
Supplementary Material:
Regret in Online Recommendation Systems

Kaito Ariu
KTH

Stockholm, Sweden
ariu@kth.se

Narae Ryu
KAIST

Daejeon, South Korea
nrryu@kaist.ac.kr

Se-Young Yun
KAIST

Daejeon, South Korea
yunseyoung@kaist.ac.kr

Alexandre Proutière
KTH

Stockholm, Sweden
alepro@kth.se

Abstract

This paper proposes a theoretical analysis of recommendation systems in an online
setting, where items are sequentially recommended to users over time. In each
round, a user, randomly picked from a population of m users, requests a recommen-
dation. The decision-maker observes the user and selects an item from a catalogue
of n items. Importantly, an item cannot be recommended twice to the same user.
The probabilities that a user likes each item are unknown. The performance of
the recommendation algorithm is captured through its regret, considering as a
reference an Oracle algorithm aware of these probabilities. We investigate various
structural assumptions on these probabilities: we derive for each structure regret
lower bounds, and devise algorithms achieving these limits. Interestingly, our
analysis reveals the relative weights of the different components of regret: the
component due to the constraint of not presenting the same item twice to the same
user, that due to learning the chances users like items, and finally that arising when
learning the underlying structure.

Contents

1 Introduction 3

2 Related Work 4

3 Models and Preliminaries 4

3.1 Problem structures and regrets . 5

3.2 Preliminaries – User arrival process . 5

4 Regret Lower Bounds 6

4.1 Clustered items and statistically identical users 6

4.2 Unclustered items and statistically identical users 6

4.3 Clustered items and clustered users . 7

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

5 Algorithms 7

5.1 Clustered items and statistically identical users 8

5.2 Unclustered items and statistically identical users 8

5.3 Clustered items and clustered users . 9

6 Conclusion 10

7 Table of Notations 13

A Algorithms and experiments 15

A.1 Clustered items and statistically identical users 15

A.2 Unclustered items and statistically identical users 18

A.3 Clustered items and users . 20

B Preliminaries: Properties of the user arrival process 25

C Justifying the regret definitions 27

D Fundamental limits for Model A: Proof of Theorem 1 29

D.1 Proof of Lemma 7 . 30

E Fundamental limits for Model B: Proof of Theorem 2 32

F Fundamental limits for Model C: Proof of Theorem 3 34

F.1 Examples . 34

F.2 Proof . 35

G Performance guarantees of ECT: Proof of Theorem 4 41

H Performance guarantees of ET: Proof of Theorem 5 45

I Performance guarantees of EC-UCS: Proof of Theorem 6 48

J Performance guarantees of ECB and Item Clustering: Proof of Theorems 7 and 9 57

2

1 Introduction

Recommendation systems [28] have over the last two decades triggered important research efforts
(see, e.g., [9, 10, 21, 3] for recent works and references therein), mainly focused towards the design
and analysis of algorithms with improved efficiency. These algorithms are, to some extent, all
based on the principle of collaborative filtering: similar items should yield similar user responses,
and similar users have similar probabilities of liking or disliking a given item. In turn, efficient
recommendation algorithms need to learn and exploit the underlying structure tying the responses of
the users to the various items together.

Most recommendation systems operate in an online setting, where items are sequentially recom-
mended to users over time. We investigate recommendation algorithms in this setting. More precisely,
we consider a system of n items and m users, where m ≥ n (as this is typically the case in practice).
In each round, the algorithm needs to recommend an item to a known user, picked randomly among
the m users. The response of the user is noisy: the user likes the recommended item with an a
priori unknown probability depending on the (item, user) pair. In practice, it does not make sense to
recommend an item twice to the same user (why should we recommend an item to a user who already
considered or even bought the item?). We restrict our attention to algorithms that do not recommend
an item twice to the same user, a constraint referred to as the no-repetition constraint. The objective
is to devise algorithms maximizing the expected number of successful recommendations over a time
horizon of T rounds.

We investigate different system structures. Specifically, we first consider the case of clustered items
and statistically identical users – the probability that a user likes an item depends on the item cluster
only. We then study the case of unclustered items and statistically identical users – the probability
that a user likes an item depends on the item only. The third investigated structure exhibits clustered
items and clustered users – the probability that a user likes an item depends on the item and user
clusters only. In all cases, the structure (e.g., the clusters) is initially unknown and has to be learnt to
some extent. This paper aims at answering the question: How can the structure be optimally learnt
and exploited?

To this aim, we study the regret of online recommendation algorithms, defined as the difference
between their expected number of successful recommendations to that obtained under an Oracle
algorithm aware of the structure and of the success rates of each (item, user) pair. We are interested in
regimes where n,m, and T grow large simultaneously, and T = o(mn) (see §3 for details). For the
aforementioned structures, we first derive non-asymptotic and problem-specific regret lower bounds
satisfied by any algorithm.
(i) For clustered items and statistically identical users, as T (and hence m) grows large, the minimal
regret scales as K max{ log(m)

log(
m log(m)

T)
, T

∆m}, where K is the number of item clusters, and ∆ denotes

the minimum difference between the success rates of items from the optimal and sub-optimal clusters.
(ii) For unclustered items and statistically identical users, the minimal satisficing regret1 scales as
max{ log(m)

log(
m log(m)

T)
, Tmε}, where ε denotes the threshold defining the satisficing regret (recommending

an item in the top ε percents of the items is assumed to generate no regret).
(iii) For clustered items and users, the minimal regret scales as m

∆ or as m
∆ log(T/m), depending on

the values of the success rate probabilities.
We also devise algorithms that provably achieve these limits (up to logarithmic factors), and whose
regret exhibits the right scaling in ∆ or ε. We illustrate the performance of our algorithms through
experiments presented in the appendix.

Our analysis reveals the relative weights of the different components of regret. For example, we can
explicitly identify the regret induced by the no-repetition constraint (this constraint imposes us to
select unrecommended items and induces an important learning price). We may also characterize the
regret generated by the fact that the item or user clusters are initially unknown. Specifically, fully
exploiting the item clusters induces a regret scaling as K T

∆m . Whereas exploiting user clusters has a
much higher regret cost scaling as least as m

∆ .

In our setting, deriving regret lower bounds and devising optimal algorithms cannot be tackled using
existing techniques from the abundant bandit literature. This is mainly due to the no-repetition
constraint, to the hidden structure, and to the specificities introduced by the random arrivals of

1For this unstructured scenario, we will justify why considering the satisficing regret is needed.

3

users. Getting tight lower bounds is particularly challenging because of the non-asymptotic nature
of the problem (items cannot be recommended infinitely often, and new items have to be assessed
continuously). To derive these bounds, we introduce novel techniques that could be useful in other
online optimization problems. The design and analysis of efficient algorithms also present many
challenges. Indeed, such algorithms must include both clustering and bandit techniques, that should
be jointly tuned.

Due to space constraints, we present the pseudo-codes of our algorithms, all proofs, numerical
experiments, as well as some insightful discussions in the appendix.

2 Related Work

The design of recommendation systems has been framed into structured bandit problems in the past.
Most of the work there consider a linear reward structure (in the spirit of the matrix factorization
approach), see e.g. [9], [10], [22], [20], [21], [11]. These papers ignore the no-repetition constraint (a
usual assumption there is that when a user arrives, a set of fresh items can be recommended). In [24],
the authors try to include this constraint but do not present any analytical result. Furthermore, notice
that the structures we impose in our models are different than that considered in the low-rank matrix
factorization approach.

Our work also relates to the literature on clustered bandits. Again the no-repetition constraint is
not modeled. In addition, most often, only the user clusters [6], [23] or only the item clusters are
considered [18], [14]. Low-rank bandits extend clustered bandits by modeling the (item, user) success
rates as a low-rank matrix, see [15], [25], still without accounting for the no-repetition constraint,
and without a complete analysis (no precise regret lower bounds).

One may think of other types of bandits to model recommendation systems. However, none of them
captures the essential features of our problem. For example, if we think of contextual bandits (see,
e.g., [12] and references therein), where the context would be the user, it is hard to model the fact
that when the same context appears several times, the set of available arms (here items) changes
depending on the previous arms selected for this context. Budgeted and sleeping bandits [7], [17]
model scenarios where the set of available arms changes over time, but in our problem, this set
changes in a very specific way not covered by these papers. In addition, studies on budgeted and
sleeping bandits do not account for any structure.

The closest related work can be found in [4] and [13]. There, the authors explicitly model the
no-repetition constraint but consider user clusters only, and do not provide regret lower bounds. [3]
extends the analysis to account for item clusters as well but studies a model where users in the same
cluster deterministically give the same answers to items in the same cluster.

3 Models and Preliminaries

We consider a system consisting of a set I = [n] := {1, . . . , n} of items and a set U = [m] of
users. In each round, a user, chosen uniformly at random from U , needs a recommendation. The
decision-maker observes the user id and selects an item to be presented to the user. Importantly an
item cannot be recommended twice to a user. The user immediately rates the recommended item +1
if she likes it or 0 otherwise. This rating is observed by the decision-maker, which helps subsequent
item selections.

Formally, in round t, the user ut ∼ unif(U) requires a recommendation. If item i is recommended,
the user ut = u likes the item with probability ρiu. We introduce the binary r.v. Xiu to indicate
whether the user likes the item, Xiu ∼ Ber(ρiu). Let π denote a sequential item selection strategy
or algorithm. Under π, the item iπt is presented to the t-th user. The choice iπt depends on the
past observations and on the identity of the t-th user, namely, iπt is Fπt−1-measurable, with Fπt−1 =
σ(ut, (us, i

π
s , Xiπs us), s ≤ t− 1) (σ(Z) denotes the σ-algebra generated by the r.v. Z). Denote by Π

the set of such possible algorithms. The reward of an algorithm π is defined as the expected number
of positive ratings received over T rounds: E[

∑T
t=1 ρiπt ut]. We aim at devising an algorithm with

maximum reward.

We are mostly interested in scenarios where (m,n, T) grow large under the constraints (i) m ≥ n
(this is typically the case in recommendation systems), (ii) T = o(mn), and (iii) log(m) = o(n).

4

Condition (ii) complies with the no-repetition constraint and allows some freedom in the item
selection process. (iii) is w.l.o.g. as explained in [4], and is just imposed to simplify our definitions of
regret (refer to Appendix C for a detailed discussion).

3.1 Problem structures and regrets

We investigate three types of systems depending on the structural assumptions made on the success
rates ρ = (ρiu)i∈I,u∈U .

Model A. Clustered items and statistically identical users. In this case, ρiu depends on the item
i only. Items are classified into K clusters I1, . . . IK . When the algorithm recommends an item
i for the first time, i is assigned to cluster Ik with probability αk, independently of the cluster
assignments of the other items. When i ∈ Ik, then ρi = pk. We assume that both α = (αk)k∈[K]

and p = (pk)k∈[K] do not depend on (n,m, T), but are initially unknown. W.l.o.g. assume that
p1 > p2 ≥ p3 ≥ . . . ≥ pK . To define the regret of an algorithm π ∈ Π, we compare its reward to that
of an Oracle algorithm aware of the item clusters and of the parameters p. The latter would mostly
recommend items from cluster I1. Due to the randomness in the user arrivals and the cluster sizes,
recommending items not in I1 may be necessary. However, we define regret as if recommending
items from I1 was always possible. Using our assumptions T = o(mn) and log(m) = o(n), we can
show that the difference between our regret and the true regret (accounting for the possible need to
recommend items outside I1) is always negligible. Refer to Appendix C for a formal justification. In
summary, the regret of π ∈ Π is defined as: Rπ(T) = Tp1 −

∑T
t=1 E

[∑K
k=1 1{iπt ∈Ik}pk

]
.

Model B. Unclustered items and statistically identical users. Again here, ρiu depends on the item
i only. when a new item i is recommended for the first time, its success rate ρi is drawn according to
some distribution ζ over [0, 1], independently of the success rates of the other items. ζ is arbitrary and
initially unknown, but for simplicity assumed to be absolutely continuous w.r.t. Lebesgue measure.
To represent ζ, we also use its inverse distribution function: for any x ∈ [0, 1], µx := inf{γ ∈
[0, 1] : P[ρi ≤ γ] ≥ x}. We say that an item i is within the ε-best items if ρi ≥ µ1−ε. We adopt
the following notion of regret: for a given ε > 0, Rπε (T) =

∑T
t=1 E

[
max{0, µ1−ε − ρiπt }

]
. Hence,

we assume that recommending items within the ε-best items does not generate any regret. We also
assume, as in Model A, that an Oracle policy can always recommend such items (refer to Appendix
C). This notion of satisficing regret [29] has been used in the bandit literature to study problems
with a very large number of arms (we have a large number of items). For such problems, identifying
the best arm is very unlikely, and relaxing the regret definition is a necessity. Satisficing regret is
all the more relevant in our problem that even if one would be able to identify the best item, we
cannot recommend it (play it) more than m times (due to the no-repetition constraint), and we are
actually forced to recommend sub-optimal items. A similar notion of regret is used in [4] to study
recommendation systems in a setting similar to our Model B.

Model C. Clustered items and clustered users. We consider the case where both items and users
are clustered. Specifically, users are classified into L clusters U1, . . . ,UL, and when a user arrives
to the system the first time, she is assigned to cluster U` with probability β`, independently of the
other users. There are K item clusters I1, . . . IK . When the algorithm recommends an item i for
the first time, it is assigned to cluster Ik with probability αk as in Model A. Now ρiu = pk` when
i ∈ Ik and u ∈ U`. Again, we assume that p = (pk`)k,`, α = (αk)k∈[K] and β = (β`)`∈[L] do
not depend on (n,m, T). For any `, let k∗` = arg maxk pk` be the best item cluster for users in
U`. We assume that k∗` is unique. In this scenario, we assume that an Oracle algorithm, aware
of the item and user clusters and of the parameters p, would only recommend items from cluster
k∗` to a user in U` (refer to Appendix C). The regret of an algorithm π ∈ Π is hence defined as:

Rπ(T) = T
∑
` β`pk∗` ` −

∑T
t=1 E

[∑
k,` 1{ut∈U`,iπt ∈Ik}pk`

]
.

3.2 Preliminaries – User arrival process

The user arrival process is out of the decision maker’s control and strongly impacts the performance
of the recommendation algorithms. To analyze the regret of our algorithms, we will leverage the
following results. Let Nu(T) denote the number of requests of user u up to round T . From the

5

literature on "Balls and Bins process", see e.g. [27], we know that if n := E[maxu∈U Nu(T)], then

n =

log(m)

log(
m log(m)

T)
(1 + o(1)) if T = o(m log(m)),

log(m)(dc + o(1)) if T = cm log(m),

T
m (1 + o(1)) if T = ω(m log(m)),

where dc is a constant depending on c only. We also establish the following concentration result
controlling the tail of the distribution of Nu(T) (refer to Appendix B):

Lemma 1. Define N = 4 log(m)

log(
m log(m)

T +e)
+ e2T

m . Then, ∀u ∈ U , E[max{0, Nu(T)−N}] ≤ 1
(e−1)m .

The quantities n and N play an important role in our regret analysis.

4 Regret Lower Bounds

In this section, we derive regret lower bounds for the three envisioned structures. Interestingly,
we are able to quantify the minimal regret induced by the specific features of the problem: (i) the
no-repetition constraint, (ii) the unknown success probabilities, (iii) the unknown item clusters, (iv)
the unknown user clusters. The proofs of the lower bounds are presented in Appendices D-E-F.

4.1 Clustered items and statistically identical users

We denote by ∆k = p1 − pk the gap between the success rates of items from the best cluster
and of items from cluster Ik, and introduce the function: φ(k,m, p) = 1−e−mγ(p1,pk)

8(1−e−γ(p1,pk))
, where

γ(p, q) = kl(p, q) + kl(q, p) and kl(p, q) = p log p
q + (1− p) log 1−p

1−q . Using the fact that kl(p, q) ≤
(p− q)2/q(1− q), we can easily show that as m grows large, φ(k,m, p) scales as η/(16∆2

k) when
∆k is small, where η := mink pk(1− pk).

We derive problem-specific regret lower bounds, and as in the classical stochastic bandit literature, we
introduce the notion of uniformly good algorithm. π is uniformly good if its expected regret Rπ(T)

is O(max{
√
T , log(m)

log(
m log(m)

T +e)
}) for all possible system parameters (p, α) when T,m, n grow large

with T = o(nm) and m ≥ n. As shown in the next section, uniformly good algorithms exist.

Theorem 1. Let π ∈ Π be an arbitrary algorithm. The regret of π satisfies: for all T ≥ 1 such that
m ≥ c/∆2

2 (for some constant c large enough),Rπ(T) ≥ max{Rnr(T), Ric(T)}, whereRnr(T) and
Ric(T), the regrets due to the no-repetition constraint and to the unknown item clusters, respectively,
are defined by Rnr(T) := n

∑
k 6=1 αk∆k and Ric(T) := T

m

∑
k 6=1 αkφ(k,m, p)∆k.

Assume that π is uniformly good, then we have2: Rπ(T) & Rsp(T) := log(T)
∑
k 6=1

∆k

2kl(pk,p1) ,

where Rsp(T) refers to the regret due to the unknown success probabilities.

From the above theorem, analyzing the way Rnr(T), Ric(T), and Rsp(T) scale, we can deduce that:
(i) When T = o(m log(m)), the regret arises mainly due to either the no-repetition constraint or the
need to learn the success probabilities, and it scales at least as max{ log(m)

log(
m log(m)

T)
, log(T)}.

(ii) When T = cm log(m), the three components of the regret lower bound scales in the same way,
and the regret scales at least as log(T).
(iii) When T = ω(m log(m)), the regret arises mainly due to either the no-repetition constraint or
the need to learn the item clusters, and it scales at least as T

m .

4.2 Unclustered items and statistically identical users

In this scenario, the regret is induced by the no-repetition constraint, and by the fact the success rate
of an item when it is first selected and the distribution ζ are unknown. These two sources of regret
lead to the terms Rnr(T) and Ri(T), respectively, in our regret lower bound.

2We write a & b if lim infT→∞ a/b ≥ 1.

6

Theorem 2. Assume that the density of ζ satisfies, for some C > 0, ζ(µ) ≤ C for all µ ∈ [0, 1].
Let π ∈ Π be an arbitrary algorithm. Then its satisficing regret satisfies: for all T ≥ 1 such
that m ≥ c/ε2 (for some constant c ≥ 1 large enough), Rπε (T) ≥ max{Rnr(T), Ri(T)}, where

Rnr(T) := n
∫ µ1−ε

0
(µ1−ε − µ)ζ(µ)dµ and Ri(T) := T

m

(1−ε)2
2C (1− εC

1−ε)
2

min{1,(1+C)ε}+1/m .

4.3 Clustered items and clustered users

To state regret lower bounds in this scenario, we introduce the following notations. For any ` ∈ [L],
let ∆k` = pk∗` ` − pk` be the gap between the success rates of items from the best cluster Ik∗` and
of items from cluster Ik. We also denote by R` = {r ∈ [L] : k∗` 6= k∗r} . We further introduce the
functions:

φ(k, `,m, p) =
1− e−mγ(pk∗

`
`,pk`)

8
(

1− e−γ(pk∗
`
`,pk`)

) and ψ(`, k, T,m, p) =
1− e−

T
mγ(pk∗

`
`,pk`)

8
(

1− e−γ(pk∗
`
`,pk`)

) .
Compared to the case of clustered items and statistically identical users, this scenario requires the
algorithm to actually learn the user clusters. To discuss how this induces additional regret, assume
that the success probabilities p are known. Define L⊥ = {(`, `′) ∈ [L]2 : pk∗` ` 6= pk∗

`′`
′}, the set of

pairs of user clusters whose best item clusters differ. If L⊥ 6= ∅, then there isn’t a single optimal item
cluster for all users, and when a user u first arrives, we need to learn its cluster. If p is known, this
classification generates at least a constant regret (per user) – corresponding to the term Ruc(T) in the
theorem below. For specific values of p, we show that this classification can even generate a regret
scaling as log(T/m) (per user). This happens when L⊥(`) = {`′ 6= ` : k∗` 6= k∗`′ , pk∗` ` = pk∗` `′} is
not empty – refer to Appendix F for examples. In this case, we cannot distinguish users from U` and
U`′ by just presenting items from Ik∗` (the greedy choice for users in U`). The corresponding regret
term in the theorem below is R′uc(T). To formalize this last regret component, we define uniformly
good algorithms as follows. An algorithm is uniformly good if for any user u, Rπu(N) = o(Nα) as
N grows large for all α > 0, where Rπu(N) denotes the accumulated expected regret under π for user
u when the latter has arrived N times.

