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Abstract

Keypoint detector and descriptor are two main components of point cloud registra-
tion. Previous learning-based keypoint detectors rely on saliency estimation for
each point or farthest point sample (FPS) for candidate points selection, which are
inefficient and not applicable in large scale scenes. This paper proposes Random
Sample-based Keypoint Detector and Descriptor Network (RSKDD-Net) for large
scale point cloud registration. The key idea is using random sampling to efficiently
select candidate points and using a learning-based method to jointly generate key-
points and descriptors. To tackle the information loss of random sampling, we
exploit a novel random dilation cluster strategy to enlarge the receptive field of each
sampled point and an attention mechanism to aggregate the positions and features
of neighbor points. Furthermore, we propose a matching loss to train the descriptor
in a weakly supervised manner. Extensive experiments on two large scale outdoor
LiDAR datasets show that the proposed RSKDD-Net achieves state-of-the-art
performance with more than 15 times faster than existing methods. Our code is
available at https://github.com/ispc-lab/RSKDD-Net.

1 Introduction

Point cloud registration is an important problem in 3D computer vision, which aims to estimate the
optimal rigid transformation between two point clouds. 3D keypoint detection and description are two
fundamental components of point cloud registration. Inspired by numerous handcrafted 2D keypoint
detectors and descriptors [1–3], researchers proposed several handcrafted 3D keypoint detectors
[4–6] and descriptors [7–11] for point cloud. However, additional RGB channels in images contain
richer information than Euclidean coordinates of point cloud without RGB information, which makes
handcrafted 3D keypoint detectors and descriptors less reliable than that in 2D images.

With the rapid development of deep learning, many works have explored learning-based methods
for 3D descriptors in point cloud [12–15]. However, only a few works explore deep learning-based
methods in 3D keypoint detection due to the lack of ground truth dataset for keypoint detector [16].
3DFeatNet[17] and USIP[16] are two pioneering works of learning-based keypoint detectors, however,
they have less efficiency consideration. 3DFeatNet predicts saliency for each input point and select
keypoints based on the predicted saliency. The per-point saliency estimation requires a considerable
time thus is not applicable in practice. USIP relies on FPS to generate keypoint candidates. However,
FPS has a time complexity of O(N2), therefore is inefficient and time-consuming. Hence, both two
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Figure 1: Network architecture of our proposed RSKDD-Net. The top row is the overall structure of
the whole network, the middle row is detector network and the bottom row is descriptor network.

methods above can not efficiently process large scale point clouds, which restricts their applications
in scenes that require real-time performance, such as autonomous driving.

Based on the above observation, we propose our network named as Random Sample-based Keypoint
Detector and Descriptor Network (RSKDD-Net), which jointly generates keypoints and the corre-
sponding descriptors for large scale point cloud efficiently. In this paper, we introduce the random
sample concept in RSKDD-Net to improve the efficiency of our network, which is ill-considered
in 3DFeatNet and USIP. Random sampling is highly efficient and has been utilized in point cloud
semantic segmentation to improve the efficiency [18], however, can lead to a considerable information
loss. Inspired by the success of dilation strategy in deep learning of 2D image [19], we propose a
novel random dilation strategy to cluster neighbor points, which significantly enlarges the receptive
field. We exploit attention mechanism to aggregate the positions and features of neighbor points
to generate keypoints and also an attentive feature map to estimate saliency uncertainty of each
keypoint. The generative framework avoids inefficient per-point saliency estimation in 3DFeatNet
[17]. To jointly learn keypoint detector and descriptor, the clusters and attentive feature maps are
further fed into the descriptor network to generate descriptors. To train the descriptor in a weakly
supervised manner, we introduce the matching loss, which utilizes a soft assignment strategy to
estimate correspondences of keypoints. The network architecture can be seen in Fig. 1.

Extensive experiments are performed to evaluate our RSKDD-Net. The results show that our approach
achieves state-of-the-art performance with much lower computation time.

