , tn be iid samples
from the universal sampling distribution, and define F ∗ accordingly. Let µ̃, g̃ optimally solve the
time-discretized problem:

µ̃, g̃ := argmin
µ∈Ũ,g∈L2(µ)

‖F ∗µ̃g − ȳ‖22 + ε‖g‖2µ

If n = O(sε log( sε Qδ )), then with probability 1− δ, we have

‖F∗µ̃ g̃ − ȳ‖2T + ε‖g̃‖2µ̃ ≤ (72 + 18
δ ) argmin

µ∈Ũ,g∈L2(µ)

‖F∗µg − ȳ‖2T + ε‖g‖2µ

Proof. Like in the proof of Theorem 5, we define regularized norms for this problem. However, since
the regularization norm depends on the PDF being used, we use notionally larger norms:

‖(f ; g ; g′)‖2T,ε,µ,µ′ := ‖f‖2T + ε‖g‖2µ + ε‖g′‖2µ′ ‖(f ; g)‖2T,ε,µ := ‖f‖2T + ε‖g‖2µ
‖(x ; g ; g′)‖22,ε,µ,µ′ := ‖x‖22 + ε‖g‖2µ + ε‖g′‖2µ′ ‖(x ; g)‖22,ε,µ := ‖x‖22 + ε‖g‖2µ

Then let µ̂ and x̂ be the true minimizers for the full optimization problem:
µ̂, x̂ := argmin

µ∈Ũ,g∈L2(µ)

‖(F∗µg − ȳ ; g)‖2T,ε,µ

By the triangle inequality, and the inverse triangle inequality, we have for any µ and any g ∈ L2(µ),
‖(F ∗µg − ȳ ; g)‖2,ε,µ = ‖(F ∗µg − ȳ ; g ; 0)‖2,ε,µ,µ̂

∈
∣∣∣∣(F ∗µ̂ ĝ − F ∗µg ; −g ; ĝ

)∣∣∣∣
2,ε,µ,µ̂

±
∣∣∣∣(F ∗µ̂ ĝ − ȳ ; 0 ; ĝ

)∣∣∣∣
2,ε,µ,µ̂

We bound these two terms separately, starting with the latter. Note from [AKM+19] that E[‖F ∗µ̂ ĝ −
ȳ‖22] = ‖F∗µ̂ ĝ − ȳ‖2T . Hence, by Markov’s inequality, we have∣∣∣∣(F ∗µ̂ ĝ − ȳ ; 0 ; ĝ

)∣∣∣∣
2,ε,µ,µ̂

≤
√

2

δ

∣∣∣∣(F∗µ̂ ĝ − ȳ ; 0 ; ĝ
)∣∣∣∣
T,ε,µ,µ̂

=

√
2

δ

∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ
)∣∣∣∣
T,ε,µ̂

with probability 1− δ
2 .

Next, note that for constant ∆ and for any µj , µk ∈ Ũ we have
‖(F ∗µjg + F ∗µkh ; g ;h)‖2,ε,µj ,µk ∈ (1±∆) ‖(F∗µjg + F∗µkh ; g ;h)‖T,ε,µj ,µk

for all g ∈ L2(µj), h ∈ L2(µk) with probability 1− δ
2 . This follows directly from Theorem 6.

Further, by the triangle and inverse inequalities, we have for any µ ∈ Ũ , g ∈ L2(µ)∣∣∣∣(F∗µ̂ ĝ −F∗µg ; −g ; ĝ
)∣∣∣∣
T,ε,µ,µ̂

∈
∣∣∣∣(F∗µg − ȳ ; g ; 0

)∣∣∣∣
T,ε,µ,µ̂

±
∣∣∣∣(F∗µ̂ ĝ − ȳ ; 0 ; ĝ

)∣∣∣∣
T,ε,µ,µ̂

=
∣∣∣∣(F∗µg − ȳ ; g

)∣∣∣∣
T,ε,µ

±
∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ

)∣∣∣∣
T,ε,µ̂

Putting these last two inequalities together, we find∣∣∣∣(F ∗µ̂ ĝ − F ∗µg ; −g ; ĝ
)∣∣∣∣