Theorem 3. Let π ∈ Π be an arbitrary algorithm. Then its regret satisfies: for all T ≥ 2m such that
m ≥ c/mink,` ∆2

k` (for some constant c large enough), Rπ(T) ≥ max{Rnr(T), Ric(T), Ruc(T)},
where Rnr(T), Ric(T), and Ruc(T) are regrets due to the no-repetition constraint, to the unknown
item clusters, and to the unknown user clusters respectively, defined by:

Rnr(T) := n
∑
` β`

∑
k 6=k∗`

αk∆k`,

Ric(T) := T
m

∑
` β`

∑
k 6=k∗`

αkφ(k, `,m, p)∆k`,

Ruc(T) := m
∑
`∈[L] β`

∑
k∈R`

∆k`ψ(`,k,T,m,p)

K .

In addition, when T = ω(m), if π is uniformly good, Rπ(T) & R′uc(T) := c(β, p)m log(T/m)
where c(β, p) = infn∈F

∑
` β`

∑
k 6=k∗`

∆k`nk` with
F = {n ≥ 0 : ∀`, ∀`′ ∈ L⊥(`),

∑
k 6=k∗`

kl(pk`, pk`′)nk` ≥ 1}.

Note that we do not include in the lower bound the term Rsp(T) corresponding to the regret induced
by the lack of knowledge of the success probabilities. Indeed, it would scale as log(T), and this
regret would be negligible compared to Ruc(T) (remember that T = o(m2)), should L⊥ 6= ∅. Under
the latter condition, the main component of regret is for any time horizon is due to the unknown
user clusters. When L⊥ 6= ∅, the regret scales at least as m if for all `, L⊥(`) = ∅, and m log(T/m)
otherwise.

5 Algorithms

This section presents algorithms for our three structures and an analysis of their regret. The detailed
pseudo-codes of our algorithms and numerical experiments are presented in Appendix A. The proofs
of the regret upper bounds are postponed to Appendices G-H-I.

7

5.1 Clustered items and statistically identical users

To achieve a regret scaling as in our lower bounds, the structure needs to be exploited. Even without
accounting for the no-repetition constraint, the KL-UCB algorithm would, for example, yield a regret
scaling as n

∆2
log(T). Now we could first sample T/m items and run KL-UCB on this restricted set

of items – this would yield a regret scaling as T
m∆2

log(T), without accounting for the no-repetition
constraint. Our proposed algorithm, Explore-Cluster-and-Test (ECT), achieves a better regret scaling
and complies with the no-repetition constraint. Refer to Appendix A for numerical experiments
illustrating the superiority of ECT.

The Explore-Cluster-and-Test algorithm. ECT proceeds in the following phases:

(a) Exploration phase. This first phase consists in gathering samples for a subset S of randomly
selected items so that the success probabilities and the clusters of these items are learnt accurately.
Specifically, we pick |S| = blog(T)2c items, and for each of these items, gather roughly log(T)
samples.

(b) Clustering phase. We leverage the information gathered in the exploration phase to derive an
estimate ρ̂i of the success probability ρi for item i ∈ S. These estimates are used to cluster items,
using an appropriate version of the K-means algorithm. In turn, we extract from this phase, accurate
estimates p̂1 and p̂2 of the success rates of items in the two best item clusters, and a set V ⊂ S of
items believed to be in the best cluster: V := {i ∈ S : ρ̂i > (p̂1 + p̂2)/2}.
(c) Test phase. The test phase corresponds to an exploitation phase. Whenever this is possible (the
no-repetition constraint is not violated), items from V are recommended. When an item outside V
has to be selected due to the no-repetition constraint, we randomly sample and recommend an item
outside V . This item is appended to V . To ensure that any item i in the (evolving) set V is from the
best cluster with high confidence, we keep updating its empirical success rate ρ̂i, and periodically
test whether ρ̂i is close enough from p̂1. If this is not the case, i is removed from V .

In all phases, ECT is designed to comply with the no-repetition constraint: for example, in the
exploration phase, when the user arrives, if we cannot recommend an item from S due to the
constraint, we randomly select an item not violating the constraint. In the analysis of ECT regret,
we upper bound the regret generated in rounds where a random item selection is imposed. Observe
that ECT does not depend on any parameter (except for the choice of the number of items initially
explored in the first phase).

Theorem 4. We have: RECT(T) = O

(
2N
α1

∑K
k=2

αk(p1−pk)
(p1−p2)2 + (log T)3

)
.

The regret lower bound of Theorem 1 states that for any algorithm π, Rπ(T) = Ω(N), and if π is
uniformly good Rπ(T) = Ω(max{N, log(T)}). Thus, in view of the above theorem, ECT is order-
optimal if N = Ω((log T)3), and order-optimal up to an (log T)2 factor otherwise. Furthermore,
note that when Ric(T) = Ω(T

∆2m
) is the leading term in our regret lower bound, ECT regret has also

the right scaling in ∆2: RECT(T) = O(T
∆2m

).

5.2 Unclustered items and statistically identical users

When items are not clustered, we propose ET (Explore-and-Test), an algorithm that consists of two
phases: an exploration phase that aims at estimating the threshold level µ1−ε, and a test phase where
we apply to each item a sequential test to determine whether the item if above the threshold.

The Explore-and-Test algorithm. The ET algorithm proceeds as follows.

(a) Exploration phase. In this phase, we randomly select of set S consisting of b 82

ε2 log T c items and
recommend each selected item to b42 log T c users. For each item i ∈ S, we compute its empirical
success rate ρ̂i. We then estimate µ1− ε2 by µ̂1− ε2 defined so that: ε

2 |S| =
∣∣{i ∈ S : ρ̂i ≥ µ̂1− ε2 }

∣∣ .
We also initialize the set V of candidate items to exploit as V = {i ∈ S : ρ̂i ≥ µ̂1− ε2 }.
(b) Test phase. In this phase, we recommend items in V , and update the set V . Specifically, when a
user u arrives, we recommend the item i ∈ V that has been recommended the least recently among
items that would not break the no-repetition constraint. If no such items exist in V , we randomly

8

recommend an item outside V and add it to V .
Now to ensure that items in V are above the threshold, we perform the following sequential test,
which is reminiscent of sequential tests used in optimal algorithms for infinite bandit problems [2].
For each item, the test is applied when the item has been recommended for the b2` log log2(2em2)c
times for any positive integer `. For the `-th test, we denote by ρ̄(`) the real number such that
kl(ρ̄(`), µ̂1− ε2) = 2−`. If ρ̄(`) ≤ µ̂1− ε2 , the item is removed from V .

Theorem 5. Assume that the density of ζ satisfies ζ(µ) ≤ C for all µ ∈ [0, 1].

For any ε ≥ C
√

π
2 log T , we have: RET

ε (T) = O
(
N log(1/ε) log log(m)

ε + (log T)2

ε2

)
.

In view of Theorem 2, the regret of any algorithm scales at least as Ω(Nε). Hence, the above theorem
states that ET is order-optimal at least when N = Ω((log T)2).

5.3 Clustered items and clustered users

The main challenge in devising an algorithm in this setting stems from the fact that we do not
control the user arrival process. In turn, clustering users with low regret is delicate. We present
Explore-Cluster with Upper Confidence Sets (EC-UCS), an algorithm that essentially exhibits the
same regret scaling as our lower bound. The idea behind the design of EC-UCS is as follows. We
estimate the success rates (pk`)k,` using small subsets of items and users. Then based on these
estimates, each user is optimistically associated with a UCS, Upper Confidence Set, a set of clusters
the user may likely belong to. The UCS of a user then shrinks as the number of requests made by this
user increases (just as the UCB index of an arm in bandit problems gets closer to its average reward).
The design of our estimation procedure and of the various UCS is made so as to get an order-optimal
algorithm. In what follows, we assume that m2 ≥ T (log T)3 and T ≥ m log(T).

The Explore-Cluster-with-Upper Confidence Sets algorithm.

(a) Exploration and item clustering phase. The algorithm starts by collecting data to infer the item
clusters. It randomly selects a set S consisting of min{n, b m

(log T)2 c} items. For the 10m first user
arrivals, it recommends items from S uniformly at random. These 10m recommendations and the
corresponding user responses are recorded in the dataset D. From the dataset D, the item clusters
are extracted using a spectral algorithm (see Algorithm 4 in the appendix). This algorithm is taken
from [33], and considers the indirect edges between items created by users. Specifically, when a user
appears more than twice in D, she creates an indirect edge between the items recommended to her
for which she provided the same answer (1 or 0). Items with indirect edges are more likely to belong
to the same cluster. The output of this phase is a partition of S into item clusters Î1, . . . , ÎK . We can
show that with an exploration budget of 10m, w.h.p. at least m/2 indirect edges are created and that
in turn, the spectral algorithm does not make any clustering errors w.p. at least 1− 1

T .

(b) Exploration and user clustering phase. To the (10 + log(T))m next user arrivals, EC-UCS
clusters a subset of users using a Nearest-Neighbor algorithm. The algorithm selects a subset U∗ of
users to cluster, and recommendations to the remaining users will be made depending some distance
to the inferred clusters in U∗. Users from all clusters must be present in U∗. To this aim, EC-UCS first
randomly selects a subset U0 of bm/ log(T)c users from which it extracts the set U∗ of blog(T)2c
users who have been observed the most. The extraction and the clustering of U∗ is made several
times until the b(10 + log(T))mc-th user arrives so as to update and improve the user clusters. From
these clusters, we deduce estimates p̂k` of the success probabilities.

(c) Recommendations based on Optimistic Assignments. After the 10m-th arrivals, recommenda-
tions are made based on the estimated p̂k`’s. For user ut /∈ U0, the item selection further depends
on the ρ̂kut’s, the empirical success rates of user ut for items in the various clusters. A greedy
recommendation for ut would consist in assigning ut to cluster ` minimizing ‖p̂·` − ρ̂·ut‖ over `,
and then in picking an item from cluster Îk with maximal p̂k`. Such a greedy recommendation
would not work as when ut has not been observed many times, the cluster she belongs to remains
uncertain. To address this issue, we apply the Optimism in Front of Uncertainty principle often
used in bandit algorithms to foster exploration. Specifically, we build a set L(ut) of clusters ut
is likely to belong to. L(ut) is referred to as the Upper Confidence Set of ut. As we get more
observations of ut, this set shrinks. Specifically, we let xk` = max{|p̂k` − ρ̂kut | − ε, 0}, for some
well defined ε > 0 (essentially scaling as

√
log log(T)/ log(T), see Appendix A for details), and

9

define L(ut) = {` ∈ [L] :
∑
k x

2
k`nkut < 2K log(nut)} (nut is the number of time ut has arrived,

and nkut is the number of times ut has been recommended an item from cluster Îk). After optimisti-
cally composing the set L(ut), ut is assigned to cluster ` chosen uniformly at random in L(ut), and
recommended an item from cluster Îk with maximal p̂k`.
Theorem 6. For any `, let σ` be the permutation of [K] such that pσ`(1)` > pσ`(2)` ≥ · · · ≥ pσ`(K)`.
Let R` = {r ∈ [L] : k∗` 6= k∗r}, S`r = {k ∈ [K] : pk` 6= pkr}, y`r = mink∈S`r |pk` − pkr|,
δ = min`(pσ`(1)` − pσ`(2)`), and φ(x) := x/log (1/x). Then, we have:

REC−UCS(T) = O

(
m
∑
`

β`(pσ`(1)` − pσ`(K)`)

(
max

(
K3 logK

φ(min(y`r, δ)2)
,

√
K

min` β`

)

+
∑

r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

 .

EC-UCS blends clustering and bandit algorithms, and its regret analysis is rather intricate. The
above theorem states that remarkably, the regret of the EC-UCS algorithm macthes our lower bound
order-wise. In particular, the algorithm manages to get a regret (i) scaling asm whenever it is possible,
i.e., when L⊥(`) = ∅ for all `, (ii) scaling as m log(N) otherwise.

In Appendix A.3, we present ECB, a much simpler algorithm than EC-UCS, but whose regret upper
bound, derived in Appendix J, always scales as m log(N).

6 Conclusion

This paper proposes and analyzes several models for online recommendation systems. These models
capture both the fact that items cannot repeatedly be recommended to the same users and some
underlying user and item structure. We provide regret lower bounds and algorithms approaching
these limits for all models. Many interesting and challenging questions remain open. We may, for
example, investigate other structural assumptions for the success probabilities (e.g. soft clusters),
and adapt our algorithms. We may also try to extend our analysis to the very popular linear reward
structure, but accounting for no-repetition constraint.

Broader Impact

This work, although mostly theoretical, may provide guidelines and insights towards an improved
design of recommendation systems. The benefits of such improved design could be to increase
user experience with these systems, and to help companies to improve their sales strategies through
differentiated recommendations. The massive use of recommendation systems and its potential
side effects have recently triggered a lot of interest. We must remain aware of and investigate such
effects. These include: opinion polarization, a potential negative impact on users’ behavior and their
willingness to pay, privacy issues.

Acknowledgements

K. Ariu was supported by the Nakajima Foundation Scholarship. S. Yun and N. Ryu were supported
by Institute of Information & communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT)(No.2019-0-00075, Artificial Intelligence Graduate School
Program(KAIST)). A. Proutiere’s research is supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine learning, pages 235–256, 2002.

[2] Thomas Bonald and Alexandre Proutiere. Two-target algorithms for infinite-armed bandits with bernoulli
rewards. In Advances in Neural Information Processing Systems 26, pages 2184–2192. 2013.

10

[3] Guy Bresler and Mina Karzand. Regret bounds and regimes of optimality for user-user and item-item
collaborative filtering. In 2018 Information Theory and Applications Workshop (ITA), pages 1–37, 2018.

[4] Guy Bresler, George H Chen, and Devavrat Shah. A latent source model for online collaborative filtering.
In Advances in Neural Information Processing Systems, pages 3347–3355, 2014.

[5] Sebastien Bubeck, Vianney Perchet, and Philippe Rigollet. Bounded regret in stochastic multi-armed
bandits. In Proceedings of the 26th Annual Conference on Learning Theory, pages 122–134, 2013.

[6] Loc Bui, Ramesh Johari, and Shie Mannor. Clustered bandits. arXiv preprint arXiv:1206.4169, 2012.

[7] Richard Combes, Chong Jiang, and Rayadurgam Srikant. Bandits with budgets: Regret lower bounds
and optimal algorithms. In Proceedings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 245–257, 2015.

[8] Aurélien Garivier, Pierre Ménard, and Gilles Stoltz. Explore first, exploit next: The true shape of regret in
bandit problems. Mathematics of Operations Research, 2018.

[9] Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In Proceedings of the 31th
International Conference on Machine Learning, pages 757–765, 2014.

[10] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, and Evans
Etrue. On context-dependent clustering of bandits. In Proceedings of the 34th International Conference on
Machine Learning, pages 1253–1262, 2017.

[11] Aditya Gopalan, Odalric-Ambrym Maillard, and Mohammadi Zaki. Low-rank bandits with latent mixtures.
arXiv preprint arXiv:1609.01508, 2016.

[12] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual bandit. arXiv
preprint arXiv:1910.06996, 2019.

[13] Reinhard Heckel and Kannan Ramchandran. The sample complexity of online one-class collaborative
filtering. In Proceedings of the 34th International Conference on Machine Learning, pages 1452–1460,
2017.

[14] Matthieu Jedor, Vianney Perchet, and Jonathan Louedec. Categorized bandits. In Advances in Neural
Information Processing Systems, pages 14399–14409, 2019.

[15] Kwang-Sung Jun, Rebecca Willett, Stephen Wright, and Robert Nowak. Bilinear bandits with low-rank
structure. In Proceedings of the 36th International Conference on Machine Learning, pages 3163–3172,
2019.

[16] O. Kallenberg. Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling.
Springer International Publishing, 2017. ISBN 9783319415987.

[17] Robert D. Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping
experts and bandits. In Proceedings of the 21st Annual Conference on Learning Theory, pages 425–436,
2008.

[18] Joon Kwon, Vianney Perchet, and Claire Vernade. Sparse stochastic bandits. In Proceedings of the 30th
Conference on Learning Theory, pages 1269–1270, 2017.

[19] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

[20] Shuai Li and Shengyu Zhang. Online clustering of contextual cascading bandits. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[21] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in Information Retrieval,
pages 539–548, 2016.

[22] Shuai Li, Wei Chen, and Kwong-Sak Leung. Improved algorithm on online clustering of bandits. arXiv
preprint arXiv:1902.09162, 2019.

[23] Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In Proceedings of the 31th International
Conference on Machine Learning, pages 136–144, 2014.

[24] Jérémie Mary, Romaric Gaudel, and Philippe Preux. Bandits and recommender systems. In International
Workshop on Machine Learning, Optimization and Big Data, pages 325–336, 2015.

11

[25] Jonas W Mueller, Vasilis Syrgkanis, and Matt Taddy. Low-rank bandit methods for high-dimensional
dynamic pricing. In Advances in Neural Information Processing Systems, pages 15442–15452, 2019.

[26] Jungseul Ok, Se-Young Yun, Alexandre Proutiere, and Rami Mochaourab. Collaborative clustering:
Sample complexity and efficient algorithms. In International Conference on Algorithmic Learning Theory,
pages 288–329, 2017.

[27] Martin Raab and Angelika Steger. Balls into Bins - A Simple and Tight Analysis. In Proceedings of the
Second International Workshop on Randomization and Approximation Techniques in Computer Science,
pages 159–170, 1998.

[28] Paul Resnick and Hal R Varian. Recommender systems. Communications of the ACM, 40(3):56–58, 1997.

[29] Daniel Russo and Benjamin Van Roy. Satisficing in time-sensitive bandit learning. arXiv preprint
arXiv:1803.02855, 2018.

[30] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and Trends in
Machine Learning, 8(1-2):1–230, 2015.

[31] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science & Business Media,
2008.

[32] Se-Young Yun and Alexandre Proutiere. Optimal cluster recovery in the labeled stochastic block model. In
Advances in Neural Information Processing Systems, pages 965–973, 2016.

[33] Se-Young Yun, Alexandre Proutiere, et al. Streaming, memory limited algorithms for community detection.
In Advances in Neural Information Processing Systems, pages 3167–3175, 2014.