Contribution To summarize, our main contributions are as follows:

• We propose a deep learning-based method to jointly detect keypoints and generate descriptors
for large scale point cloud registration. The proposed method achieves state-of-the-art
performance with a more than 15× higher speed.
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• We propose a novel random dilation strategy to enlarge the receptive field, which signifi-
cantly improves the performance of keypoint detector and descriptor. Besides, an attention
mechanism is introduced to aggregate the positions and features of neighbor points.

• We propose an effective matching loss based on soft assignment strategy so that the descriptor
can be trained in a weakly supervised manner.

2 Related work

Existing approaches of keypoint detector and descriptor for point cloud can be categorized into
handcrafted and learning-based approaches.

Handcrafted approaches The current handcrafted 3D keypoint detectors and descriptors are
mainly inspired by numerous handcrafted methods in 2D images. SIFT-3D [5] and Harris-3D [6] are
3D extensions of widely used 2D detectors SIFT [2] and Harris [3]. Intrinsic Shape Signatures (ISS)
[4] selects points where the neighbor points in a ball region have large variations along each principal
axis. For the description of keypoints, researchers have also developed several 3D descriptors based
on the geometric features of points, like Point Feature Histograms (PFH) [7], Fast Point Feature
Histograms (FPFH) [8] and Signature of Histograms of Orientations (SHOT) [9]. A comprehensive
introduction of handcrafted 3D detectors and descriptors can be found in [20, 21].

Learning-based approaches Recent years, deep learning-based methods have been widely used
for point cloud analysis [22–29]. The most relevant approaches to our work are 3DFeatNet [17] and
USIP [16]. Unlike previous learning-based descriptors [12] which rely on ground truth matched
pairs to train the network, 3DFeatNet proposed a weakly supervised 3D descriptor. The network
samples positive and negative pairs according to the distance of point cloud and utilizes a triplet
network to train the descriptor. For keypoints detection, they simply predict attentive weight for each
point in point cloud and select salient points without more precise optimization. Unlike 3DFeatNet,
the focus point of USIP is keypoint detector and how to train the detector fully unsupervised. They
sample keypoint candidates using FPS and use SOM [25] to organize the point cloud. An offset to the
original candidate points and saliency uncertainty are predicted to select keypoints. USIP proposes
probabilistic chamfer loss and point-to-point loss to train the network fully unsupervised. However,
saliency estimation for each point of 3DFeatNet and FPS in USIP are both inefficient.

3 Approach

Figure 2: The illustration of our random dilation
cluster strategy. The red point is the center point
and the blue points are the selected neighbor points.
The left part is the standard kNN-based cluster and
the right part is our random dilation cluster. It
is obvious that our method provides a significant
enlargement of the receptive field.

The network architecture of our proposed
RSKDD-Net is illustrated in Fig. 1. The in-
put point cloud P ∈ RN×(3+C) (3D Euclidean
coordinates and C additional channels) is firstly
fed into the detector network. Random dila-
tion cluster is utilized to cluster neighbor points
and then an attentive points aggregation module
is followed to generate keypoints X ∈ RM×3,
saliency uncertainties Σ ∈ RM and attentive
feature maps. The clusters and attentive feature
maps are further fed into the descriptor network
to generate corresponding descriptors. We train
the detector network with probabilistic chamfer
loss and point-to-point loss and the descriptor
network with the proposed matching loss.