2,ε,µ,µ̂
∈ (1±∆)

∣∣∣∣(F∗µg − ȳ ; g
)∣∣∣∣
T,ε,µ

± (1 + ∆)
∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ

)∣∣∣∣
T,ε,µ̂

Then, using this bound, alongside the Markov bound and the original triangle inequalities, we find
‖(F ∗µg − ȳ ; g)‖2,ε,µ ∈

∣∣∣∣(F ∗µ̂ ĝ − F ∗µg ; −g ; ĝ
)∣∣∣∣

2,ε,µ,µ̂
±
∣∣∣∣(F ∗µ̂ ĝ − ȳ ; 0 ; ĝ

)∣∣∣∣
2,ε,µ,µ̂

⊆
∣∣∣∣(F ∗µ̂ ĝ − F ∗µg ; −g ; ĝ

)∣∣∣∣
2,ε,µ,µ̂

±
√

2
δ

∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ
)∣∣∣∣
T,ε,µ̂

⊆
(

(1±∆)
∣∣∣∣(F∗µg − ȳ ; g

)∣∣∣∣
T,ε,µ

± (1 + ∆)
∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ

)∣∣∣∣
T,ε,µ̂

)
±
√

2
δ

∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ
)∣∣∣∣
T,ε,µ̂

= (1±∆)
∣∣∣∣(F∗µg − ȳ ; g

)∣∣∣∣
T,ε,µ

±
(

1 + ∆ +
√

2
δ

) ∣∣∣∣(F∗µ̂ ĝ − ȳ ; ĝ
)∣∣∣∣
T,ε,µ̂
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To simplify the notation a bit, let c0 :=
(

1 + ∆ +
√

2
δ

)
, the true loss for PDF µ with signal g be

L(µ, g) :=
∣∣∣∣(F∗µg−ȳ ; g

)∣∣∣∣
T,ε,µ

, and the sample loss for PDF µwith signal g beL(µ, g) := ‖(F ∗µg−
ȳ ; g)‖2,ε,µ. Then the previous bound says

L(µ, g) ∈ (1±∆)L(µ, g)± c0L(µ̂, ĝ)

Recall that this bound holds for any choice of µ ∈ Ũ and any g ∈ L2(µ). If we take µ = µ̃ and
g = g̃, and rearrange terms, we find

L(µ̃, g̃) ≤ 1

1−∆
L(µ̃, g̃) +

c0
1−∆

L(µ̂, ĝ)

≤ 1

1−∆
L(µ̂, ĝ) +

c0
1−∆

L(µ̂, ĝ)

≤ 1

1−∆
((1 + ∆)L(µ̂, ĝ) + c0L(µ̂, ĝ)) +

c0
1−∆

L(µ̂, ĝ)

=
1 + ∆ + 2c0

1−∆
L(µ̂, ĝ)

=
1 + ∆ + 2(1 + ∆ +

√
2
δ )

1−∆
L(µ̂, ĝ)

=
3 + 3∆ + 2

√
2
δ

1−∆
L(µ̂, ĝ)

If we take ∆ = 1
3 , we find

(L(µ̃, g̃))2 ≤

(
6 + 3

√
2

δ

)2

(L(µ̂, ĝ))2

‖Fµ̃g̃ − ȳ‖2T + ε‖g̃‖2µ̃ ≤

(
6 + 3

√
2

δ

)2 (
‖Fµ̂ĝ − ȳ‖2T + ε‖ĝ‖2µ̂

)
Noting by the AM-GM inequality that (a+ b)2 = a2 + 2ab+ b2 ≤ 2a2 + 2b2, we can upper bound

the above approximation factor with
(

6 + 3
√

2
δ

)2

≤ (72 + 18
δ ), completing the proof.
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