12

7 Table of Notations

Notations common to all models
n Number of items
m Number of users
I Set of items
U Set of users
ut User requesting recommendation at round t
T Time horizon
Xiu Binary random variable to indicate whether user u likes the item i

ρ = (ρiu)i∈I,u∈U Probability that the user u likes the item i
π Algorithm for sequential item selection
Π Set of all algorithms for sequential item selection
iπt Item selected at round t under π
Fπt−1 σ-algebra generated by (ut, (us, i

π
s , Xiπs us), s ≤ t− 1)

n Term E[maxu∈U Nu(T)]

N Term 4 log(m)

log
(
m log(m)

T
+e
) + e2T

m

Generic notations
â Estimated value of a

σ(A) σ-algebra generated by A
kl(p, q) Kullback–Leibler divergence from Bernoulli random variable with parameter p

to that with parameter q
& We write a & b if lim infT→∞ a/b ≥ 1

Table 1: Table of notations common to all models

Model A: Clustered items and statistically identical users
Ik Set of items in the item cluster k

α = (αk)k∈[K] Probability that an item is assigned to the item cluster k
K Number of item clusters
∆ Minimum difference between the success rates of items in optimal cluster and of

items in sub-optimal cluster
p = (pk)k∈[K] Probability that the user likes the item i ∈ Ik

Rπ(T) Regret of an algorithm π
∆k Term p1 − pk

φ(k,m, p) Term 1−e−mγ(p1,pk)

8(1−e−γ(p1,pk))

γ(p, q) Term kl(p, q) + kl(q, p)
η Term mink pk(1− pk)
S Set of initially sampled items
V Set of items believed to be in the best cluster

Table 2: Table of notations: Model A

13

Model B: Unclustered items and statistically identical users
ζ Distribution over [0, 1]
µx Term inf{γ ∈ [0, 1] : P[ρi ≤ γ] ≥ x}
ε Constant that specifies the ε-best items

Rπε (T) Satisficing regret of algorithm π with a given ε > 0
C Constant that regularizes the distribution ζ(µ)
S Set of initially sampled items
V Set of items believed to be in the best cluster

Table 3: Table of notations: Model B

Model C: Clustered items and clustered users
Ik Set of items in the item cluster k

α = (αk)k∈[K] Probability that an item is assigned to the item cluster k
U` Set of users in the user cluster `

β = (β`)`∈[L] Probability that a user is assigned to the user cluster `
K Number of item clusters
L Number of user clusters

p = (pk`)k∈[K],`∈[L] Probability that the user u likes the item i such that i ∈ Ik and u ∈ U`
k∗` Term arg maxk pk`

∆k` Term pk∗
`
` − pk`

∆ Minimum difference between the success rates of items in optimal cluster and of
items in sub-optimal cluster

δ` Term mink:∆k`>0 ∆k`

φ(k, `,m, p) Term 1−e
−mγ(pk∗

`
`,pk`)

8

(
1−e
−γ(pk∗

`
`,pk`)

)

ψ(`, k, T,m, p) Term 1−e
− T
m
γ(pk∗

`
,pk)

8

(
1−e
−γ(pk∗

`
,pk)

)
L⊥ Set {(`, `′) ∈ [L]2 : pk∗

`
` 6= pk∗

`′ `
′}

L⊥(`) Set {`′ 6= ` : k∗` 6= k∗`′ , pk∗` ` = pk∗
`
`′}

Rπu(N) Accumulated expected regret under π for user u when the user has arrived N
times

Rπ(T) Regret of an algorithm π
S Set of initially sampled items
U0 Set of initially sampled users
U∗ Set of (log T)2 users in U0 who have been arrived the most
L(ut) Upper Condifence Set of the user ut
σ` Permutation of [K] such that pσ`(1)` > pσ`(2)` ≥ · · · ≥ pσ`(K)`

R` Set {r ∈ [L] : k∗` 6= k∗r}
S`r Set {k ∈ [K] : pk` 6= pkr}
y`r Term mink∈S`r |pk` − pkr|
δ Term min`(pσ`(1)` − pσ`(2)`)

ε Term K
√

8Km
t

log t
m

(Updated only when the user clustering is executed)

Table 4: Table of notations: Model C

14

A Algorithms and experiments

In this section, we present the detailed pseudo-codes of our algorithms. We also illustrate the
performance of these algorithms numerically.

A.1 Clustered items and statistically identical users

Algorithm 1 Explore-Cluster-and-Test
Input: T,K
1. Exploration
Sample a set S of b(log T)2c items (uniformly at random)
Recommend each item in S to blog T c users
(when this is not possible due to the no-repetition constraint) recommend a random feasible item.
T0 ← round where the exploration phase ends
2. Clustering
ρ̂i ← the empirical average of i for all i ∈ S
Qi ← {j ∈ S : |ρ̂i − ρ̂j | ≤ (log T)−

1
4 } for all i ∈ S

M ← ∅
for k = 1 to K do
ik ← arg maxj∈S |Qj \ ∪k−1

`=1Qi` |
if |Qik | < log T then

break
end if
M ←M ∪ {ik}

end for
i1 ← arg maxi∈M ρ̂i and p̂1 ← ρ̂i1
i2 ← arg maxi∈M\{i1} ρ̂i and p̂2 ← ρ̂i2
3. Test
∆0 ← p̂1 − p̂2

V,V0 ← {i ∈ S : ρ̂i > (p̂1 + p̂2)/2}
for t = (T0 + 1) to T do

Recommend item from V with the highest empirical average if possible, otherwise randomly
recommend item i from I \ V0 and add i to V and V0

if the number of times i has been recommended is a multiple of b 2 log 3
∆2

0
c and ρ̂i < (p̂1 + p̂2)/2

then
Remove i from V

end if
end for

Numerical experiments. We illustrate the performance of ECT in the following scenario: K = 2
item clusters, n = 3000 items, m = 5000 users, p1 = 0.7, p2 = 0.2, α1 = α2 = 0.5.

We compare the performance of ECT to two naive algorithms:

(i) B-KLUCB [7]: This algorithm was proposed for budgeted bandits. Here the budget per arm is
m. The algorithm ranks the arms (the items) according to their KL-UCB indexes, and selects the
available item (accounting for the no-repetition constraint) with the highest index.

(ii) B-KLUCB with sampling: The algorithm first samples b(T/m) log T c items randomly, and play
B-KLUCB only for these items. When none of these items can be played, the algorithm plays a
randomly selected item (as in ECT).

Figure 1 plots the regret vs time for the 3 algorithms, for a time horizon T = 20000. The regret is
averaged over 200 runs for ECT and B-KLUCB with sampling, and 20 runs for B-KL-UCB (we do
not need more runs since there is no randomness induced by the initial item sampling procedure). For
ECT, the number of items initially sampled is |S| = b0.225 log(T)2c, whereas for B-KLUCB, it is
39 (this number is optimized so as to get the best performance – refer to Figure 3 for a sensitivity
analysis of the regret depending on the number of items initially sampled).

15

0 2500 5000 7500 10000 12500 15000 17500 20000
t

0

50

100

150

200

250

300

350

400

Re
gr

et

ECT - s=22
B-KLUCB with sampling - s=39
B-KLUCB - s=3000

Figure 1: Regret vs time averaged over 200 instances for ECT and B-KLUCB with sampling, and over
20 instances for B-KLUCB. T = 20000, n = 3000, m = 5000, p1 = 0.7, p2 = 0.2, α1 = α2 = 0.5.
Shaded areas correspond to one standard deviations.

0 20000 40000 60000 80000 100000
t

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et

ECT - s=29
B-KLUCB with sampling - s=230
B-KLUCB with sampling - s=29

Figure 2: Regret vs time averaged over 100 instances for each algorithm. T = 100000, n = 3000,
m = 5000, p1 = 0.7, p2 = 0.2, α1 = α2 = 0.5. Shaded areas correspond to one standard deviations.

Figure 2 compares the regret of ECT to that obtained under B-KLUCB with sampling when T =
100000. ECT initially samples 29 items. For B-KLUCB with sampling, we have tested two different
numbers of items initially sampled, namely 29 and 230. After round 20000, ECT starts playing
items that have not being used in the exploration phase. To keep regret low, ECT hence relies on
sequential tests. The regret curve of ECT shows that these tests perform very well. This contrasts
with B-KLUCB with sampling: when the number of initially sampled items is 29, as for ECT, after
round 20000, new items must be selected, and B-KLUCB performs very poorly (the regret rapidly
grows).

Finally, we assess the sensitivity of ECT and B-KLUCB with sampling w.r.t. the number of initially
sampled items. Figure 3 plots the regret after T = 20000 rounds depending on this number. Again

16

10 20 30 50 70 90 100
Number of sampled items

0

200

400

600

800

1000

1200

1400

1600

Re
gr

et

ECT
B-KLUCB with sampling

Figure 3: Regret at T = 20000 vs number of items initially sampled |S| for ECT and B-KLUCB
with sampling, averaged over 200 instances. T = 20000, n = 3000, m = 5000, p1 = 0.7, p2 = 0.2,
α1 = α2 = 0.5. One standard deviations are shown in the error bars.

we average over 200 runs. ECT is not very sensitive to the number of sampled items; B-KLUCB is,
on the other hand, very sensitive. For ECT, this provides further evidence that the sequential tests
applied to items not used in the exploration phase are very efficient.

17

A.2 Unclustered items and statistically identical users

Algorithm 2 Explore-and-Test
Input: T,K
1. Exploration
Sample a set S of b 82

ε2 log T c items (uniformly at random)
Recommend each item in S to b42 log T c users
(when this is not possible due to the no-repetition constraint) recommend a random feasible item
ρ̂i ← the empirical average of i for all i ∈ S
T0 ← round where the exploration phase ends
2. Test
Compute µ̂1− ε2 s.t. ε2 |S| =

∣∣{i ∈ S : ρ̂i ≥ µ̂1− ε2 }
∣∣

V ← {i ∈ S : ρ̂i ≥ µ̂1− ε2 }
Reset the reward observation history
for t = (T0 + 1) to T do

Recommend an item i that was recommended the least recently among items in V . If items in V
cannot be selected, recommend an item i, randomly selected from the set of unrecommended
items, and add i to V
if the number of times i has been recommended is exactly b2` log log2(2em2)c for some positive
integer ` then

Compute ρ̄(`)(≤ µ̂1− ε2) s.t. kl(ρ̄(`), µ̂1− ε2) = 2−`

if ρ̂i ≤ ρ̄(`) then
V ← V \ {i}

end if
end if

end for

Numerical experiments. Consider a system with n = 700 items, and m = 1300 users. The time
horizon is T = 100000. Assume that the distribution ζ is uniform over the interval [0.1, 0.9], and
let us target items within the 30% best items, i.e., ε = 0.3. In Figure 4, we compare the satisficing
regret averaged over 100 runs of the ET algorithm with |S| = 65 items used in the exploration
phase, to that achieved under B-KLUCB with sampling. Since under any algorithm, one needs to
use at least T/m items, the number of items sampled under B-KLUCB with sampling is chosen as
min((T/m) log T, n), which is equal to n = 700 in our setting. Figure 4 illustrates the efficiency of
the sequential tests used under ET.

Next, we assess the sensitivity of ET and B-KLUCB w.r.t. the number of initially sampled items.
Figure 5 compares the satisficing regret after T = 100000 depending on this number. The values are
averaged over 20 runs. ET seems robust to the number of sampled items. B-KLUCB is, however,
very sensitive to the number of sampled items and shows larger regret than that of ET. This result
presents further evidence that the sequential testing procedures used in ET are efficient.

18

0 20000 40000 60000 80000 100000
t

0

500

1000

1500

2000

2500

Re
gr

et

ET
B-KLUCB with sampling - s = 700

Figure 4: Satisficing regret vs time averaged over 100 runs of ET and B-KLUCB with sampling.
n = 700,m = 1300, T = 100000, ε = 0.3. ζ is uniform on [0.1, 0.9]. Shaded areas correspond to
one standard deviations.

20 40 60 80 100 120 140 160
Number of sampled items

0

5000

10000

15000

20000

Re
gr

et

ET
B-KLUCB with sampling

Figure 5: Satisficing regret at T = 100000 vs number of items initially sampled |S| for ET and
B-KLUCB with sampling, averaged over 20 instances. n = 700,m = 1300, T = 100000, ε = 0.3.
ζ is uniform on [0.1, 0.9]. One standard deviations are shown in the error bars.

19

A.3 Clustered items and users

Here we start by providing the description of our order-optimal algorithm, EC-UCS. We then present
ECB (Explore-Cluster-Bandit), a much simpler algorithm but with lower performance guarantees.

A.3.1 The EC-UCS algorithm

We present the pseudo-code of the EC-UCS algorithm in Algorithm 3. The algorithm calls spectral
clustering algorithms whose pseudo-codes are provided in Algorithms 4-5-6.

Algorithm 3 Explore-and-Cluster-with-Upper-Confidence-Sets (EC-UCS)
Input: T,K,L
1. Exploration for Item Clustering
n0 ← min{n, bm/(log T)2c}
Sample a set S of n0 items.
for 1 ≤ t ≤ 10m do

Recommend items from S randomly (when this is not possible due to the no-repetition constraint,
recommend a random feasible item). Record the user responses in the dataset D.

end for
2. Item Clustering
Run Algorithm 4 with input S,D,K and output Î1, . . . , ÎK .
3. Exploitation
U0 ← a set of randomly chosen b m

log T c users

ρ̂u = (ρ̂uk)k∈[K] ← the empirical average of u for each item cluster Îk for all u ∈ U
for 10m < t ≤ T do

if t ≤ b(10 + log T)mc and t = (9 + 2i)m+ 1 for some non-negative integer i then
U∗ ← a set of b(log T)2c users in U0 who have been observed the most

ε← K
√

8Km
t log t

m

Qu ← {v ∈ U∗ : ‖ρ̂u − ρ̂v‖ ≤ ε} for all u ∈ U∗
for ` = 1 to L do
u` ← arg maxv∈U∗ |Qv \ ∪`−1

r=1Qur | and p̂` ← ρ̂u`
L0 ← `
if ∪`r=1Qir = U∗ then

break
end if

end for
end if
if ut ∈ U0 and t ≤ b(10 + log T)mc then

Recommend an item in a round-robin fashion from Î1, . . . , ÎK for each user
else
xk` ← max{|p̂k` − ρ̂kut | − ε, 0}
L(ut)← {` ∈ [L0] :

∑K
k=1 nkutx

2
k` < 2K log nut}

if |L(ut)| ≥ 1 then
Recommend an item uniformly at random from (Îk∗`)`∈L(ut)

else
Recommend an item uniformly at random from Î1, . . . , ÎK

end if
end if
Update ρ̂ut

end for

20

Algorithm 4 Spectral Item Clustering by indirect edges (inspired by Algorithm 1 in [33])
Input: S, D, K
A← 0 ∈ RS×S , s← 0
for u ∈ U do

if u has received recommendations at least two times then
s← s+ 1
if user u gives positive responses to both i and j that are the first two recommended items to
user u then
Aij ← Aij + 1, Aji ← Aji + 1

end if
end if

end for
Run Algorithm 5 with input A, s, K and output Î1, . . . , ÎK .
Output: Î1, . . . , ÎK

Algorithm 5 Spectral Partitioning+ (an improved version of Algorithm 2 in [26]
Input: Observation matrix A, s, K
1. Spectral Decomposition
Run Algorithm 6, with input A, K and output (Sk)k=1,...,K .
2. Improvement
p̂(i, j)←

∑
v∈Si

∑
v′∈Sj

Av,v′

|Si|s for all 1 ≤ i, j ≤ K
S

(0)
k ← Sk for all 1 ≤ k ≤ K

for t = 1 to blog n0c do
S

(t)
k ← ∅ for all 1 ≤ k ≤ K

for v ∈ S do
i∗ ← arg max1≤i≤K{∑K

k=0(
∑
w∈S(t−1)

k

Avw) log p̂(i, k)
}

where
∑
w∈S(t−1)

0
Avw := s−

∑K
k=1

∑
w∈S(t−1)

k

Avw

and p̂(i, 0) := 1−
∑K
k=1 p̂(i, k) (ties are broken uniformly at random)

S
(t)
i∗ ← S

(t)
i∗ ∪ {v}

end for
end for
Îk ← S

(logn)
k for all 1 ≤ k ≤ K

Output: Î1, . . . , ÎK

21

Algorithm 6 Spectral Decomposition (Algorithm 3 in [26])
Input: Observation matrix A, K
Â← rank-K approximation of A
p̃←

∑
v,w∈I Avw

|S|(|S|−1)

for x = 1 to blog n0c do
Q

(x)
v ←

{
w ∈ S : ‖Âw − Âv‖2 ≤ x p̃

100

}
for all v ∈ S

T
(x)
l ← ∅ for all k ∈ [K]

for k = 1 to K do
v∗k ← arg maxv∈I

∣∣∣Q(x)
v \ ∪k−1

i=1 T
(x)
i

∣∣∣
T

(x)
k ← Q

(x)
v∗k
\ ∪k−1

i=1 T
(x)
i

ξ
(x)
k ←

∑
v∈T (x)

k

Âv
|T (x)
k |

end for
for v ∈ S \ ∪Kk=1T

(x)
k do

k∗ ← arg min1≤k≤K ‖Âv − ξ(x)
k ‖2

T
(x)
k∗ ← T

(x)
k∗ ∪ {v}

end for
rx ←

∑K
k=1

∑
v∈T (x)

k

‖Âv − ξ(x)
k ‖2

end for
x∗ ← arg minx rx
Sk ← T

(x∗)
k for all k ∈ [K]

Output: S1, . . . , SK

A.3.2 The ECB algorithm

The ECB algorithm presented in Algorithm 7. ECB achieves a regret scaling as O(m log(N)) for all
p (ECB treats each user independently, and does not transfer the information gathered across users).
The algorithm proceeds as follows.

(a)-(b) Exploration and clustering phases. (b) These phases are identical to those of EC-UCS. The
algorithm outputs item cluster estimates Î1, . . . , ÎK . We can show that with an exploration budget of
10m, the spectral algorithm does not make any clustering errors w.p. at least 1− 1

T .

(c) Bandit phase. The last phase consists in just applying m (one for each user) UCB1 algorithms
[1] with the set of arms 1, . . . ,K. There, selecting arm k means recommending an item from Îk,
accounting for the no-repetition constraint (which is possible w.h.p. since m2 ≥ T (log T)3).

ECB calls the clustering algorithm presented in Algorithm 4, that first constructs an item adjacency
matrix (using indirect edges from users), and then applies the spectral clustering algorithm, Algo-
rithm 5, to output K item clusters. Note that Algorithm 5 further calls the spectral decomposition
algorithm, shown in Algorithm 6.

We have the following performance guarantee on ECB (the proof is presented in Appendix J.1):
Theorem 7. When m2 ≥ T (log T)3, the regret of ECB satisfies:

RECB(T) = O

 L∑
`=1

β`m
∑
k 6=k∗`

log(N)

pk∗` ` − pk`

 .

22

Algorithm 7 Explore-Cluster-Bandit
Input: T,K
1. Exploration for Item Clustering
n0 ← min{n, bm/(log T)2c}
Sample a set S of n0 items.
for 1 ≤ t ≤ 10m do

Recommend items from S randomly (when this is not possible due to the no-repetition constraint,
recommend a random feasible item). Record the user responses in the datatset D.

end for
2. Item Clustering
Run Algorithm 4 with input S,D,K and output Î1, . . . , ÎK .
3. Run UCB1 [1] for each user
for 10m < t ≤ T do
k∗ ← arg maxk∈[K] ρ̂

ut
k +

√
2 ln(t)

N
ut
k (t)

, where ρ̂utk is the empirical average reward of user ut for

items in Îk and Nut
k (t) is the total number of samples of user ut for items in Îk.

Recommend an item from Îk∗ randomly (when this is not possible due to the no-repetition
constraint) recommend a random feasible item.

end for

A.3.3 Numerical Experiment

Consider a system with n = 2000 items and m = 5000 users. The time horizon is T = 800000.
The statistical parameters of pk` are given in Table 5. α1 = α2 = 1

2 and β1 = β2 = 1
2 . With

this parameter setting, for each ` = 1, 2, L⊥(`) = ∅. From Theorems 6 and 7, we know that the
regret of EC-UCS is REC−UCS(T) = O(m) whereas that of ECB is RECB(T) = O(m log(N)).
Hence, we expect that EC-UCS to outperform ECB. Figure 6 shows the regret evolution over time of
EC-UCS algorithm and ECB algorithm after the item clustering phase. The curves are averaged over
10 instances. The rate at which the regret of EC-UCS increases is rapidly decreasing. This is not the
case for that of the regret of ECB.

Next, we assess the regret of the two algorithms after T rounds as a function of T . We consider a
system with n = 3000 items and m = 5000 users. α1 = α2 = 1

2 and β1 = β2 = 1
2 . The statistical

parameters of pk` are the same as in the previous system. Figure 7 presents the results. Here, the
regrets are averages over 20 runs. The regret of ECB clearly increases with T , while the regret of
EC-UCS does not seem to be sensitive to T . Overall, our results confirm our theoretical results, at
least on simple examples.

k = 1 k = 2
` = 1 0.2 0.8
` = 2 0.8 0.2

Table 5: The values of (pk`).