3.1 Detector

Random dilation cluster For each input
point cloud P ∈ RN×(3+C), we firstly random sample M candidate points. Generally, k near-
est neighbor (kNN) search is performed to group M clusters centered on the candidate points.
Although efficient, random sampling can lead to an information loss and expanding the receptive
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field is an effective strategy to weaken the negative effect. However, simply enlarging the number of
neighbor points K will bring an increase of time and space complexity. Dilation is an alternative
strategy to enlarge the receptive field in numerous fields [30, 19]. [31] introduces dilated point
convolutions (DPC) in 3D point cloud. Unlike DPC, here we adopt a random dilation strategy to
generate clusters and the visual interpretation of this method is shown in Fig. 2. Suppose that K
neighbor points are selected for a single cluster, and the dilation ratio is denoted as αd. We firstly
search αd ×K neighbor points of the center point and then random sample K points from them. The
proposed strategy is simple however effective, which expands the receptive field from K to αd ×K
with almost no additional computational cost.

Attentive points aggregation Attention mechanism has achieved great performance in point cloud
learning [32–36]. In this paper, we propose a simple attention mechanism to aggregate neighbor points
to directly generate keypoint rather than predicting an offset like USIP [16]. From random dilation
cluster, we obtain M clusters and each cluster consists of K points. Considering one cluster, where
the center point and K neighbor points are denoted as pi and {pi1, · · · , pik, · · · , piK} ∈ RK×(3+C),
respectively. Euclidean coordinates of neighbor points are subtracted by the center point to get the
relative position of each neighbor point. Besides, the relative distances of neighbor points to the
center point are calculated as an additional channel of the cluster. Consequently, the feature of a
single cluster is denoted as F i = {f i1, · · · , f ik, · · · , f iK} ∈ RK×(4+C). Then the cluster are fed into a
shared multilayer perceptron (MLP) and output a feature map F̂ i = {f̂ i1, · · · , f̂ ik, · · · , f̂ iK} ∈ RK×Ca .
A maxpool layer with a Softmax function are followed to predict one-dimensional attentive weights
{wi

1, · · · , wi
k, · · · , wi

K} ∈ RK×1 for each neighbor point. The generated keypoint x̃i is calculated
as the weighted sum of the Euclidean coordinates of the neighbor points. Denoting the Euclidean
coordinates of the neighbor points as {xi1, · · · , xik, · · · , xiK} ∈ RK×3, then the output keypoint
x̃i ∈ R3 of this cluster can be calculated as

x̃i =

K∑
k=1

wi
k · xik, i = 1 · · ·M (1)

Unlike the offset predicting method in USIP, our attentive points aggregation method ensures that the
generated keypoint is within the convex hull of the input cluster. Then, each feature f̂ ik is assigned
with a corresponding attentive weight wi

k, so we get an attentive feature map F̃ i ∈ RK×Ca as

F̃ i = {f̃ i1, · · · , f̃ ik, · · · , f̃ iK} = {wi
1 · f̂ i1, · · · , wi

k · f̂ ik, · · · , wi
K · f̂ iK}, i = 1 · · ·M (2)

The attentive feature map is further summed to output a global feature f̃ i ∈ RCa for each cluster.
After that, an additional MLP with a Softplus function are followed to predict the saliency uncertainty
σi for each keypoint. The output of the detector network areM keypoints with corresponding saliency
uncertainties and also clusters {F 1, · · · , FM}with the attentive feature maps {F̃ 1, · · · , F̃M}. Finally,
we select keypoints with lower saliency uncertainties without Non-maximum Suppression (NMS).

3.2 Descriptor

The network structure of the descriptor is shown in the bottom row of Fig. 1. The input of the descrip-
tor network are the random dilation clusters {F 1, · · · , FM} and attentive feature maps {F̃ 1, · · · , F̃M}
from the detector network. A cluster F i is firstly fed into a shared MLP to get individual feature for
each neighbor point and then a maxpool layer is applied to obtain a Cf -dimensional global cluster
feature. After that, the global cluster feature is duplicated and then concatenated with individual
point features and the attentive feature map F̃ i. The concatenated feature map is further passed into
another shared MLP with a maxpool layer to generate a d-dimensional descriptor. The attentive
feature map from the detector network significantly improves the performance of the descriptor and
we will illustrate the effectiveness in ablation study.