23

0 1 2 3 4 5 6 7 8
t ×105

0

5000

10000

15000

20000

25000

30000

35000

Re
gr

et

EC-UCS
ECB

Figure 6: Regret vs time after the item clustering phase, averaged over 10 runs of EC-UCS and ECB.
T = 800000, n = 2000, m = 5000, α1 = α2 = 0.5, β1 = β2 = 0.5. One standard deviations are
shown as the shaded areas.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
T ×106

0

10000

20000

30000

40000

50000

Re
gr

et

ECB
EC-UCS

Figure 7: Regret at round T vs budget T after the item clustering phase, averaged over 20 runs of
EC-UCS and ECB. n = 3000, m = 5000, α1 = α2 = 0.5, β1 = β2 = 0.5. One standard deviations
are shown as the shaded areas.

A.4 Experimental set-up

The simulations were performed on a desktop computer with Intel Core i7-8700B 3.2 GHz CPU and
32 GB RAM.

24

B Preliminaries: Properties of the user arrival process

This section presents several preliminary results on the user arrival process, extensively used through-
out the proofs of the main theorems. Here we also provide the proof of Lemma 1.

Lemma 2 (Chernoff-Hoeffding theorem). Let X1, . . . , Xn be i.i.d. Bernoulli random variables with
mean ν. Then, for any δ > 0,

P

(
1

n

n∑
i=1

Xi ≥ ν + δ

)
≤ exp (−nkl(ν + δ, ν))

P

(
1

n

n∑
i=1

Xi ≤ ν − δ

)
≤ exp (−nkl(ν − δ, ν))

Lemma 3 (Pinsker’s inequality [31]). For any 0 ≤ p, q ≤ 1, 2(p− q)2 ≤ kl(p, q).

Lemma 4. For any 0 ≤ p, q ≤ 1, kl(p, q) ≥ p log p
q + (q − p).

Proof. This follows from (1− p) log 1−p
1−q ≥ q − p. �

Proof of Lemma 1. This lemma is quoted below for convenience:

Lemma 1 (restated). For every user u ∈ U , we have

E
[

max
{

0, Nu(T)−N
}]
≤ 1

m(e− 1)

where

N =
4 logm

log
(
m logm

T + e
) +

e2T

m
.

Proof. Since u arrives with probability 1
m in each round, the probability that u arrives for more than

N + x times in the T first round is,

P
(
Nu(T) ≥ N + x

) (a)

≤ exp

(
−Tkl

(
N + x

T
,

1

m

))
(b)

≤ exp

(
−(N + x) log

(
m(N + x)

T

)
− T

m
+ (N + x)

)
(c)

≤ exp

(
−N + x

2
log

(
m(N + x)

T

))
(d)

≤ exp

(
−N

2
log

(
mN

T

))
exp(−x)

where (a) follows from Lemma 2, (b) from Lemma 4, (c) is obtained from the fact that mNT ≥ e2,

and (d) holds since x ≥ 0 and log
(
mN
T

)
≥ 2. We deduce that:

E
[

max
{

0, Nu(T)−N
}]

=

∞∑
x=1

P
(
Nu(T) ≥ N + x

)
≤
∞∑
x=1

exp

(
−N

2
log

(
mN

T

))
exp(−x)

=
exp

(
−N2 log

(
mN
T

))
e− 1

. (1)

To conclude the proof, we compute an upper bound of (1) for two cases: T
m ≥

logm
e and T

m ≤
logm
e .

25

If T
m ≥

logm
e , then N

2 > logm and log
(
mN
T

)
≥ 2. Thus,

exp

(
−N

2
log

(
mN

T

))
<

1

m2
. (2)

We now consider the case where T
m ≤

logm
e . When we define f(x) = log

(
4x

log(x+e)

)
− log(x+e)

2 ,

one can easily check that f(e) ≥ 0 and f ′(x) ≥ 0 for all x ≥ e. Therefore, since m logm
T ≥ e, we

can deduce that
2 logm

log
(
m logm

T + e
) log

 4m logm

T log
(
m logm

T + e
)
 ≥ logm

which directly implies that

exp

(
−N

2
log

(
mN

T

))
<

1

m
. (3)

Lemma 1 is obtained by combining (1), (2) and (3).

The following Lemma characterizes the lower tail of the number of user arrivals.
Lemma 5. For every user u ∈ U , we have

P
(
Nu(T) ≤ T

2m

)
≤ exp

(
− T

2m
(1− log(2))

)
.

Proof.

P
(
Nu(T) ≤ T

2m

)
(a)

≤ exp

(
−Tkl

(
1

2m
,

1

m

))
(b)

≤ exp

(
−T

(
1

2m
log(1/2) +

(
1

m
− 1

2m

)))
= exp

(
− T

2m
(1− log(2))

)
,

where (a) is from Lemma 2 and (b) is from Lemma 4. �

The next lemma is instrumental in the performance analysis of the EC-UCS and ECB algorithms (for
systems with clustered items and users).
Lemma 6. With probability 1− 1

T , at least m2 users arrive at least two times among the first 10m
arrivals.

Proof. We denote by Nu(10m) the number of times user u arrives in the 10m first arrivals. For any
set A ⊂ U , let N(A, 10m) denote the total number of arrivals of users in A among the first 10m
arrivals.

We write the probability that less than m/2 users arrive twice in the 10m first arrivals as:

P[
∑
u

1{Nu(10m)≥2} < m/2] = P[
∑
u

1{Nu(10m)<2} ≥ m/2]

≤ P[∃A : |A| = m

2
,∀u ∈ A,Nu(10m) < 2]

≤ P[∃A : |A| = m

2
, N(A, 10m) ≤ m

2
]

≤
(
m

m/2

)
exp

(
−20m(

1

2
− 1

10
)2

)
≤ (2e)m/2 exp

(
−9

5
m

)
≤ e−0.8m ≤ 1

T 2
. (4)

�

26

C Justifying the regret definitions

In this section, we justify our definitions of regret for Models A, B and C. In these models, we define
regret as if an Oracle policy would always be able to select for any user u an item from the best
cluster for Models A and C for this user, or an ε-best item for Model B, even under the no-repetition
constraint. In fact, the definition of the true regret should account for the no-repetition constraint and
in turn for the fact that an Oracle policy may be obliged to select items that do not belong to the best
cluster for the user u, because user u may arrive too often before the time horizon T or because the
size of this cluster is too small (remember that when an item, selected for the first time, is randomly
assigned to a cluster). We prove here that the difference between our notion of regret and the true
regret is actually negligible when compared to any of the terms involved in our regret lower bounds,
namely T/m and n̄.

To establish this claim, recall the assumptions made on (n,m, T). T = o(nm), m ≥ n, and
log(m) = o(n) (and as a consequence, for any β > 0 independent of (n,m, T), m = o(eβn)).

For illustrative purposes, we prove our claim for Model A (the same result holds for Models B and
C). Let Zu denote the (random) number of items in the best cluster for user u. It is easy to show that
the difference between our notion of regret Rπ(T) and the true regret Rπtrue(T) satisfies:

|Rπ(T)−Rπtrue(T)| ≤
∑
u∈U

E[max{Nu(T)− Zu, 0}].

In Model A, Zu is the size of cluster I1. The average size of I1 is E[Zu] = α1n. Let ε > 0 be such
that ε < α1 and εnm

T ≥ e2. Using the same arguments as those leading to Lemma 1, we obtain the
following concentration result:

E
[

max
{

0, Nu(T)− εn
}]
≤ 1

(e− 1)
exp(−εn

2
log(

εnm

T
)).

In addition, we also have as a direct application of Chernoff-Hoeffding inequality presented in Lemma
2:

P[Zu ≤ εn] ≤ exp(−nkl(ε, α1)).

From the two above inequalities, we deduce that:

E[max{Nu(T)− Zu, 0}] ≤
T

m
P[Zu ≤ εn] + E

[
max

{
0, Nu(T)− εn

}]
≤ T

m
exp(−nkl(ε, α1)) + exp(−εn

2
log(

εnm

T
)).

We conclude that:

|Rπ(T)−Rπtrue(T)| ≤ T exp(−nkl(ε, α1))︸ ︷︷ ︸
=A(n,m,T)

+m exp(−εn
2

log(
εnm

T
))︸ ︷︷ ︸

=B(n,m,T)

.

Next we verify that max{A(n,m, T), B(n,m, T)} = o(min{ Tm , n̄}). This will be enough to justify
our definition of regret, since our regret lower bounds are all larger than min{ Tm , n̄}.

(i) Let us check that max{A(n,m, T), B(n,m, T)} = o(Tm). Indeed, for A(n,m, T), we have
m = o(enkl(ε,α1)); as for B(n,m, T), we have m2/T = o(eεn) which results from m = o(eεn/2).

(ii) Let us check that max{A(n,m, T), B(n,m, T)} = o(n̄). We consider the three regimes for n̄:

1. When T = ω(m log(m)). Then n̄ = T/m(1 + o(1)) and we conclude as in (i).
2. When T = Θ(m log(m)). To simplify, we just prove the statement for T = cm log(m).

Then n̄ = log(m)(dc + o(1)) and A(n,m, T) = m log(m) exp(−nkl(ε, α1)). We
hence conclude that A(n,m, T) = n̄ since m = o(enkl(ε,α1)). Now B(n,m, T) =
m exp(− εn2 log(εn

c log(m))), and B(n,m, T) = o(n̄) is a consequence of m = o(e
εn
2).

3. When T = o(m log(m)). Then n̄ = log(m)
log(m log(m)/T) (1 + o(1)). A(n,m, T) = o(n̄) is

equivalent to X = o(enkl(ε,α1)) where X = T
log(m) log(m log(m)

T). Now X = o(m) since

27

T = o(m log(m)), and thus A(n,m, T) = o(n̄). Finally, B(n,m, T) = o(n̄) is equivalent
to Y = o(exp(εn2 log(εnm/T))) where Y = m log(m log(m)/T)

log(m) . Since T = o(nm), this

would be implied by Y = o(exp(εn2)). However, since T ≥ 1, Y ≤ m log(m log(m))
log(m) =

m(1 + o(1)). We conclude that B(n,m, T) = o(n̄) since m = o(e
εn
2).

28

D Fundamental limits for Model A: Proof of Theorem 1

Proof of Rπ(T) ≥ Ric(T): Let π ∈ Π. Assume that the success probabilities pk’s are known. Further
simplify the problem by relaxing the no-repetition constraint: instead, we just impose that any item
cannot be selected more than m times. The algorithm π has an expected regret larger than an optimal
algorithm for the problem where pk’s are known, and the no-repetition constraint is relaxed as
explained above. Denote by τ this optimal algorithm. Next we establish a regret lower bound for
τ . To this aim, we first consider that the cluster ids of the items are drawn before the first round.
That way, all the n items belong to a cluster even before the first round. Let J1, . . . , JK denote the
sizes of the various clusters of items. Hence, we work conditioning on the cluster ids of the items.
Now, define Eτ [Nk] as the expected number of times an item of cluster Ik is selected under τ (of
course, Nk ≤ m) until round T . More precisely, denote by (n1, n2, . . . , nJk) the random variables
representing the numbers of times the first, the second, the third, etc. items in Ik are selected under τ .
Then by definition: Eτ [Nk] = Eτ [

∑Jk
i=1 ni]/Jk. We prove:

Lemma 7. We have for any m ≥ c/∆2
2 and for any k 6= 1: φ(k,m,p)

m ≤ Eτ [Nk]
Eτ [N1] ≤ 1.

The constant c in the above lemma is the same as that in Theorem 1. It is chosen such that if
m ≥ c/∆2

2, then, for any k, φ(k,m, p) ≤ m and thus, the first inequality of Lemma 7 makes sense.
Remember that φ(k,m, p) scales as 1/∆2

k (refer to the remark above Theorem 1), and hence such a
choice for c is possible.

Lemma 7 is proved at the end of this section. Assume for now that it holds. We complete the proof
by deriving a lower bound of the optimal algorithm τ , Rτ (T). When the item clusters are fixed, the
expected conditional regret of τ is: Rτ (T |I1, . . . , IK) =

∑
k 6=1 JkEτ [Nk]∆k. Hence we have:

Rτ (T |I1, . . . , IK) = T

∑
k 6=1 JkEτ [Nk]∆k∑

k JkEτ [Nk]

(a)

≥ T

m

∑
k 6=1 JkEτ [N1]φ(k,m, p)∆k∑

k JkEτ [N1]

=
T

m

∑
k 6=1

Jk
n
φ(k,m, p)∆k,

where (a) stems from Lemma 7 (in the numerator, we use Eτ [Nk] ≥ Eτ [N1]φ(k,m,p)
m , and in

the denominator Eτ [Nk] ≤ Eτ [N1]). Taking the expectation of the above inequality (noting that
E[Jk/n] = αk), we conclude that: Rπ(T) ≥ Rτ (T) ≥ T

m

∑
k 6=1 αkφ(k,m, p)∆k.

Proof of Rπ(T) ≥ Rnr(T): Observe that under the no-repetition constraint, the number of items
that π will select is greater than maxuNu(T). Now when an item is selected for the first time, by
assumption, it belongs to the sub-optimal cluster Ik with probability αk, in which case this initial se-
lection induces an expected regret ∆k = p1 − pk. Hence Rπ(T) ≥ E[maxuNu(T)]

∑
k 6=1 αk∆k =

n
∑
k 6=1 αk∆k. �

Proof of Rπ(T) & Rsp(T): To prove this asymptotic lower bound, we consider a simpler problem:
the algorithm knows the item clusters (Ik)k∈[K]. Then, the problem reduces to a K-armed Bernoulli
bandit problem with unknown parameters (pk)k∈[K].

The proof then proceeds using a classical change-of-measure argument as in [19]. We present this
argument for completeness. Assume that the algorithm π is uniformly good. Pick any k ∈ [K]
s.t. k 6= 1. Let p = (pk)k∈[K] be original parameters and let (p′k)k∈[K] be perturbed parameters
where ∀k′ 6= k, p′k′ = pk′ and p′k = p1 + ε with some constant ε > 0. We denote Nk(T) :=∑T

t=1 1 {iπt ∈ Ik}. We use Ep[·] (or E[·]) and Ep′ [·] to denote the expectation under the original
model and under the perturbed model, respectively.

Let LT be the log-likelihood defined as:

LT :=

T∑
t=1

1 {iπt ∈ Ik}
(
1
{
Xiπt ut

= 1
}

log

(
pk

p1 + ε

)
+ 1

{
Xiπt ut

= 0
}

log

(
1− pk

1− (p1 + ε)

))
.

29

Taking the expectation under p, we have

Ep[LT] = Ep[Nk(T)]kl(pk, p1 + ε)
(a)

≥ kl
(
Ep[Nk(T)]

T
,
Ep′ [Nk(T)]

T

)
(b)

≥
(

1− Ep[Nk(T)]

T

)
log

(
T

T − Ep′ [Nk(T)]

)
− log 2.

where (a) stems from the data processing inequality, see [8], and (b) is from the fact that for all
(x, y) ∈ [0, 1]2, kl(x, y) ≥ (1−x) log 1

1−y − log 2. By the uniform goodness assumption, with some
constant C > 0, we have:

Ep[Nk(T)] . C
√
T and T − Ep′ [Nk(T)] . C

√
T .

Hence:
1

log(T)
log

T

T − Ep′ [Nk(T)]
&

1

log(T)
log

T

C
√
T
&

1

2
.

The inequality Ep[Nk(T)]kl(pk, p1 + ε) & 1
2 holds for any ε > 0. Therefore, we have:

Ep[Nk(T)]kl(pk, p1) &
1

2
.

Thus, we get the regret lower bound:

Rπ(T) =
∑
k 6=1

∆kEp[Nk(T)] &

∑
k 6=1

∆k

2kl(pk, p1)

 log(T).

This concludes the proof of Theorem 1. �

D.1 Proof of Lemma 7

To establish the lemma, we build, from the optimal algorithm τ , an algorithm ζ that can be applied to
a 2-armed bandit problem with known expected rewards p1 and pk. We then provide a connection
between the regret of ζ in the 2-armed bandit problem and Eτ [Nk]. We conclude the proof by
establishing a regret lower bound for ζ, using similar techniques as in [5].

2-armed bandit problem with known rewards and the algorithm ζ. Consider a 2-armed bandit
problem with Bernoulli arms 1 and k of means p1 and pk. The means are known but the arm with the
highest mean is unknown. That is to say that the expected reward of arm 1 can be either p1 and pk.
For this bandit problem, we build an algorithm, denoted by ζ, based on the algorithm τ .

1. Pick i1 and ik uniformly at random in the clusters I1 and Ik. We run τ for T rounds. When
τ selects item i1 (resp. ik), then ζ also selects arm 1 (resp. k).

2. We repeat the above Step 1, to determine the arm selections made by ζ. At the beginning
of the successive episodes of T rounds, the items i1 and ik are again chosen uniformly at
random in the clusters I1 and Ik, independently of the choices made in earlier episodes.

Regret of ζ and its connection to Eτ [Nk]. Consider an episode of T rounds for τ . Let ik denote
the item selected from Ik in the design of ζ, the expected regret accumulated by ζ in this episode is
∆kEτ [nik], where nik is the number of times τ selects ik in the episode. Since ik is chosen uniformly
at random, and by definition of Eτ [Nk], we actually have Eτ [nik] = Eτ [Nk], which connects the
regret of ζ and Eτ [Nk].

Next, assume that we stop the algorithm ζ after κ episodes of T rounds, where κ is the first episode
where ζ has made more than m selections. κ is a random variable, and Wald’s first lemma implies
that the expected regret Rζ accumulated by ζ before we stop playing is:

Rζ = ∆kE[κ]Eτ [Nk].

Since max{Eτ [N1],Eτ [Nk]} ≤ m, we have E[κ]Eτ [N1] ≤ 2m. Hence:

Rζ = ∆kE[κ]Eτ [Nk] ≤ 2m∆k
Eτ [Nk]

Eτ [N1]
. (5)

30

By construction, Rζ corresponds to the expected regret of our algorithm ζ for a number of rounds
larger than m in the 2-arm bandit problem with known average rewards. The proof of Lemma 7 is
completed by establishing a lower bound on Rζ

Regret lower bound of Rζ . We prove the following lemma, which combined with (5) yields Lemma
7.
Lemma 8. We have: Rζ ≥ 2∆kφ(k,m, p).

Proof of Lemma 8. The proof is similar to that of Theorem 6 in [5]. The following lemma by
[31, 5] is the essential ingredient of the proof:
Lemma 9. Let P0 and P1 be two probability measures on a measurable space (Ω,F), with P0 is
absolutely continuous with respect to P1. Then, for any F-measurable function Ψ : Ω→ {0, 1}, we
have:

PP0
(Ψ(ω) = 1) + PP1

(Ψ(ω) = 0) ≥ 1

2
exp(−KL(P0, P1)).

Consider at ∈ {1, k}, defined as the t-th arm selection made by ζ. This selection happens in the
mt-th round of an episode of T rounds for the algorithm τ . At the beginning of this episode, in the
design of ζ , items i1 and ik have been selected, and in this mt-th round, τ selects either i1 or ik. The
decisions made under τ in this episode depend on the observations made in this episode only, and
this remark holds for ζ as well. We define by F the σ-algebra generated by the observations made
before the mt-th round in the episode. To build F , we assume that each time i1 or ik is selected, then
a sample of the reward of both items is observed.

With the above definitions, we have {at = 1} ∈ F , and {at = k} ∈ F . Next consider the the
following two probability measures on F : P0 corresponds to the observations made in the original
model (with the true item clusters), and P1 to the observations made assuming that items i1 and ik
are swapped: the average reward of i1 is pk and that of ik is p1. P0 and P1 differ only when it comes
to observations made in rounds where items i1 and ik are selected. At round mt, we know that we
have had at most t− 1 such rounds. We deduce that:

KL(P0, P1) ≤ (t− 1)(kl(p1, pk) + kl(pk, p1)).

Applying Lemma 9, we get:

PP0
(at = k) + PP1

(at = 1) ≥ 1

2
exp (−(t− 1)(kl(p1, pk) + kl(pk, p1))) =

1

2
e−(t−1)γ(p1,pk).

(6)
Observe that PP0

(at = k) + PP1
(at = 1) is the expected instantaneous regret of ζ for its t-th arm

selection. Hence, we have:

Rζ ≥ ∆k

4

m∑
t=1

e−(t−1)γ(p1,pk)

=
∆k

4

1− e−mγ(p1,pk)

1− e−γ(p1,pk)

= 2∆kφ(k,m, p),

where the first inequality stems from the fact that Rζ is the regret accumulated over more than m
rounds, and the second inequality is from (6). �

31

E Fundamental limits for Model B: Proof of Theorem 2

We apply the same strategy as in the case of clustered items. Let π be an arbitrary algorithm.

Proof of Rπ(T) ≥ Rnr(T): Using the same reasoning as for Model A, the algorithm needs to sample
at least maxuNu(T), and a new item generated a satisficing regret equal to

∫ µ1−ε
0

(µ1−ε−µ)ζ(µ)dµ.
Hence, we get:

Rπ(T) ≥ E[max
u

Nu(T)]

∫ µ1−ε

0

(µ1−ε − µ)ζ(µ)dµ = Rnr(T).

Proof of Rπ(T) ≥ Ri(T): For the term Ri(T), assume that ζ is known. With this knowledge, we
denote τ an optimal algorithm. We denote by Eτ [Nµ] the expected number of rounds an item with
success rate µ is selected under τ . Formally, the algorithm τ induced the two following random
counting measures on the interval [0, 1]: (i) Ξ counts the number of the items whose parameter is
µ ∈ [0, 1] seen by the algorithm τ (’seen’ means selected at least once), (ii) Υ counts the number of
times the algorithm τ selects items whose parameter is µ ∈ [0, 1]. Now the intensity measures [16] γ
and ω of Ξ and Υ are absolutely continuous w.r.t. ζ, and in addition, ω is absolutely continuous w.r.t.
γ. Denote by dγ and dω the densities of γ and ω w.r.t. ζ. Then, Eτ [Nµ] is defined by dω(µ)/dγ(µ).
In the remark at the end of this proof, we make these definitions and the expression of the regret of τ
explicit in the case where ζ is constant over intervals of [0, 1]. Our proof could actually directly use a
sequence of such discretizations, and then concludes by monotone limits.

Now the regret of an algorithm π satisfies:

Rπε (T) ≥ T
∫ µ1−ε

0
Eτ [Nµ](µ1−ε − µ)ζ(µ)dµ∫ 1

0
Eτ [Nµ]ζ(µ)dµ

≥ T
∫ µ1−ε

0
Eτ [Nµ](µ1−ε − µ)ζ(µ)dµ

min{1, (1 + C)ε}m+
∫ µ1−ε−ε

0
Eτ [Nµ]ζ(µ)dµ

≥ T

m

(1−ε)2
2C

(
1− εC

1−ε

)2

min{1, (1 + C)ε}+ 1/m
,

where we use the fact that ε ≥ 1√
m

and 1 ≤ Eτ [Nµ] ≤ m for all µ.

To complete the proof of the theorem, we just establish the following inquality:

T

∫ µ1−ε
0

Eτ [Nµ](µ1−ε − µ)ζ(µ)dµ

min{1, (1 + C)ε}m+
∫ µ1−ε−ε

0
Eτ [Nµ]ζ(µ)dµ

≥ T
(1−ε)2

2C

(
1− εC

1−ε

)2

min{1, (1 + C)ε}m+ 1
.

Let ψi =
∫ µ1−ε−iε
µ1−ε−(i+1)ε

Eτ [Nµ]ζ(µ)dµ. Then,

ψi ∈ [

∫ µ1−ε−iε

µ1−ε−(i+1)ε

ζ(µ)dµ,∞),

since Eτ [Nµ] ≥ 1 for all µ. We have:

T

∫ µ1−ε
0

Eτ [Nµ](µ1−ε − µ)ζ(µ)dµ

min{1, (1 + C)ε}m+
∫ µ1−ε−ε

0
Eτ [Nµ]ζ(µ)dµ

≥ T
∑bµ1−ε/εc
i=1 iεψi

min{1, (1 + C)ε}m+
∑bµ1−ε/εc
i=1 ψi

.

(7)

As the derivate of a+bx
c+dx is bc−da

(c+dx)2 ,
∑bµ1−ε/εc
i=1 iεψi

min{1,(1+C)ε}m+
∑bµ1−ε/εc
i=1 ψi

is either an increasing function or

a decreasing function of ψi when all other ψj’s are fixed. Therefore, the r.h.s. of (7) can be optimized
only when the ψi’s are at extreme points, either

∫ µ1−ε−iε
µ1−ε−(i+1)ε

ζ(µ)dµ or∞.

32

When ψi =
∫ µ1−ε−iε
µ1−ε−(i+1)ε

ζ(µ)dµ for all i,

T

∑bµ1−ε/εc
i=1 iεψi

min{1, (1 + C)ε}m+
∑bµ1−ε/εc
i=1 ψi

≥T
∑bµ1−ε/εc
i=1 iε

∫ µ1−ε−iε
µ1−ε−(i+1)ε

ζ(µ)dµ

min{1, (1 + C)ε}m+ 1

≥T
(1−ε)2

2C

(
1− εC

1−ε

)2

min{1, (1 + C)ε}m+ 1
.

When ψi =∞ for some i ≥ 1, we have

T

∑bµ1−ε/εc
i=1 iεψi

min{1, (1 + C)ε}m+
∑bµ1−ε/εc
i=1 ψi

≥ εT.

Thus, we have

T

∫ µ1−ε
0

Eτ [Nµ](µ1−ε − µ)ζ(µ)dµ

min{1, (1 + C)ε}m+
∫ µ1−ε−ε

0
Eτ [Nµ]ζ(µ)dµ

≥ T min

(1−ε)2

2C

(
1− εC

1−ε

)2

min{1, (1 + C)ε}m+ 1
, ε

= T

(1−ε)2
2C

(
1− εC

1−ε

)2

min{1, (1 + C)ε}m+ 1
,

where the last equation stems from the assumption m ≥ c
ε2 . This concludes the proof. �

Remark. Assume that there exists a finite set of non-overlapping intervals of [0, 1] and covering [0, 1]
such that the density of ζ is constant over each of these intervals. We denote by ζi the probability that
when a new item is selected, its parameter lies in the i-th interval. Further assume that the satisficing
regret of an item with parameter in the i-th interval does depend on the parameter, and is equal to ∆i.
Under the algorithm τ , let Eτ [Pi] denote the expected number of items seen (selected at least once) by
τ and whose parameter is in the i-th interval, and let Eτ [Ni] the expected number of times τ selects
an item with parameter in the i-th interval. Then, the equivalent of Eτ [Nµ] is ηi, the expected number
of times an item with parameter in the i-th interval is selected. ηi is defined as ηi = Eτ [Ni]/Eτ [Pi].
Observe that since the item parameters of newly selected items are i.i.d. with distribution ζi, Eτ [Pi]
is proportional to ζi. This is just a consequence of the general Wald lemma: indeed, if Xki is the
binary r.v. indicating whether the k-th item seen by the algorithm has a parameter in the i-th interval,
and if κ denotes the random number of items seen by the algorithm within the time horizon T , then
Wald’s equation holds if Eτ [Xki1κ≥k] = E[Xki]Pτ [κ ≥ k]. This is true in our case since the event
{κ ≥ k} corresponds to the fact that τ decides to sample the k-th item, and this decision is solely
based on observations made on the (k − 1) first items. Finally, the regret of τ is:

Rτ (T) =
∑
i

∆iEτ [Ni] = T

∑
i ∆iηiζi∑
i ηiζi

.

In the above formula we used the fact that T =
∑
i Eτ [Ni]. Note that we obtained a discrete version

of T
∫ µ1−ε
0 Eτ [Nµ](µ1−ε−µ)ζ(µ)dµ∫ 1

0
Eτ [Nµ]ζ(µ)dµ

.

33

F Fundamental limits for Model C: Proof of Theorem 3

We start this section by illustrating the various terms involved in the regret lower bound in Theorem
3. We then prove the theorem.

F.1 Examples

Let π be a uniformly good algorithm. Then under the conditions of Theorem 3, we have: Rπ(T) ≥
max{Rnr(T), Ric(T), Ruc(T)} and Rπ(T) & R′uc(T). We exemplify the scalings of these terms
below, with a particular emphasis on those due to the need of learning user clusters, Ruc(T) and
R′uc(T).

Case 1. We consider the case L = 2 and K = 2 with a following parameter set in Table 6.

k = 1 k = 2
` = 1 0.8 0.6
` = 2 0.8 0.9

Table 6: Values of (pk`).

For this parameter, L⊥ = {(1, 2)} and L⊥(1) = {2}. We have: Rnr = Ω(n), Ric = Ω(Tm) and
Ruc = Ω(m). Furthermore, when T = ω(m),

Rπ(T) &
β1(0.8− 0.6)

kl(0.6, 0.9)
m log(

T

m
) = Ω(m log(

T

m
)).

Case 2. We consider the case L = 2 and K = 2 with a following parameter set in Table 7.

k = 1 k = 2
` = 1 0.8 0.6
` = 2 0.8 0.7

Table 7: Values of (pk`).

For this parameter, L⊥ = ∅ and ∀` ∈ [L], L⊥(`) = ∅. We have: Rnr = Ω(n), Ric = Ω(Tm),
Ruc = 0 and c(β, p) = 0.

Case 3. We consider the case L = 2 and K = 2 with a following parameter set in Table 8.

k = 1 k = 2
` = 1 0.8 0.9
` = 2 0.8 0.85

Table 8: Values of (pk`).

In this case, L⊥ = ∅ and ∀` ∈ [L], L⊥(`) = ∅. We have: Rnr = Ω(n), Ric = Ω(Tm), Ruc = 0 and
c(β, p) = 0.

Case 4. We consider the case L = 2 and K = 3 with a following parameter set in Table 9.

k = 1 k = 2 k = 3
` = 1 0.9 0.8 0.7
` = 2 0.7 0.8 0.9

Table 9: Values of (pk`).

In this case, L⊥ = {(1, 2)} and ∀` ∈ [L], L⊥(`) = ∅. We have: Rnr = Ω(n), Ric = Ω(Tm),
Ruc = Ω(m) and c(β, p) = 0.

34

F.2 Proof

Proof of Rπ(T) ≥ max{Rnr(T), Ric(T)}. The proof is the same as in that of Theorem 1.

Proof of Rπ(T) ≥ Ruc(T). We first give a simple proof that learning user clusters induces a regret
scaling as m, i.e., that Rπ(T) = Ω(m). When a user first arrives, we do not know her cluster,
and hence we have to recommend an item from a cluster picked randomly. This selection induces
an average regret at least equal to min`{β`}∆ when L⊥ 6= ∅. Since the number of users that
arrive at least once is in expectation larger than m(1− (1− 1

m)T) ≥ m(1− e−T/m), we get that:
Rπ(T) ≥ min`{β`}∆m(1− e−T/m).

To get the right constant in the regret lower bound, we need to develop a more involved argument.
Assume that the item clusters Ik’s and the success rates p are known. With this knowledge, we denote
by τ an optimal algorithm. We derive a regret lower bound for τ . DefineNu

k :=
∑T
t=1 1{iπt ∈Ik,ut=u}

as the number of times user u is presented items in cluster Ik (under π). Fix user clusters U1, . . . ,UL.
Similar to the proof of Lemma 7, we will prove that:

Lemma 10. We have for all T ≥ 2m, for any ` ∈ [L], for any k ∈ [K] such that ∃r ∈ R` such that

k = k∗r : ψ(`,k,T,m,p)
(T/m) ≤ Eτ [Nuk |u∈U`]

Eτ [Nu
k∗
`
|u∈U`] ≤ 1, where ψ(`, k, T,m, p) = 1−e

− T
m
γ(pk∗

`
`,pk`)

8

(
1−e

−γ(pk∗
`
,`,pk`)

) .

For fixed user clusters, the expected conditional regret Rτ (T |U1, . . . ,UL) is: Rτ (T |U1, . . . ,UL) =∑
`∈[L] |U`|

∑
k∈R` E

τ [Nu
k | u ∈ U`]∆k`. Therefore, we have:

Rτ (T |U1, . . . ,UL) =
∑
`∈[L]

|U`|
T
m

∑
k∈R` E

τ [Nu
k | u ∈ U`]∆k`∑

k∈[K] Eτ [Nu
k | u ∈ U`]

(a)

≥
∑
`∈[L]

|U`|
T
m

∑
k∈R` E

τ [Nu
k∗`
| u ∈ U`]∆k`ψ(`, k, T,m, p)∑

k∈[K] Eτ [Nu
k∗`
| u ∈ U`] Tm

=
∑
`∈[L]

|U`|
∑
k∈R` ∆k`ψ(`, k, T,m, p)

K
,

where for (a) we used Lemma 10 (ψ(`, k, T,m, p)Eτ [Nu
k∗`

]/(T/m) ≤ Eτ [Nu
k | u ∈ U`] in the

numerator, and Eτ [Nu
k | u ∈ U`] ≤ Eτ [Nu

k∗`
| u ∈ U`] in the denominator). Taking the expectation

over U1, . . . ,UL, we have (since E[U`] = β`m):

Rτ (T) ≥ m
∑
`∈[L]

β`

∑
k∈R` ∆k`ψ(`, k, T,m, p)

K
.

Proof of Lemma 10. Consider a 2-armed bandit problem with Bernoulli arms k∗` and k of means
pk∗` and pk. The means are known but the arm with the highest mean is unknown. For this bandit
problem, we build an algorithm ζ based on the decisions by τ .

A valid algorithm ζ based on τ .

1. Pick a user u uniformly at random in the cluster U`. We run τ for T rounds. When user u
comes to the system and τ selects the item in Ik∗` (resp. Ik), then ζ also selects the arm k∗`
(resp. k). We call this procedure as an episode.

2. We repeat the above Step 1, to determine the arm selections made by ζ. At the beginning of
the successive episodes of T rounds, the user u are again chosen uniformly at random in the
clusters I`, independently of the choices made in earlier episodes.

ζ is a valid algorithm as the decision by τ is based on past observations. We stop ζ after κ episodes
of T rounds, where κ is the first episode where ζ has made more than T

m selections. By Wald’s first
lemma, the expected regret accumulated by ζ before we stop playing is:

Rζ = ∆k`Eτ [κ]Eτ [Nu
k | u ∈ U`].

35

Since Eτ [Nu
k | u ∈ U`] + Eτ [Nu

k∗`
| u ∈ U`] ≤ T

m , We have:

E[κ]Eτ [Nu
k∗`
| u ∈ U`] ≤

T

m︸︷︷︸
Stopping criteria of ζ

+ E[
∑
k

Nu
k | u ∈ U`]︸ ︷︷ ︸

expected number of drawing the user u in a single episode

=
2T

m

We will also prove a lower bound on Rζ :
Lemma 11. We have for all T ≥ 2m: Rζ ≥ 2∆k`ψ(`, k, T,m, p).

Combining this lemma with Lemma 10 concludes the proof of Rπ(T) ≥ Ruc(T).

Proof of Lemma 11. When the algorithm decides which arm to choose at time t, we assume that the
algorithm has access to the rewards of both arms up to time t− 1. This is a simpler problem than the
original 2-armed bandit problem. Hence the regret in the original problem is higher than that in the
simpler problem. Let θ denote the distribution of the rewards of both arms, when the average reward
of the first arm is pk∗` and that of the second arm is pk. Let θ′ denote the distribution of the rewards
of both arms, when arms are swapped: the average reward of the first arm is pk and that of the second
arm is pk∗` . Let θ⊗(t−1) be a product measure for the reward observations up to time t− 1 under the
measure θ. Let kt be the arm selected at time t. From Lemma 9, we have, for each t ≥ 2,

Pθ(kt = k) + Pθ′(kt = k∗`) ≥ 1

2
exp(−KL(θ⊗(t−1), θ′⊗(t−1)))

=
1

2
exp

(
−(t− 1)(kl(pk∗` `, pk`) + kl(pk`, pk∗` `))

)
=

1

2
e
−(t−1)γ(pk∗

`
`,pk`).

(8)

Note that (8) also holds for t = 1 by the symmetry. We have,

Rζ ≥ ∆k`

2

T/m∑
t=1

(Pθ(kt = k) + Pθ′(kt = k∗`))

≥ ∆k`

4

T/m∑
t=1

e
−(t−1)γ(pk∗

`
`,pk`)

=
∆k`

4

1− e−
T
mγ(pk∗

`
`,pk`)

1− e−γ(pk∗
`
`,pk`)

= 2∆k`ψ(`, k, T,m, p),

where the first inequality stems from the fact that Rζ is the regret accumulated over more than T
m

rounds, and the second inequality is from (8). �

Proof of Rπ(T) & c(β, p)m log(T/m). We define:

Θ := {p ∈ [0, 1]K×L : ∀` ∈ [L],∃Γ (permutation of [K]) s.t. pΓ(1)` > pΓ(2)` ≥ . . . ≥ pΓ(K)`}

as a set of all possible problems. We denote k∗` := arg maxk pk` as the index of the best item cluster
for users in the cluster U` and ∆k` := pk∗` `−pk` ∀k ∈ [K],∀` ∈ [L]. Consider an arbitrary algorithm
π. We define the regret of a single user u as:

Rπu(T) :=
T

m

∑
`

β`pk∗` ` −
T∑
t=1

E

∑
k,`

1{u∈U`,ut=u,iπt ∈Ik}pk`

=
∑
`

β`
∑
k 6=k∗`

∆k`E[Nu
k |u ∈ U`],

where Nu
k :=

∑T
t=1 1{iπt ∈Ik,ut=u} is the number of times user u is presented an item of cluster Ik

(under π). Remember that u is random and belongs to U` with probability β`. We further define the

36

conditional regret of a single user u ∈ U` given Nu(T) = N and u ∈ U` as:

Rπu(T)N,` := Npk∗` ` −
T∑
t=1

E

[∑
k

1{ut=u,iπt ∈Ik}pk`

∣∣∣∣∣Nu(T) = N, u ∈ U`

]
=
∑
k 6=k∗`

∆k`E[Nu
k | u ∈ U`, Nu(T) = N].

Note that we have Rπ(T) =
∑
u∈U R

π
u(T) = mRπu(T) and Rπu(T) =

∑T
N≥1 P(Nu(T) =

N)
∑
`∈[L] β`R

π
u(T)N,`.

Assume that π is uniformly good. This means that if for all problem p ∈ Θ, as N → ∞, the
conditional regret Rπu(T)N,` satisfies:

∀` ∈ [L], ∀ 0 < α < 1, Rπu(T)N,` = o ((N)
α

) . (9)
The existence of uniformly good algorithms is guaranteed because applying the classical algorithms
(e.g, UCB1) to each user satisfy indeed is uniformly good (this is proved for the ECB algorithm using
Theorem 9 presented in Appendix J).

We state our claim in the following theorem, providing a lower bound of the regret of a single user:
Theorem 8. For any uniformly good algorithm π ∈ Π, for any p ∈ Θ, when T = ω(m), we have:
for any u ∈ U ,

lim inf
T→∞

Rπu(T)

log(T/m)
≥ c(β, p),

where c(β, p) is the value of the following optimization problem:

inf
n=(nk`)≥0

∑
`∈[L]

β`
∑
k 6=k∗`

∆k`nk` (10)

s.t. ∀` ∈ [L], ∀`′ ∈ L⊥(`),
∑
k 6=k∗`

kl(pk`, pk`′)nk` ≥ 1.

In the above theorem, we can interpret nk` as

nk`
T→∞∼ E[Nu

k | u ∈ U`, Nu(T) = T/m]

log(T/m)
.

Proof of Theorem 8: Case K = 2, L = 2. To illustrate the idea behind the proof, we address the
simple case with two item and user clusters. We define the values of (pk`) as in Table F.2, where
µ1 > µ2 and µ1 < µ′2, so that L⊥(1) = {2}.

k = 1 k = 2
` = 1 µ1 µ2

` = 2 µ1 µ′2

Table 10: The values of (pk`). µ1 > µ2 and µ1 < µ′2.

The proof is in two steps. In the first step we derive a lower bound of the conditional regret, and in
the second step, we de-condition using properties of the user arrival process.