3.3 Loss

Denoting source and target point clouds as S and T , keypoints from source and target point clouds as
XS and XT , the corresponding saliency uncertainties as ΣS and ΣT , and descriptors as QS and QT .
The ground truth relative rotation R and translation t is also provided. For the training of detector,

4



we follow USIP [16] to use the probabilistic chamfer loss and point-to-point loss. Probabilistic
chamfer loss is utilized to minimize the distance of keypoints in source and target point cloud and
point-to-point loss is defined to penalize the keypoints for being too far from the original point clouds.
Please refer to [16] for the details of probabilistic chamfer loss and point-to-point loss.

Matching loss We propose matching loss to train the descriptor in a weakly supervised manner.
The triplet loss in 3DFeatNet [17] samples positive and negative descriptor pairs according to the
distance of two point clouds and does not utilize the geometric positions of keypoints. Unlike
3DFeatNet, the key idea of our matching loss is a soft assignment strategy which explicitly estimates
the correspondences of descriptors. For each source keypoint x̃Si ∈ XS and the corresponding
descriptor qSi ∈ QS , the Euclidean distances with descriptors of all target keypoints are calculated,
which is denoted as dSi = {dSi1, · · · , dSij , · · · , dSiM}, where dSij =

∥∥qSi − qTj ∥∥22. The matching score
vector is denoted as sSi = {sSi1, · · · , sSij , · · · , sSiM}, which can be calculated as

sSij =
exp(

1/dS
ij

t )∑M
j=1 exp(

1/dS
ij

t )
(3)

where t is the temperature to sharpen the distribution of the matching score. Then the corresponding
keypoint of x̃Si can be represented as a weighted sum of all target keypoints,

x̂Si =

M∑
j=1

sSij · x̃Tj (4)

Soft assignment can be considered as an approximate derivable version of nearest neighbor search on
descriptors. Intuitively, the target keypoints with more similar descriptors to the source keypoint will
be given a larger score. When t→ 0, the soft assignment will degenerate to a deterministic nearest
neighbor search. Similarly, we can also calculate the corresponding source keypoint for each target
keypoint using soft assignment strategy. Furthermore, according to the saliency uncertainty σi ∈ Σ
of each keypoint, we introduce weight for each keypoint,

w̃i = M · wi∑M
i=1 wi

, wi = max{σmax − σi, 0} (5)

where σmax is the pre-defined upper bound of saliency uncertainty. The final matching loss aims at
minimizing the distance between estimated corresponding keypoints, which can be represented as

Lmatching =

M∑
i=1

w̃Si
∥∥Rx̃Si + t− x̂Si

∥∥2
2

+

M∑
i=1

w̃Ti
∥∥Rx̂Ti + t− x̃Ti

∥∥2
2

(6)

Intuitively, the reduction of the matching loss will motivate the soft assignment strategy to select
keypoints that are closer in space as matching points, which pull the matched descriptors closer and
unmatched descriptors away. Besides, the introduction of weights of keypoints makes keypoints with
lower saliency uncertainties have higher weights in the matching loss.

4 Experiments

4.1 Experiment setting

Datasets We evaluate our proposed RSKDD-Net on two large scale outdoor LiDAR datasets,
namely KITTI Odometry Dataset [37] (KITTI dataset) and Ford Campus Vision and Lidar Dataset
[38] (Ford dataset). KITTI dataset provides 11 sequences (00-10) with ground truth vehicle poses
and we use Sequence 00 to train, Sequence 01 for validation and the others for testing2. Ford dataset
contains two sequences and we only use this dataset for testing. For training, the current point cloud
with the 10th point cloud after it is considered as a training pair. For testing, we use the current point
cloud with the five consecutive frames before and after it as test data. Consequently, we obtain over
100,000 testing pairs in KITTI dataset and Ford dataset.