Step 1. In this step, we condition on Nu(T) = N and u ∈ U1. All expectations and probabilities are
conditioned with respect by these events. We apply a classical change-of-measure argument. Let p
denote the original model. We build a perturbed model p′ obtained from p by just swapping the ides
of the user clusters. Let Pp and Ep (resp. Pp′ and Ep′) be the probability measure and the expectation
under p (resp. p′), respectively. We compute the log-likelihood ratio of the observations for user u
generated under p and p′ as:

LT :=

T∑
t=1

1{ut=u}

(
1{u∈U1,iπt ∈I2}

(
1{Xiπt u=+1} log

µ2

µ′2
+ 1{Xiπt u=0} log

1− µ2

1− µ′2

)
+1{u∈U2,iπt ∈I2}

(
1{Xiπt u=+1} log

µ′2
µ2

+ 1{Xiπt u=0} log
1− µ′2
1− µ2

))
.

37

For any measurable random variable Z ∈ [0, 1], we have:

Ep[LT] = Ep[Nu
2]kl(µ2, µ

′
2)

(a)

≥ kl(Ep[Z],Ep′ [Z]),

where (a) stems from the data-processing inequality (cf. [8]). Taking Z = Nu
2 /N , we have:

kl(Ep[Z],Ep′ [Z]) = kl
(
Ep[Nu

2]

N
,
Ep′ [Nu

2]

N

)
≥
(

1− Ep[Nu
2]

N

)
log

(
N

N − Ep′ [Nu
2]

)
− log 2,

where for the last inequality, we used that for all (x, y) ∈ [0, 1]2,

kl(x, y) ≥ (1− x) log
1

1− y
− log 2.

As the algorithm π is uniformly good, N − Ep′(Nu
2) = o(Nα) for all α ∈ (0, 1) as N → ∞.

Therefore, for all α ∈ (0, 1),

lim inf
N→∞

1

logN
log

N

N − Ep′(Nu
2)
≥ lim inf

N→∞

1

logN
log

N

Nα

= 1− α.

Furthermore, limN→∞
Ep[Nu2]
N = 0 as π is uniformly good. Therefore, we have:

lim inf
N→∞

Ep[Nu
2]

logN
≥ 1

kl(µ2, µ′2)
. (11)

Step 2. De-conditioning. In view of Lemma 5, we have:

P
(
Nu(T) ≤ T

2m

)
≤ exp

(
− T

2m
(1− log(2))

)
.

From the above inequality and (11), we deduce:

lim inf
T→∞

Rπu(T)

log(T/m)
≥ lim inf

T→∞

∑T
N=1 P(Nu(T) = N)β1R

π
u(T)N,1

log(T/m)

≥ lim inf
T→∞

∑T
N= T

2m
P(Nu(T) = N)β1R

π
u(T) T

2m ,1

log(T/m)

≥ lim inf
T→∞

β1(µ1 − µ2)

T∑
N= T

2m

P(Nu(T) = N)
Ep[Nu

2 |u ∈ U1, Nu(T) = T/(2m)]

log(T/m)

(a)

≥ lim inf
T→∞

β1(µ1 − µ2)

(
1− exp

(
− T

2m
(1− log 2)

))
log(T/(2m))

kl(µ2, µ′2) log(T/m)

(b)
=
β1(µ1 − µ2)

kl(µ2, µ′2)
,

where for (a) we used Lemma 5 with (11) and for (b) we used T = ω(m). This concludes the proof
of the case K = 2 and L = 2.

�

Proof of Theorem 8: General case. We consider a simpler problem: the algorithm knows the values
of (pk`) and β`. Take (`, `′) ∈ [L]2 such that `′ ∈ L⊥(`). As in the case of two user and item clusters,
we will prove that (this is done at the end of this proof):

lim inf
N→∞

∑
k 6=k∗`

Ep[Nu
k | u ∈ U`, Nu(T) = N]kl(pk`, pk`′)

logN
≥ 1. (12)

38

This inequality holds for any possible (`, `′) such that `′ ∈ L⊥(`). Therefore, for all ` ∈ [L], for all
`′ ∈ L⊥(`)

lim inf
N→∞

∑
k 6=k∗`

Ep[Nu
k | u ∈ U`, Nu(T) = N]kl(pk`, pk`′)

logN
≥ 1.

Then, we have:

lim inf
T→∞

Rπu(T)

log(T/m)

≥ lim inf
T→∞

∑
`∈[L]

β`

T∑
N=1

P(Nu(T) = N)
Rπu(T)N,`
log(T/m)

≥ lim inf
T→∞

∑
`∈[L]

β`

T∑
N= T

2m

P(Nu(T) = N)

∑
k 6=k∗`

∆k`E[Nu
k | u ∈ U`, Nu(T) = T/(2m)]

log(T/m)

(a)

≥ lim inf
T→∞

(
1− exp

(
− T

2m
(1− log 2)

)) ∑
`∈[L] β`

∑
k 6=k∗`

∆k`E[Nu
k | u ∈ U`, Nu(T) = T/(2m)]

log(T/m)

= lim inf
T→∞

(
1− exp

(
− T

2m
(1− log 2)

)) ∑
`∈[L] β`

∑
k 6=k∗`

∆k`E[Nu
k | u ∈ U`, Nu(T) = T/(2m)]

log(T/(2m)) + log 2

(b)
= lim inf

T→∞

∑
`∈[L] β`

∑
k 6=k∗`

∆k`E[Nu
k | u ∈ U`, Nu(T) = T/(2m)]

log(T/(2m))
,

where (a) is from Lemma 5 and (b) is from T = ω(m). Thus, we have:

lim inf
T→∞

Rπu(T)

log(T/m)
≥ c(β, p),

where c(β, p) is the value of the following optimization problem:

inf
n=(nk`)≥0

∑
`∈[L]

β`
∑
k 6=k∗`

∆k`nk`

s.t. ∀` ∈ [L], ∀`′ ∈ L⊥(`),
∑
k 6=k∗`

kl(pk`, pk`′)nk` ≥ 1.

Proof of the inequality (12). Again, we use a change-of-measure argument. Let p and p′ be a original
model and a model with the indices of user clusters (`, `′) are swapped from the original model,
respectively. Let Pp and Ep (resp. Pp′ and Ep′) be the probability measure and the expectation under
p (resp. p′), respectively. We define our log-likelihood ratio as:

LT :=

T∑
t=1

∑
k 6=k∗`

1{ut=u}

(
1{u∈U`,iπt ∈Ik}

(
1{Xiπt u=+1} log

pk`
pk`′

+ 1{Xiπt u=0} log
1− pk`
1− pk`′

)

+1{u∈U`′ ,iπt ∈Ik}

(
1{Xiπt u=+1} log

pk`′

pk`
+ 1{Xiπt u=0} log

1− pk`′
1− pk`

))
.

Taking the conditional expectation Ep[· | u ∈ U`, Nu(T) = N], we have:

Ep[LT | u ∈ U`, Nu(T) = N] =
∑
k 6=k∗`

Ep[Nu
k | u ∈ U`, Nu(T) = N]kl(pk`, pk`′)

(a)

≥ kl

(
Ep[Nu

k∗
`′

]

N
,
Ep′ [Nu

k∗
`′

]

N

)
(b)

≥

(
1−

Ep[Nu
k∗
`′

]

N

)
log

(
N

N − Ep′ [Nu
k∗
`′

]

)
− log 2,

39

where for (a), we used the data processing inequality by [8] and for (b), we used that for all
(x, y) ∈ [0, 1]2,

kl(x, y) ≥ (1− x) log
1

1− y
− log 2.

As the algorithm π is uniformly good, Ep[Nu
k∗
`′

] = o(Nα) and N − Ep′(Nu
k∗
`′

) = o(Nα) for all
α ∈ (0, 1) as N →∞. Therefore, for all α ∈ (0, 1), we have:

lim inf
N→∞

1

logN
log

N

N − Ep′ [Nu
k∗
`′

]
≥ lim inf

N→∞

1

logN
log

N

Nα

= 1− α

and

lim inf
N→∞

Ep[Nu
k∗
`′

]

N
= 0.

Therefore, we have:

lim inf
N→∞

∑
k 6=k∗`

Ep[Nu
k | u ∈ U`, Nu(T) = N]kl(pk`, pk`′)

log(N)
≥ 1.

This concludes the proof of Theorem 8. �

40

G Performance guarantees of ECT: Proof of Theorem 4

The proof consists in several parts. First we study the initial sampling procedure (at the beginning of
the exploration phase). We then upper bound the regret induced by the exploration phase. We analyze
the performance of the clustering part of the algorithm, and finally upper bound the regret generated
during the test phase.

Item sampling procedure. Let Ĩk = S ∩ Ik be the set of items from Ik that are sampled.

Then, for ε1 =
√

log TK
2(mink αk)2(log T)2 ,

P
(
|Ĩk| ≤ αk(1− ε1)(log T)2

) (a)

≤ exp
(
−(log T)2kl((1− ε1)αk, αk)

)
(b)

≤ exp
(
−(log T)22ε21α

2
k

)
≤ 1

TK
.

where (a) is from Chernoff-Hoeffding bound (b) is from Pinsker’s inequality.

Hence, the event A1 = {|Ĩk| ≥ αk(1− ε1)(log T)2 for 1 ≤ k ≤ K} holds with probability at least
1− 1

T . As a consequence, the expected regret due the event Ac1 is O(1). Thus, we can assume that
the event A1 holds throughout the remaining of the proof.

Exploration phase. In this phase, we wish to recommend each item in S for log T times. We prove
that this exploration phase takes around (log T)3 rounds (and this is the regret it generates). Let us
consider a user u. This user can make the exploration phase longer if it arrives more than (log T)2

during the (log T)3 first rounds. We have:

P
(
Nu((log T)3) ≥ (log T)2

)
≤ exp

(
−(log T)3kl

(
1

log T
,

1

m

))
≤ exp

(
−2(log T)3

(
1

log T
− 1

m

)2
)

(a)

≤ exp

(
−2

(
log T − 2

log T

))
(13)

where (a) is obtained from m > (log T)3 (remember that T = o(m2)).

We deduce the probability that the duration of exploration phase Texp exceeds (log T)3,

P(Texp ≥ (log T)3) = P(∃u s.t. Nu((log T)3) ≥ (log T)2)

(a)

≤ (log T)3

T 2
exp

(
4

log T

)
where (a) is obtained from the union bound and (13).

Now the expected time taken in the exploration phase is,

E[Texp] = (log T)3 + E[Texp|Texp ≥ (log T)3]P(Texp ≥ (log T)3)

≤ (log T)3 +
(log T)3

T
exp

(
4

log T

)
= O((log T)3).

Therefore, we can conclude that the expected regret that occurs in the exploration phase is
O((log T)3).

Clustering phase. The performance of the clustering phase can be analyzed using the same arguments
as in the proof of Theorem 6 in [32]. To simplify the notation, let ε = (log T)−

1
4 . Recall that

Qi = {j ∈ S : |ρ̂i − ρ̂j | ≤ ε} for all i ∈ S. We also define a set Bk for 1 ≤ k ≤ K as:

Bk = {i ∈ S : |pk − ρ̂i| ≤
1

2
ε}.

This set has the following properties:

41

(i) |Bk| = Ω((log T)2) with probability at least 1 − 1
T . This follows from the following

argument.

P(i ∈ Bk) ≥ P(i ∈ Bk|i ∈ Ĩk)P(i ∈ Ĩk)

(a)

≥ αk(1− ε1)P
(
|pk − ρ̂i| ≤

1

2
ε
∣∣∣i ∈ Ĩk)

(b)

≥ αk(1− ε1)

(
1− 2 exp

(
−
√

log T

2

))
,

where (a) follows from the assumption that A1 holds and (b) stems from Chernoff-
Hoeffding’s bound. Let r = αk(1− ε1)

(
1− 2 exp

(
−
√

log T
2

))
. Then,

P
(
|Bk| <

(
r − 1√

2 log T

)
(log T)2

)
≤ exp

(
−(log T)2kl

(
r − 1√

2 log T
, r

))
≤ exp

(
−2(log T)2

(
1√

2 log T

)2
)

≤ 1

T
.

Therefore, |Bk| = Ω((log T)2) with probability at least 1− 1
T .

(ii)
∣∣S \ (∪Kk=1Bk)

∣∣ = O(log T) with probability at least 1− 1
T . To show this, we use a similar

argument as in (i):

P(i ∈ S \ (∪Kk=1Bk)) ≤
K∑
k=1

P(i ∈ Ik)P(i ∈ S \ (∪Kk=1Bk)|i ∈ Ik)

≤
K∑
k=1

P(i ∈ Ik)P
(
|pk − ρ̂i| >

1

2
ε
∣∣∣i ∈ Ik)

≤
K∑
k=1

P(i ∈ Ik)2 exp

(
−
√

log T

2

)
= 2 exp

(
−
√

log T

2

)
Then, the probability that the size of

∣∣S \ (∪Kk=1Bk)
∣∣ is greater than log T is,

P
(∣∣S \ (∪Kk=1Bk)

∣∣ ≥ log T
)

≤ exp

(
−(log T)2kl

(
1

log T
, 2 exp

(
−
√

log T

2

)))
(a)

≤ exp

(
− (log T)

(√
log T

4
+ 2 exp

(
−
√

log T

2

)
− log 2− 1

))
≤ 1

T
,

where (a) is obtained from Lemma 4 when log T ≥ 24.
(iii) If |Bk ∩ Qi| ≥ 1, then |Bj ∩ Qi| = 0 for all j, k such that |pk − pj | = Θ(1). Because

|ρ̂i − ρ̂l| ≥ |pk − pj | − |pk − ρ̂i| − |pj − ρ̂l| ≥ |pk − pj | − ε for i ∈ Bk and l ∈ Bj .
(iv) Bk ⊂ Qi for all i ∈ Bk, since |ρ̂i − ρ̂j | ≤ |ρ̂i − pk|+ |ρ̂j − pk| ≤ ε for all j ∈ Bk.

From properties (iii) and (iv), there exists an item i ∈ (∪Kk=1Bk) \ (∪k−1
`=1Qi`) such that |Qi \

(∪k−1
`=1Qi`)| ≥ mk where mk is the k-th largest value among {|B1|, ..., |BK0

|} for K0 = |{pk : 1 ≤
k ≤ K}|. Here, mk = Ω((log T 2)2) from property (i).

We also have |Qv| = O(log T) for v such that |Qv ∩ (∪Kk=1Bk))| = 0 from property (ii). Thus, the
item v cannot be chosen as ik.

42

We can conclude that |pk − p̂k| ≤ ε for k = 1, 2 with probability 1− 2/T , since |ρ̂i − pk| ≤ ε when
|Qi∩Bk| ≥ 1. Hence as before for eventA1, we can assume thatA2 = {|pk− p̂k| ≤ ε for k = 1, 2}
holds in the remaining of the proof.

Test phase. After n recommendations of an item i from Ik 6= I1, the probability that i passes the
test is,

P (ρ̂i > p̂1 −∆0/2) = P
(
ρ̂i >

1

2
(p̂1 + p̂2)

)
(a)

≤ P
(
ρ̂i >

1

2
(p1 + p2)− ε

)
≤ exp

(
−nkl

(
1

2
(p1 + p2)− ε, pk

))
≤ exp

(
−2n

(
1

2
(p1 + p2)− pk − ε

)2
)

where (a) is obtained from the assumption that A2 holds.

To simplify the notation, let x = b 2 log 3
∆2

0
c. Since we test the item after every x recommendations, we

have at most m/x tests for each item. Therefore, the expected number of times a sub-optimal item j
is recommended is:

E
[
N(j)

]
= x+

m/x∑
i=1

xP (ρ̂k > p̂1 −∆0/2 for i-th test)

≤ x+

m/x∑
i=1

x exp

(
−2ix

(
1

2
(p1 + p2)− pk − ε

)2
)

≤ x+
2

(p1 + p2 − 2pk − 2ε)2

≤ 4 log 3

(p1 − p2)2
+

2

(p1 + p2 − 2pk − 2ε)2
. (14)

Furthermore, the probability that item i ∈ I1 is not removed until the last test is,

P

m/x⋂
t=1

{ρ̂i > p̂1 −∆0/2 for t-th test}

 ≥ 1−
m/x∑
t=1

P (ρ̂i ≤ p̂1 −∆0/2 for t-th test)

= 1−
m/x∑
t=1

P
(
ρ̂i <

1

2
(p1 + p2)− ε

)

≥ 1−
m/x∑
t=1

exp

(
−txkl

(
1

2
(p1 + p2)− ε, p1

))

≥ 1−
m/x∑
t=1

exp

(
−1

2
tx (p1 − p2 + 2ε)

2

)

≥ 1−
exp

(
− 1

2x (p1 − p2 + 2ε)
2
)

1− exp
(
− 1

2x (p1 − p2 + 2ε)
2
)

≥ 1

2
. (15)

By (15), if we assume that user arrives for N times at most, we need at most 2N optimal items in V
in expectation. Thus, the required number of new samples from I \ V0 is less than 2N

α1
. Therefore,

43

from (14), the expected regret that occurs in the test phase under the assumption that every user
arrives for less than N times is,

O

(
2N

α1

K∑
k=2

αk(p1 − pk)

(
4 log 3

(p1 − p2)2
+

2

(p1 + p2 − 2pk)2

))
.

On the other hand, the regret due to more than N arrivals of users is m
m(e−1) = O (1) by Lemma 1.

Finally, the expected regret of ECT satisfies:

RECT (T) = O

(
(log T)3 +

2N

α1

K∑
k=2

[
αk(p1 − pk)

(
4 log 3

(p1 − p2)2
+

2

(p1 + p2 − 2pk)2

)])
.

�

44

H Performance guarantees of ET: Proof of Theorem 5

Recall that µx is the expected reward such that P(ρi ≤ µx) = x, and that we are interested in the
satisficing regret defined by:

Rπε (T) = Eπ
(

T∑
t=1

max{0, µ1−ε − ρiπt }

)
.

We consider the case where ε ≥ C
√

π
2 log T . Further recall that we assume that ζ(x) ≤ C for all

x ∈ [0, 1].

To prove Theorem 5, we first analyze the performance of the exploration phase, and in particular
show that µ̂1− ε2 is very close to µ1−ε. We then study the regret generated during the test phase.

Exploration Phase. We first derive an upper and a lower bound of µ̂1− ε2 . Here, we use the fact that
for all i ∈ S, the ρ̂i’s are i.i.d. random variables.

From Chernoff bound and Pinsker’s inequality,

P(ρ̂i ≥ µ1− ε4) ≤ε
4

+

∫ µ1− ε
4

0

exp
(
−24 log(T)kl(µ1− ε4 , µ)

)
ζ(µ)dµ

≤ε
4

+

∫ µ1− ε
4

0

exp
(
−25(µ1− ε4 − µ)2 log(T)

)
ζ(µ)dµ

≤ε
4

+

∫ ∞
0

C exp
(
−25x2 log(T)

)
dx

≤ε
4

+
ε

8
=

3ε

8
, (16)

where for the last inequality, we use the Gaussian integral
∫∞
−∞ e−x

2

dx =
√
π. When ε ≥ C

√
π

2 log T ,∫ ∞
0

C exp
(
−25x2 log(T)

)
dx =

1

2

∫ ∞
−∞

C√
25 log(T)

exp
(
−x2

)
dx

=
1

8
C

√
π

2 log T
≤ ε

8
.