2We simply drop Sequence 08 because of the large errors of ground truth vehicle poses in this sequence
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Evaluation metric We follow the same evaluation metrics as in 3DFeatNet [17] and USIP [16] for
keypoint detector and descriptor, namely Repeatability, Precision and Registration performance.

Repeatability is introduced in USIP to evaluate the stability of detected keypoints. Given source
and target point clouds with the ground truth transformation, a keypoint in source point cloud is
repeatable if its distance to the nearest keypoint in target point cloud is less than a distance threshold
εr. Repeatability is defined as the ratio of repeatable keypoints to all detected keypoints.

Precision is utilized in 3DFeatNet to jointly evaluate keypoint detector and descriptor. Given a source
keypoint x̃Si , we search the corresponding target keypoint x̃Tj based on nearest neighbor search of
descriptors. Meanwhile, the ground truth corresponding keypoint location x̄Tj in target point cloud is
calculated according to the ground truth transformation. If x̃Tj and x̄Tj is within a distance threshold
εp, this correspondence is considered as valid and precision is defined as the valid ratio.

Registration performance is evaluated using RANSAC algorithm. Followed 3DFeatNet, the number
of RANSAC iterations is adjusted based on 99% confidence and capped at 10000 iterations. We
evaluate the relative translation error (RTE), relative rotation error (RRE) as in 3DFeatNet. A
registration is considered as successful if RTE < 2 m and RRE < 5◦. Besides, we also calculate the
average inlier ratio and iteration times of the RANSAC algorithm.

Baseline algorithms We compare our approach with three handcrafted 3D keypoint detectors ISS
[4], Harris-3D [6] and SIFT-3D [5] with handcrafted keypoint descriptor FPFH [8] and two deep
learning-based 3D keypoint detectors and descriptors: 3DFeatNet [17] and USIP [16]. We use the
implementation in PCL [39] for handcrafted detectors and descriptor. For USIP, we use the provided
source code and retrain the model on KITTI dataset due to the lack of pretrained model of descriptors.
For 3DFeatNet, we simply use the provided pretrained model and test it on KITTI dataset and
Ford dataset. Besides, we also evaluate the repeatability of random sampled points for reference.
Experiments on other handcrafted descriptors are displayed in our supplementary.

Implementation details In the pre-processing, we firstly downsample the input point cloud by
a Voxelgrid filter of 0.1 m grid size and extract the surface normals and curvature of each point
as additional features following USIP [16]. Then 16384 points are randomly sampled from the
downsampled point cloud as input point cloud. The dilation ratio αd is set to 2 and the number of
neighbor points is set to 128. The network is implemented using PyTorch [40]. We use SGD as the
optimizer with learning rate of 0.001 and momentum of 0.9. Temperature t in matching loss is set to
0.1. We train the network in two-stage, firstly the detector is trained with probabilistic chamfer loss
and point-to-point loss. Then we train the descriptor based on the pretrained detector using matching
loss and the detector network will also be fine-tuned in this stage. The network is trained on NVIDIA
GeForce 1080Ti and evaluated on a PC with Intel i7-9750H and NVIDIA GeForce RTX 2060.

4.2 Evaluation

Efficiency We evaluate the efficiency of our RSKDD-Net and other two learning-based methods on
KITTI dataset and the computation time is shown in Table 1. The top row of Table 1 represents the
number of input points and the second row represents the number of keypoints. Thanks to the random
sample strategy and no requirements for per-point saliency estimation, our method shows a much
higher efficiency than the other two learning-based methods. Noting that the computation time of
3DFeatNet and USIP increases mainly with the number of input points and the number of keypoints,
respectively. In comparison, the computation time of our method does not increase significantly with
the number of input points and keypoints. Specifically, our method is more than 30× faster than
USIP and 3DFeatNet to detect 512 keypoints from 16384 input points.

Repeatability We calculate the repeatability of 128, 256 and 512 keypoints with distance threshold
of 0.5m. Besides, the repeatability with different distance thresholds for 512 keypoints are also
evaluated for reference. The results are displayed in Fig. 3. According to the results, the repeatability
of our method outperforms all other methods for 128 to 512 keypoints with a significant margin.
Specifically, the repeatability of our method is about 20% higher than that of USIP for 512 keypoints
at distance threshold of 0.5 m, which demonstrates the high stability of our selected keypoints.
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Table 1: Computation time (ms)

Input points 4096 8192 16384

Keypoints 128 256 512 128 256 512 128 256 512

3DFeatNet 66.8 70.8 81.4 136.2 156.2 169.9 367.6 413.7 420.7
USIP 76.6 163.6 296.7 99.6 171.0 310.9 115.2 203.4 378.5
RSKDD-Net 3.8 4.1 4.7 4.3 5.2 6.5 5.7 8.5 10.1
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Figure 3: (a) and (b): Repeatability with different numbers of keypoints. (c) and (d): Repeatability
with different distance thresholds.
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Figure 4: (a) and (b): Precision with different numbers of keypoints. (c) and (d): Precision with
different distance thresholds.

Precision We evaluate the precision for 512 keypoints with different distance thresholds and also
the precision for different numbers of keypoints with distance threshold of 1.0 m. The results in
Fig. 4 show that our RSKDD-Net provides a much higher precision than other methods for different
numbers of keypoints and also different distance thresholds. Noting that our RSKDD-Net performs
better on KITTI dataset than on Ford dataset, the reason may be that the point clouds in KITTI dataset
are more structured so that our RSKDD-Net can detect keypoints with more geometric information.

Registration performance The number of keypoints for evaluation of registration performance is
fixed at 512. The experiment results are displayed in Table 2. According to the experiments, our
method gives a better RTE than both handcrafted and learning-based methods. Although the RRE
and success rate is slightly inferior to USIP, the inlier ratio of our method is more than twice than
that of USIP and brings much less average iteration times due to the high precision and repeatability.
Taken together, our method outperforms all of the other methods.

Qualitative Visualization We provide several qualitative visualization results of our proposed
method. Two registration results are shown in left two columns of Fig. 5. The number of keypoints is
fixed to 512 and the visualization results show a large inlier ratio of our proposed keypoint detector
and descriptor. Besides, we give a sample of our keypoints detection results in the right column of
Fig. 5. Although the method does not explicitly remove the points on ground plane, the detected
keypoints automatically avoid the ground points and concentrate on points with geometric information
like facades and corners. More qualitative results are provided in our supplementary.

4.3 Ablation study

We provide ablation study to illustrate the effectiveness of the random dilation cluster, attentive
feature map, matching loss. All experiments of ablation study are performed on KITTI dataset. The
repeatability and precision are calculated with 128, 256 and 512 keypoints. The distance thresholds
of repeatability and precision are fixed at 0.5 m and 1.0 m, respectively.
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Table 2: Registration performance on KITTI dataset and Ford dataset

Methods KITTI dataset Ford dataset

RTE (m) RRE (deg) Inlier Iter Success RTE (m) RRE (deg) Inlier Iter Success

Harris+FPFH 0.38± 0.33 1.79± 1.24 0.018 10000 82.9% 0.51± 0.59 0.48± 0.90 0.187 935 74.0%
ISS+FPFH 0.59± 0.39 1.24± 0.98 0.024 10000 92.3% 0.54± 0.56 0.70± 1.16 0.160 1364 74.4%
SIFT+FPFH 0.57± 0.39 1.39± 0.96 0.040 9973 92.5% 0.56± 0.56 0.68± 1.11 0.243 376 75.3%
3DFeatNet 0.31± 0.26 0.73± 0.64 0.093 6591 97.9% 0.37± 0.42 0.61± 0.73 0.100 5642 91.3%
USIP 0.10± 0.05 0.35 ± 0.21 0.243 468 100% 0.12± 0.06 0.38 ± 0.39 0.195 870 100%
RSKDD-Net 0.09 ± 0.06 0.50± 0.28 0.586 32 99.9% 0.11 ± 0.08 0.58± 0.41 0.505 41 99.5%

Figure 5: The left two images are two registration results and the red lines between two point clouds
represent successful matchings. The right image is a sample of keypoints detection results and the
red points denote the detected keypoints.