Similarly,

P(ρ̂i ≤ µ1− 3ε
4

) ≤1− 3ε

4
+

∫ 1

µ
1− 3ε

4

e
−24 log(T)kl(µ

1− 3ε
4
,µ)
ζ(µ)dµ

≤1− 3ε

4
+

∫ 1

µ
1− 3ε

4

e
−25(µ

1− 3ε
4
−µ)2 log(T)

ζ(µ)dµ

≤1− 3ε

4
+

∫ ∞
0

C exp
(
−25µ2 log(T)

)
dµ

<1− 3ε

4
+
ε

8
≤ 1− 5ε

8
. (17)

From the Chernoff-Hoeffding and (16),

P
(∣∣{i ∈ S : ρ̂i ≥ µ1− ε4 }

∣∣ ≥ ε

2
|S|
)
≤ exp

(
−|S|kl(

ε

2
,

3ε

8
)

)
≤ exp

(
−2|S|ε

2

82

)
≤ 1

T 2
. (18)

From the Chernoff-Hoeffding and (17),

P
(∣∣∣{i ∈ S : ρ̂i ≤ µ1− 3ε

4
}
∣∣∣ ≤ (1− ε

2
)|S|

)
≤ exp

(
−|S|kl(1− ε

2
, 1− 5ε

8
)

)
≤ exp

(
−2|S|ε

2

82

)
≤ 1

T 2
. (19)

45

We conclude from (18) and (19) that with probability 1− 2
T 2 , we have

µ1− 3ε
4
≤ µ̂1− ε2 ≤ µ1− ε4 . (20)

Further observe that using the same arguments as those used to upper bound the duration of the
exploration phase of the ECT algorithm, the expected duration, and hence the expected regret, of the
exploration phase in ET is O((log T)2

ε2).

Test Phase. For convenience, let ∆ = log log2(2em2). Then, ET runs at most τ = blog2(m∆)c tests
for each item. We define the distance D between two Bernoulli distributions as follows:

D(p, q) = kl(s, p) = kl(s, q) with s =
log 1−p

1−q

log q(1−p)
p(1−q)

for p 6= q.

Let mπ(µ) be the expected number of users to whom a randomly selected item with parameter µ is
recommended. Let ρ(`)(µ) be the random value ρ̂i of item i having µ after b2`∆c observations.

Consider items having µ such that µ ≤ µ̂1− ε2 and 2−` ≤ D(µ, µ̂1− ε2). Then, kl(ρ̄(`), µ) ≥ 2−` and
we have

mπ(µ) ≤2`∆ +

τ∑
r=`

2r+1∆P
(
ρ̂(r)(µ) ≥ ρ̄(r)

)
≤2`∆ +

τ∑
r=`

2r+1∆P
(
ρ̂(r)(µ) ≥ ρ̄(`)

)
≤2`∆ +

τ∑
r=`

2r+1∆ exp
(
−(2r∆)kl(ρ̄(`), µ)

)
≤2`∆ +

τ∑
r=`

2r+1∆ exp
(
−2r−`∆

)
≤2`+2∆. (21)

From (21),

mπ(µ) ≤

23∆ for 2−1 ≤ D(µ, µ̂1− ε2)

23∆
D(µ,µ̂1− ε

2
) for 2−` ≤ D(µ, µ̂1− ε2) ≤ 2−`+1

m for D(µ, µ̂1− ε2) ≤ 2−τ
(22)

Next we study the expected regret generated by recommending a newly sampled item. From the
regret definition and (21),

1

8∆

∫ µ1−ε

0

(µ1−ε − µ)mπ(µ)ζ(µ)dµ ≤
∫ µ1−ε

0

(µ1−ε − µ)

(
1 +

1

D(µ, µ1− 3ε
4

)

)
ζ(µ)dµ

≤
∫ µ1−ε

0

C(µ1−ε − µ)

(
1 +

2

(µ− µ1− 3ε
4

)2

)
dµ

≤
∫ µ1−ε

0

C(µ1−ε − µ)

(
1 +

2

(ε
4C + µ1−ε − µ)2

)
dµ

≤C
2

+

∫ µ1−ε

0

2C
ε

4C + µ1−ε − µ
dµ

≤C
2

+ log(4C/ε), (23)

where the second inequality stems from Pinsker’s inequality 2(p− q)2 ≤ kl(p, q) and the definition
of D, and the third inequality uses the assumption ζ(µ) ≤ C.

46

If an item has a parameter µ ≥ µ̂1− ε2 , we do not remove it from V with probability at least

P

(
τ⋂
`=1

{
ρ̂(`)(µ) > ρ̄(`)

})
≥1−

τ∑
`=1

P
(
ρ̂(`)(µ) ≤ ρ̄(`)

)
≥1−

τ∑
i=1

e−∆

=1− 1

log2(2em2)

1− e−τ∆

1− 1
log2(2em2)

≥1− 1

log2(2em2)− 1

≥1

2
.

To recommend items i with parameters µi ≥ µ1−ε to the N arrivals of every user, we then need, on
average, 2N

ε sampled items. From (23), we conclude that the satisficing regret of ET satisfies:

Rπε (T) = O
(
N log(e/ε) log log(m)

ε
+

(log T)2

ε2

)
.

�

47

I Performance guarantees of EC-UCS: Proof of Theorem 6

These two last sections I and J of the appendix are devoted to the analysis of the regret of EC-UCS
and ECB in systems with clustered items and users. The two algorithms share the same initial phase
to cluster items. The next subsection is hence devoted to the analysis of this item clustering phase.
Then, we present an analysis of the performance of the other phases of EC-UCS, and conclude this
section with the statement and proof of lemmas used in the analysis of EC-UCS.

I.1 Clustering items in EC-UCS and ECB

The exploration phase for item clustering is of duration 10m, and hence induces a regret upper
bounded by 10m. In what follows, we just investigate the quality of the item clusters that result from
this phase.

Recall that the algorithm randomly selects a set S of items to cluster. We denote by V1, . . . , VK the
true cluster S∩I1, . . . ,S∩IK , respectively, and assume thatm2 ≥ T (log T)3 and n = ω(log T). We
let n0 := min{n, m

(log T)2 } be the number of sampled items. For each k, the size of Vk concentrates
around αkn0. Indeed, from the Chernoff-Hoeffding’s inequality,

P
(
||Vk| − αkn0| ≥

√
n0 log T

)
≤ 2

T 2
. (24)

Since n0 = ω(log T), we have
|Vk| = αkn0(1 + o(1)) for all k ∈ [K]. (25)

Then, |Vk| ≥ N for all 1 ≤ k ≤ K since n0 = ω(log(m) + T
m). Therefore, all users arriving after

the exploration phase could be potentially recommended by items from a single cluster Vk without
repetition.

Recall the procedure used by EC-UCS to cluster items in S. For the 10m first user arrivals, it
recommends items from S uniformly at random. These 10m recommendations and the corresponding
user responses are recorded in the dataset D. From the dataset D, the item clusters are extracted
using a spectral algorithm (see Algorithm 4). This algorithm is taken from [33], and considers the
indirect edges between items created by users. Specifically, when a user appears more than twice in
D, she creates an indirect edge between the items recommended to her for which she provided the
same answer (1 or 0). Items with indirect edges are more likely to belong to the same cluster.

Algorithm 4 builds an adjacency matrix A from indirect edges. From Lemma 6 (presented in
Appendix B), we know that at least m/2 users arrive twice in the first 10m arrivals with probability
at least 1− 1

T . We conclude that the construction of A is equivalent to a stochastic block model with
random sampling where the number of vertices is n0, the sampling budget is s ≥ m/2. We establish
in the next theorem that this budget is enough to reconstruct the clusters V1, . . . , VK exactly using
Algorithm 4. Theorem 9 is proved in Appendix J.2.

Theorem 9. Let Î1, . . . , ÎK be the output of Algorithm 4. With probability 1 − 1
T , there exists

permutation Γ such that ∣∣∣∣∣
K⋃
k=1

(ÎΓ(k) \ Vk)

∣∣∣∣∣ = 0.

I.2 Regret of EC-UCS: Proof of Theorem 6

The first component of the regret of EC-UCS is generated during the exploration phase for item
clustering. This component is O(m). Then in view of Theorem 9, errors in item clustering cannot
generate more than a O(1) regret. Hence, in what follows, we always assume that after the item
clustering phase, we have: ∣∣∣∣∣

K⋃
k=1

(ÎΓ(k) \ Vk)

∣∣∣∣∣ = 0.

Without loss of generality, we assume that Γ(k) = k in the remaining of this section. After the item
clustering phase, there are four sources of regret referred to as: 1. Exploration for user clustering, 2.
Arrival of reference users, 3. User clustering, and 4. Optimistic assignments.

48

1. Exploration for user clustering. The regret induced by exploration of the users in U0 until
t ≤ (10 + log T)m is m log T

log T = m. Hence, the regret due to this step is:

O

(
m
∑
`

β`(pσ`(1)` − pσ`(K)`)

)
.

2. Arrival of reference users. If the users in U∗ have not arrived enough times, the algorithm cannot
cluster them as intended, and this generates regret. Let nu denote the number of times user u has
arrived (until a time that will always be specified).
We define the event E(i)

top = {∃u ∈ U∗ such that nu ≤ (9+2i)
2 at t = (9 + 2i)m} for 0 ≤ i ≤

log2 log T . Then, by Lemma 14, the regret due to E(i)
top until t = b(10 + log T)mc is,

Rref (b(10 + log T)mc)

≤
∑
`

β`(pσ`(1)` − pσ`(K)`)

blog2 log Tc∑
i=0

2i+1m

(
me

(log T)3

)(log T)2

exp

(
− (9 + 2i)m

16 log T

)

≤
∑
`

β`(pσ`(1)` − pσ`(K)`)m

(
me

(log T)3

)(log T)2 ∫ log2 log T

−1

2x+1 exp

(
− (9 + 2x)m

16 log T

)
dx

=
∑
`

β`(pσ`(1)` − pσ`(K)`)m

(
me

(log T)3

)(log T)2 ∫ log T

1/2

2

log 2
exp

(
− (9 + y)m

16 log T

)
dy

=
∑
`

β`(pσ`(1)` − pσ`(K)`)m

(
me

(log T)3

)(log T)2
[
− 32 log T

m log 2
exp

(
− (9 + y)m

16 log T

)]log T

1/2

=
∑
`

β`(pσ`(1)` − pσ`(K)`) exp

(
−Θ

(
m

log T

))
. (26)

where we have used the assumption m2 ≥ T (log T)3.

Also, P(E(blog2 log Tc)
top) ≤ 2

(
me

(log T)3

)(log T)2

exp
(
− (9+ 1

2 log T)m

4 log T

)
= exp (−Θ(m)). Hence, in

view of (26), the regret due to E(i)
top satisfies

Rref (T) ≤
∑
`

β`(pσ`(1)` − pσ`(K)`) exp

(
−Θ

(
m

log T

))
. (27)

Let B1 =
(⋃blog2 log Tc

i=0 E(i)
top

)c
, i.e., B1 correspond to the event where every u ∈ U∗ has arrived

nu >
(9+2i)

2 times at t = (9 + 2i)m for all i. Then, from (27), the regret because of Bc1 is

Rref (T) ≤ exp

(
−Θ

(
m

log T

))
. (28)

3. User clustering. The size of U∗ is sufficiently large, so that U∗ consists of users from all clusters.
More precisely, for a well-chosen ε1 > 0, Lemma 15 states that with probability 1 − 1/T , the
size of Ũ` = U∗ ∩ U` is greater than β`(1 − ε1)(log T)2 for all `. Let B2 = {|Ũ`| ≥ β`(1 −
ε1)(log T)2 for 1 ≤ ` ≤ L}. By Lemma 15, the expected regret due to the event Bc2 is O(1).

We now assume that both B1 and B2 holds throughout the remaining of the proof.

Under B1, we have numerous observations for users in U∗. Hence, most of users in U∗ have their
empirical average success rate vector concentrated around the true parameter vector when t is large.
Therefore, under B2, the clustering step can learn the hidden parameters very accurately (since there
are clear user clusters). We formalize this observation below. Consider t ≥ T0 = dCme where

C = max

(
512K3

min(y`r, δ)2
log

(
16K

3
2

min(y`r, δ)

)
,

2
√
K

min` β`

)
.

Then, we have

49

(C1) K
√

8Km
T0

log T0

m < 1
4 min(y`r, δ),

(C2) (1− ε1)

(
1− 2K

(
m
T0

)2
)

min` β` >
m
T0

.

Recall that in EC-UCS (see the pseudo-code), we use a parameter ε > 0 when clustering users. This

parameter is fixed and equal to ε = K
√

8Km
t log t

m . From Lemma 16, under (C1) and (C2), we have

‖p` − p̂`‖ < ε <
1

4
min(y`r, δ) ∀t ≥ T0 with probability 1− 2

T
.

Hence after T0 rounds, the algorithm has accurate estimates of the parameters. We include T0 in the
regret upper bound, but can then assume that ‖p` − p̂`‖ < ε < 1

4 min(y`r, δ) for all t ≥ T0 in the
remaining of the proof. The expected regret generated by the complement of this event is O(1).

4. Optimistic assignments. When ‖p` − p̂`‖ < ε, the algorithm can exploit the learned parameters.
Suppose ut ∈ U`. Recall the notation: L(ut)← {` ∈ [L0] :

∑K
k=1 nkutx

2
k` < 2K log nut} used in

the pseudo-code of EC-UCS.

Since the probability of the event {` 6∈ L(ut)} decreases rapidly with the number of arrivals of ut,
the regret induced by this event is O(1). Since ` ∈ L(ut) holds most of the time, the algorithm
recommend optimal items in item cluster k∗` at least nut2K times. If r 6∈ L⊥(`), we can distinguish U`
from Ur with the constant number of recommendations of optimal item k∗` , since pk∗` ` 6= pk∗` r. On
the other hand, if r ∈ L⊥(`), the algorithm cannot distinguish them unless it plays suboptimal items.
Actually, suboptimal items should be played at most O(logN) times in expectation. We make the
above observations precise in Lemma 17, from which we conclude that the regret generated in this
phase is:

O

m∑
`

β`(pσ`(1)` − pσ`(K)`)

 ∑
r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

Overall, accounting for all the regret sources, we have established that the regret of EC-UCS is:

O

(
m
∑
`

β`(pσ`(1)` − pσ`(K)`)

(
max

(
K3 logK

φ(min(y`r, δ)2)
,

√
K

min` β`

)

+
∑

r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

I.3 Technical lemmas for the proof of Theorem 6

Lemma 12 (Cramer’s theorem). For any i.i.d. sequence (Xi)i≥1 of real r.v. and any closed set
F ⊆ IR,

P

(
1

n

n∑
i=1

Xi ∈ F

)
≤ 2 exp

(
−n inf

x∈F
I(x)

)
,

where I(a) = supθ∈IR(θa− logE[eθX]).
Lemma 13. In the ’Exploitation’ step (see EC-UCS pseudo-code), the expected regret generated by
the exploration of ut ∈ U0 until t = b(10 +m) log T c is O(m).

Proof. Since the probability that a user from U0 arrives for each time t is 1
log T , the regret induced

when exploring for users in U0 is O(m log T
log T) = O(m).

Lemma 14. In the ’Exploitation’ step, with probability 1− 2
(

me
(log T)3

)(log T)2

exp
(
− t

16 log T

)
, at

least b(log T)2c users in U0 arrive at least b t
2mc times within the first t arrivals.

50

Proof. We denote by Nu(t) the number of times a user u has arrived in the first t arrivals. For any
set A ⊂ U0, let NA(t) denote the total number of arrivals of users in A among the first t arrivals.

We write the probability that less than (log T)2 users in U0 arrive for t/2m times in the t first arrivals
as:

P[
∑
u∈U0

1{Nu(t) ≥ t

2m
} < (log T)2] = P[

∑
u∈U0

1{Nu(t) <
t

2m
} ≥ |U0| − (log T)2]

≤ P[∃A ⊂ U0 : |A| = |U0| − (log T)2,∀u ∈ A,Nu(t) ≤ t

2m
]

≤ P[∃A ⊂ U0 : |A| = |U0| − (log T)2, NA(t) ≤ t(|U0| − (log T)2)

2m
] (29)

(a)

≤ 2

(
|U0|

(log T)2

)
exp

(
− t

4
log

(
1 +

p

2− 2p

))
(b)

≤ 2

(
me

(log T)3

)(log T)2

exp

(
− t

16 log T

)
,

where (b) follows from log(1 + x) > x
2 for 0 < x < 1 and (a) can be proved using lemma

12. For simplicity, we define i.i.d. random variables Xi ∼ Bern(p) where p = |U0|−(log T)2

m . Then,
I(a) = a log a(1−p)

p(1−a)−log 1−p
1−a . Since I(a) is a decreasing function in (−∞, p], infa≤ p2 I(a) = I

(
p
2

)
.

Therefore, (29) can be rewritten as:

P

(
1

t

t∑
i=1

Xi ≤
p

2

)
≤ 2 exp

(
−tI

(p
2

))
= 2 exp

(
−t
(

log
2− p
2− 2p

+
p

2
log

1− p
2− p

))
(a)

≤ 2 exp

(
− t

4
log

2− p
2− 2p

)
.

where (a) holds since log(1 + x) ≥ x− x2

2 for 0 < x < 1.

Lemma 15. Fix ε1 =
√

log TK
2(min` β`)2(log T)2 . Let Ũ` = U∗ ∩ U` and B2 = {|Ũ`| ≥ β`(1 −

ε1)(log T)2 for 1 ≤ ` ≤ L}. Then, P(B2) ≥ 1− 1
T .

Proof. Since P(u ∈ Ũ`|u ∈ U∗) = P(u ∈ U`|u ∈ U∗) = P(u ∈ U`) = β`,

P
(
|Ũ`| ≤ β`(1− ε1)(log T)2

) (a)

≤ exp
(
−(log T)2kl((1− ε1)β`, β`)

)
(b)

≤ exp
(
−(log T)22ε21β

2
`

)
≤ 1

TK
.

where (a) is from Chernoff-Hoeffding bound (b) is from Pinsker’s inequality.

Hence, the event B2 = {|Ũ`| ≥ β`(1 − ε1)(log T)2 for 1 ≤ ` ≤ L} holds with probability at least
1− 1

T .

In the remaining of this section, we fix ε1 =
√

log TK
2(min` β`)2(log T)2 as chosen in the previous lemma.

Lemma 16. In the ’Exploitation’ step, under B1 and B2, if t is large enough to satisfy the conditions
ε < 1

2 min 6̀=`′ ‖p` − p`′‖ and (1 − ε1)
(

1− 2K
(
m
t

)2)
min` β` >

m
t , then ‖p` − p̂`‖ < ε with

probability at least 1− 2
T .

51

Proof. Recall that ε = K
√

8Km
t log t

m and Qu = {v ∈ U∗ : ‖ρ̂u − ρ̂v‖ ≤ ε} for all u ∈ U∗. We
define a set C` for 1 ≤ ` ≤ L as: C` = {u ∈ U∗ : ‖p` − ρ̂u‖ ≤ ε

2}. This set has the following
properties:

(i) |C`| = Ω((log T)2) with probability at least 1 − 1
T . This follows from the following

argument.

P(u ∈ C`) ≥ P(u ∈ C`|u ∈ U`)P(u ∈ U`)
(a)

≥ β`(1− ε1)P
(
‖p` − ρ̂u‖ ≤

ε

2

∣∣∣u ∈ U`)
(b)

≥ β`(1− ε1)

(
1− 2 exp

(
−2

t

2Km

(ε

2K

)2
))K

≥ β`(1− ε1)

(
1− 2K exp

(
− tε2

4K3m

))
≥ β`(1− ε1)

(
1− 2K

(m
t

)2
)
,

where (a) follows from the assumption that B2 holds and (b) stems from B1 and Chernoff-
Hoeffding’s bound.

Let r = β`(1− ε1)
(

1− 2K
(
m
t

)2)
. Then,

P
(
|C`| <

(
r − 1√

2 log T

)
(log T)2

)
≤ exp

(
−(log T)2kl

(
r − 1√

2 log T
, r

))
≤ exp

(
−2(log T)2

(
1√

2 log T

)2
)

≤ 1

T
.

Therefore, |C`| = Ω((log T)2) with probability at least 1− 1
T .

(ii)
∣∣U∗ \ (∪L`=1C`)

∣∣ = O(m(log T)2

t) with probability at least 1 − 1
T . To show this, we use a

similar argument as in (i):

P(u ∈ U∗ \ (∪L`=1C`)) ≤
L∑
`=1

P(u ∈ U`)P(u ∈ U∗ \ (∪L`=1C`)|u ∈ U`)

≤
L∑
`=1

P(u ∈ U`)P
(
‖p` − ρ̂u‖ >

ε

2

∣∣∣u ∈ U`)
≤

L∑
`=1

P(u ∈ U`)2K
(m
t

)2

= 2K
(m
t

)2

.