Random dilation cluster Here we compare the performance of our proposed random dilation
cluster with DPC [31] and the corresponding repeatability and precision are displayed in Fig. 6(a) and
Fig. 6(b). The results show that the random dilation cluster significantly improves the repeatability
and precision of our network. And the random dilation cluster performs similar to and in some
scenes even slightly better than DPC (e.g., the precision of 128 and 256 keypoints). In addition, our
method is more simple and has no requirements for neighbor points sorting, which reduces the time
complexity of neighbor points searching.

Attention feature map In order to demonstrate the effectiveness of the attentive feature map for
learning of descriptor, we remove the attentive feature map in the descriptor network and evaluate
the precision. The results can be seen in Fig. 6(c). According to the results, the introduction of the
attentive feature map results in an obvious increase in precision. The precision for different numbers
of keypoints increases by about 0.1 with the attentive feature map.
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Figure 6: (a) Repeatability with different dilation strategy. (b) Precision with different dilation
strategy. (c) Precision with and without attentive feature map. (d) Precision with matching loss and
triplet loss. (e) Precision with difference temperature t. (f) Precision with and without weight.
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Matching loss We compare our matching loss with the triplet loss used in 3DFeatNet. Following
3DFeatNet, we sample positive and negative point cloud pairs based on the distance between two
point cloud and the saliency uncertainty are also included in the triplet loss. Then we use the triplet
loss to replace the proposed matching loss and retrain the network. The precision of the two loss
functions can be seen in Fig. 6(d). According to the experiments, our matching loss significantly
outperforms triplet loss in 3DFeatNet in our settings. Specifically, the precision of our method is
about twice of that of the network training with triplet loss. Besides, we also perform experiments to
study the effect of the temperature t and also the weight in the proposed matching loss. As shown
in Fig. 6(e), the precision with t = 0.5 is obviously lower than the other two ones, which is due to
the poor approximation of the soft assignment strategy with large t. And the performance will not
change significantly when t < 0.1. According to Fig. 6(f), the introduction of weight in the matching
loss improves the performance of the descriptor.

5 Conclusion

This paper proposes a learning-based method to jointly detect keypoints and generate descriptors in
large scale point cloud. The proposed RSKDD-Net achieves state-of-the-art performance with much
faster inference speed. To overcome the drawback of random sampling, we propose a novel random
dilation cluster strategy to enlarge the receptive field and an attention mechanism for positions and
features aggregation. We propose a soft assignment-based matching loss so that the descriptor network
can be trained in a weakly supervised manner. Extensive experiments are performed and demonstrate
that our RSKDD-Net outperforms existing methods by a significant margin in repeatability, precision
and registration performance.

Broader Impact

The proposed RSKDD-Net provides an efficient scheme to detect keypoints and generate descriptors
for large scale point cloud registration. The method is most likely to be applied to localization and
mapping system of autonomous vehicles to reduce the computation of point cloud registration, which
may promote the development of autonomous driving. The development of autonomous driving can
reduce the workload of human drivers and the incidence of traffic accidents, however, can have an
impact on the determination of liability for traffic accidents and results in unemployment of human
drivers. Besides, the proposed method has also applications on unmanned aerial vehicles. However,
unmanned aerial vehicles can be utilized in military field, thereby threatening human safety. We
should explore more beneficial applications of this method, such as promoting the development of
autonomous driving to improve the quality of human life and improve its safety to reduce accidents.
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