Then, the probability that the size of
∣∣U∗ \ (∪L`=1C`)

∣∣ is greater than m(log T)2

t is,

P
(∣∣U∗ \ (∪L`=1C`)

∣∣ ≥ m(log T)2

t

)
≤ exp

(
−(log T)2kl

(
m

t
, 2K

(m
t

)2
))

(a)

≤ exp

(
−(log T)2m

t
log

t

m

)
(b)

≤ 1

T
,

where (a) is obtained from Lemma 4 and t ≥ 2Km and (b) is from t ≤ m log T .

52

(iii) If |C` ∩Qu| ≥ 1, then |Cm ∩Qu| = 0 for all ` 6= m. Because ‖ρ̂u − ρ̂v‖ ≥ ‖p` − pm‖ −
‖p` − ρ̂u‖ − ‖pm − ρ̂j‖ ≥ ‖p` − pm‖ − ε > ε for u ∈ C` and j ∈ Cm, where the last
inequality follows from 2ε < min` 6=`′ ‖p` − p`′‖.

(iv) C` ⊂ Qu for all u ∈ C`, since ‖ρ̂u − ρ̂v‖ ≤ ‖ρ̂u − p`‖+ ‖ρ̂v − p`‖ ≤ ε for all v ∈ C`.

From the properties (iii) and (iv), there exists an item u ∈ (∪L`=1C`) \ (∪`−1
r=1Qir) such that |Qu \

(∪`−1
r=1Qir)| ≥ m`. Here, m` = Ω((log T)2) from property (i).

We also have |Qv| = O(m(log T)2

t) for v such that |Qv ∩ (∪Kk=1Ck))| = 0 from property (ii). Since

we assume (1− ε1)
(

1− 2K
(
m
t

)2)
min` β` >

m
t , the item v cannot be chosen as ik.

We can conclude that ‖p`− p̂`‖ ≤ ε with probability 1−2/T , since ‖ρ̂u−p`‖ ≤ ε when |Qu∩C`| ≥
1.

Lemma 17. If ‖p` − p̂`‖ < 1
4 min(y`r, δ) for all r 6= `, the regret due to recommendations based on

optimistic user assignments is,

O

m∑
`

β`(pσ`(1)` − pσ`(K)`)

 ∑
r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

 .

Proof. Recall that xk` = max{|p̂k` − ρ̂kut | − ε, 0} and L⊥(`) = {`′ 6= ` : k∗` 6= k∗`′ , pk∗` ` = pk∗` `′}.
We take ε < 1

4 min(y`r, δ) to satisfy the condition ‖p` − p̂`‖ < 1
4 min(y`r, δ). When we make

a recommendation to ut ∈ U` by referring to their neighbors from U∗, if regret is generated, the
following event holds.

EN =

{ K∑
k=1

nkutx
2
k` > 2K log nut

}

∪

⋃
r 6=`

{ K∑
k=1

nkutx
2
kr < 2K log nut

}
∩
{

arg max
k

pk` 6= arg max
k

pkr

}
=

{ K∑
k=1

nkutx
2
k` > 2K log nut

}
∪

(⋃
r∈R`

{ K∑
k=1

nkutx
2
kr < 2K log nut

})

:= EN1
∪

(⋃
r∈R`

E(r)
N2

)

First, an upper bound of the probability of the event EN1
is

53

P(EN1
) ≤ P

(
K⋃
k=1

{nkutx2
k` > 2 log nut}

)

≤
K∑
k=1

P
(
nkutx

2
k` > 2 log nut

)
≤

K∑
k=1

P

(
|p̂k` − ρ̂kut | − ε >

√
2 log nut
nkut

)

≤
K∑
k=1

P

(
|p̂k` − ρ̂kut | − |pk` − p̂k`| >

√
2 log nut
nkut

)

≤
K∑
k=1

P

(
|pk` − ρ̂kut | >

√
2 log nut
nut

)

By Lemma 1, we know that ut arrives at most N times in expectation. Therefore, the regret induced
by the event EN1

is

REN1
(N) ≤

K∑
k=1

N∑
s=1

P

(
|pk` − ρ̂kut | >

√
2 log s

s

∣∣∣∣∣nut = s

)

≤
K∑
k=1

N∑
s=1

2 exp (−4 log s)

≤ 2K

(
1 +

∫ N

1

1

x4
dx

)

≤ 2K

(
1 +

[
− 1

3x3

]N
1

)
=

2K

3

(
4− 1

N
3

)
(30)

Next, we evaluate the probability of the event E(r)
N2

. First, we assume that r 6∈ L⊥(`). Then,

P
(

max
{1≤nkut≤nut}

nkutx
2
k` > 2 log

(nut
2

))
≤

nut∑
s=1

P

|p̂k` − ρ̂kut | − ε >
√

2 log(
nut
2)

nkut

∣∣∣∣∣∣nkut = s

≤

nut∑
s=1

P

|pk` − ρ̂kut | >
√

2 log(
nut
2)

nkut

∣∣∣∣∣∣nkut = s

≤

nut∑
s=1

2 exp
(
−4 log

(nut
2

))
=

32

n3
ut

(31)

If the event {∀k,max{1≤nkut≤nut} nkutx
2
k` < 2 log

(nut
2

)
} occurs, then the event {nk∗`ut ≥

nut
2K }

occurs as well. Hence, we can deduce that P
(
nk∗`ut <

nut
2K

)
≤ 32K

n3
ut

by (31). The probability of the

event E(r)
N2

satisfies:

54

P(E(r)
N2

) ≤ P
(
nk∗`utx

2
k∗` r

< 2K log nut

)
≤ P

(
xk∗` r <

√
2K log nut
nk∗`ut

)

≤ P

(
|p̂k∗` r − ρ̂k∗`ut | <

√
2K log nut
nk∗`ut

+ ε

)

≤ P

(
|pk∗` r − pk∗` `| − |pk∗` ` − ρ̂k∗`ut | − |pk∗` r − p̂k∗` r| <

√
2K log nut
nk∗`ut

+ ε

)

≤ P

(
|pk∗` ` − ρ̂k∗`ut | > |pk∗` r − pk∗` `| −

√
2K log nut
nk∗`ut

− 2ε

)

≤ P

(
|pk∗` ` − ρ̂k∗`ut | >

1

2
|pk∗` r − pk∗` `| −

√
2K log nut
nk∗`ut

)

≤ P

(
|pk∗` ` − ρ̂k∗`ut | >

1

2
|pk∗` r − pk∗` `| −

√
4K2 log nut

nut

)
+

32K

n3
ut

.

Therefore, the regret induced by event E(r)
N2

is

R{E(r)N2
\EN1

}(N)

≤
N∑
s=1

P

(
|pk∗` ` − ρ̂k∗`ut | >

1

2
|pk∗` r − pk∗` `| −

√
4K2 log s

s

)
+

32K

s3

≤ 64K2

|pk∗` r − pk∗` `|2
log

(
6K

|pk∗` r − pk∗` `|

)

+

N∑
s=d 64K2

|pk∗
`
r−pk∗

`
`|

2 log

(
6K

|pk∗
`
r−pk∗

`
`|

)
e

2 exp

(
−
s|pk∗` ` − pk∗` r|

2

8

)
+ 48K

≤ 64K2

|pk∗` r − pk∗` `|2
log

(
6K

|pk∗` r − pk∗` `|

)
+

16

|pk∗` ` − pk∗` r|2
+ 48K

≤ 128K2

|pk∗` r − pk∗` `|2
log

(
6K

|pk∗` r − pk∗` `|

)
. (32)

55

Next assume that r ∈ L⊥(`). Then, k∗` 6= k∗r and pk∗` ` = pk∗` r, and

P(E(r)
N2

) ≤ P

(∑
k∈S`r

nkutx
2
kr < 2K log nut

)

≤ P

(⋃
k∈S`r

{nkutx2
kr <

2K log nut
|S`r|

}

)

≤
∑
k∈S`r

P

(
xkr <

√
2K log nut
|S`r|nkut

)

≤
∑
k∈S`r

P

(
|pk` − ρ̂kut | >

1

2
|pkr − pk`| −

√
2K log nut
|S`r|nkut

)

≤
∑
k∈S`r

P

|pk` − ρ̂kut | > 1

2
|pkr − pk`| −

√
2K logN

|S`r|nkut

 .

RE(r)N2

(N) ≤
∑
k∈S`r

N∑
s=1

P

|pk` − ρ̂kut | > 1

2
|pkr − pk`| −

√
2K logN

|S`r|s
|nkut = s

(a)

≤
∑
k∈S`r

 32K logN

|S`r||pk` − pkr|2
+

N∑
s=d 32K logN

|S`r||pk`−pkr|2
e

2 exp

(
−s|pk` − pkr|

2

8

)
≤
∑
k∈S`r

32

|pk` − pkr|2

(
K logN

|S`r|
+ 1

)
. (33)

Combining (30), (32) and (33), the expected regret due to recommendations made by referring to the
nearest neighbors in U∗ is,

RN (T) ≤ m
∑
`

β`(pσ`(1)` − pσ`(K)`)

(
2K

3

(
4− 1

N
3

)

+
∑

r∈R`\L⊥(`)

128K2

|pk∗` r − pk∗` `|2
log

(
6K

|pk∗` r − pk∗` `|

)
+

∑
r∈L⊥(`)

∑
k∈S`r

32

|pk` − pkr|2

(
K logN

|S`r|
+ 1

)
= O

m∑
`

β`(pσ`(1)` − pσ`(K)`)

 ∑
r∈R`\L⊥(`)

K2 logK

φ(|pk∗` r − pk∗` `|2)
+
∑
k∈S`r

∑
r∈L⊥(`)

K logN

|S`r||pk` − pkr|2

 .

56

J Performance guarantees of ECB and Item Clustering: Proof of Theorems
7 and 9

J.1 Performance guarantees of ECB: Proof of Theorem 7

The proof is straightforward from the results of Theorem 9. Indeed, the latter implies that we can
assume that the item clusters estimated from the first phase of the algorithm are exact (the complement
of this event happens with probability 1/T , and hence generates an expected regret O(1)).

Hence we can assume that we know the exact clusters of items in S . Now observe that for each cluster
Vk (a subset of S), we have |Vk| ≥ N (refer to Appendix I for a precise statement). As a consequence,
all users can be served using items from V1, . . . , VK , except for a few users arriving more than N .
Actually, from Lemma 1, these exceptional arrivals induce an average regret O(1). ECB applies, for
each user, a UCB1 algorithm [1] to select the cluster from which an item is recommended. For this
exploitation period, each user in U` will then induce a regret O(

∑
k 6=k∗`

log(N)
pk∗
`
`−pk`

). This completes

the proof. �

J.2 Item Clustering Phase: Proof of Theorem 9

We let e(v, S) :=
∑
x∈S Avx and e(A,B) :=

∑
v∈A

∑
w∈B Avw.

Let

p(a, b) := (|Vb| − 1{a = b}) 2

n0(n0 − 1)

L∑
`=1

β`pa`pb`

and p(a, 0) := 1−
∑K
k=1 p(a, k).

We also define e(v, V0) and e(v, S(t)
0) as follows:

e(v, V0) :=s−
K∑
k=1

e(v, Vk) and

e(v, S
(t)
0) :=s−

K∑
k=1

e(v, S
(t)
k),

where s is the number of users who have received recommendations at least twice until t = 10m.

Proof of the theorem. The proof of Theorem 9 relies on the following random matrix concentration
inequality. Specifically, from the matrix Bernstein inequality, we can bound ‖A− E[A]‖ as follows.

Lemma 18. Assume T > 10m. Let A be the adjacency matrix obtained in Algorithm 4. Let ‖ · ‖
denote the spectral norm. Then,

P

(
‖A− E[A]‖ > 5

√
m logm

n0

)
≤ 1

m2
.

From Lemma 18, we deduce that Â (the rank-K approximation of A) is approximately the same as
E[A]. Indeed, since both Â and E[A] are of rank K,

‖Â− E[A]‖2F ≤2K‖Â− E[A]‖2

≤4K(‖Â−A‖2 + ‖A− E[A]‖2)

≤8K‖A− E[A]‖2,

where ‖A− E[A]‖ is negligible compared to ‖E[A]‖ = Ω(mn0
).

From the columns of Â, we can classify items. Here, ‖E[A]v − E[A]w‖ = Ω(m

n
3/2
0

) when v and w

belong to different clusters and E[A]v = E[A]w when v and w belong to the same cluster. Therefore,

57

the columns of Â are concentrated around the correct cluster column unless ‖Âv−E[A]v‖ = Ω(m

n
3/2
0

).

From this argument, the spectral decomposition used in the algorithms satisfies∣∣ ∪Kk=1 (S
(0)
k \ Vk)

∣∣ = O

(
n2

0 logm

m

)
, (34)

since
∑
v∈S ‖Âv − E[A]v‖2 = ‖A− E[A]‖2F = O(m logm

n0
) from Lemma 18 (cf. [26]).

In the improvement step of Algorithm 5, the algorithm refines the result of Spectral Decomposition
iteratively. We denote the set of misclassified items after t-th iteration by E(t). We also introduce
E(t)
k` = S

(t)
k ∩ V` so that E(t) =

⋃K
k=1

⋃
`: 6=k E

(t)
k` .

Since the items move to more likely cluster with respect to p̂(i, j) at each step,

0 ≤
∑

k,`:k 6=`

∑
v∈E(t+1)

k`

K∑
j=0

e
(
v, S

(t)
j

)
log

p̂(k, j)

p̂(`, j)

(a)

≤
∑

k,`:k 6=`

∑
v∈E(t+1)

k`

K∑
j=0

e
(
v, S

(t)
j

)
log

p(k, j)

p(`, j)

+ C1|E(t+1)|
√
m logm

n0

(b)

≤
∑

k,`:k 6=`

∑
v∈E(t+1)

k`

K∑
j=0

e (v, Vj) log
p(k, j)

p(`, j)

+ C1|E(t+1)|
√
m logm

n0
+ C2e(E(t), E(t+1))

(c)

≤
∑

k,`:k 6=`

∑
v∈E(t+1)

k`

K∑
j=0

e (v, Vj) log
p(k, j)

p(`, j)

+ C1|E(t+1)|
√
m logm

n0
+ C3

√
|E(t)||E(t+1)|m logm

n0

(d)

≤ −C4
m

n0
|E(t+1)|+ C3

√
|E(t)||E(t+1)|m logm

n0
(35)

where (a) is obtained from Lemma 19; (b) stems from the fact that p(k,j)p(`,j) is a positive constant for all
1 ≤ j ≤ K; (c) follows from Lemma 20; and (d) is obtained from Lemma 21.

From (35), we can conclude that:

|E(t+1)|
|E(t)|

≤ C2
3

C2
4

n0 logm

m

(a)

≤ C5
1

log T
,

where (a) is from n0 ≤ m/(log T)2 and 10m < T .

Therefore, after log(n0) iterations, we have recovered the perfect clusters. �

Nest we state the lemmas used in the proof above.

Lemma 19. When |E(0)| = O
(
n2
0 logm
m

)
, with probability 1− 2

m2 ,

K∑
i=0

e
(
v, S

(t)
i

) ∣∣∣∣ log
p(k, i)

p̂(k, i)

∣∣∣∣ = O

(√
m logm

n0

)
.

58

Lemma 20. When ‖A − E[A]‖ = O
(√

m logm
n0

)
, |E(t)| = O

(
n2
0 logm
m

)
, and |E(t+1)| =

O
(
n2
0 logm
m

)
,

∑
v∈E(t+1)

e(v, E(t)) = O

(√
|E(t)||E(t+1)|m logm

n0

)
.

Lemma 21. With probability at least 1− 1
m2 , for all k, for all v ∈ Vk,

K∑
a=0

e(v, Va) log

(
p(k, a)

p(k′, a)

)
= Ω

(
m

n0

)
for all k′ 6= k.

J.3 Proof of the lemmas

Proof of Lemma 18.

The adjacency matrix A can be considered as the sum of s samples of connected pairs for some
s ≥ m

2 . We denote such samples as X` for 1 ≤ ` ≤ s. Then, A =
∑s
`=1X`.

By the matrix Bernstein inequality (cf. [30]), we have:

P (‖A− E[A]‖ > t) = P

(
‖

s∑
l=1

(X` − E[X`])‖ > t

)

≤ n0 exp

(
− t2

2 (σ2(A) +Dt/3)

)
, (36)

where σ2(A) = ‖E[(A− E[A])2]‖ and D is an upper bound of ‖X` − E[X`]‖ for all `.

The expectation of the elements xij of matrix X` is

E
[
xij |i ∈ Vk, j ∈ Vk′

]
=

2

n0(n0 − 1)

L∑
`=1

β`pk`pk′`.

Since every elements in E[X`] is less than 2
n0(n0−1) , we have:

‖X` − E[X`]‖
(a)

≤

√
4n2

0

n2
0(n0 − 1)2

+ 2

≤ 2

n0 − 1
+
√

2, (37)

where (a) is from the fact that Frobenius norm of the matrix is greater than its spectral norm.

From (37), we deduce that we can choose D = 3
2 .

Moreover, the variance of the matrix A is

σ2(A) = ‖E[(A− E[A])2]‖

(a)
= ‖

s∑
`=1

E[(X` − E[X`])
2]‖

≤
s∑
`=1

‖E[(X` − E[X`])
2]‖

≤
s∑
`=1

(
‖E[X2

`]‖+ ‖E[X`]
2‖
)
, (38)

where (a) is obtained from the independence of the X`’s.

59

To get an upper bound of (38), observe that the expectation of the (i, j)-th element of matrix X2
` is

E[(X2
`)ij] = E

[n0∑
k=1

xikxkj

]
=

n0∑
k=1

E[xikxkj] = 0.

In addition, the expectation of the (i, i)-th elements of matrix X2
` is

E[(X2
`)ii] =

n0∑
k=1

E[x2
ik] =

n0∑
k=1

E[xik] ≤ 2

n0
.

On the other hand, the elements of E[X`]
2 are O

(
1
n3
0

)
, which implies ‖E[X`]

2‖ = O
(

1
n2
0

)
. Hence,

using (38), we deduce that σ2(A) ≤ 2s
n0

+O
(
s
n2
0

)
≤ 2m

n0
.

Now, an upper bound of (36) is

n0 exp

(
− t2

4m
n0

+ t

)
. (39)

To conclude the proof of this lemma, we need to consider two cases: n0 = m
(log T)2 and n0 = n.

(i) When n0 = m
(log T)2 , t = 5

√
logm log T . So, (39) becomes:

m

(log T)2
exp

(
− 25(log T)2 logm

4(log T)2 + 5
√

logm log T

)
(a)

≤ exp

(
−3 logm+ log

(
m

(log T)2

))
≤ 1

m2

where (a) is obtained from the assumption T > 10m.

(ii) If n0 = n, t = 5
√

m logm
n . Then, (39) becomes:

n exp

− 25m logm
n

4m
n + 5

√
m logm

n

 ≤ exp (−3 logm+ log n)

(a)

≤ 1

m2

where (a) holds since n ≤ m
(log T)2 . �

Proof of Lemma 19.

Recall that

p(a, b) = (|Vb| − 1{a = b}) 2

n0(n0 − 1)

L∑
`=1

β`pa`pb`

and p(a, 0) = 1−
∑K
k=1 p(a, k). The estimations are p̂(i, j) =

∑
v∈Si

∑
v′∈Sj

Av,v′

s|S(0)
i |

for all 1 ≤ i, j ≤

K and p̂(i, 0) = 1−
∑K
k=1 p̂(i, k).

An upper bound of |p(i, j)− p̂(i, j)| for 1 ≤ i, j ≤ K is

|p̂(i, j)− p(i, j)| ≤ 1

s|S(0)
i |

∣∣∣∣e(S(0)
i , S

(0)
j)− E[e(S

(0)
i , S

(0)
j)]

∣∣∣∣
+

1

s|S(0)
i |

∣∣∣∣E[e(S
(0)
i , S

(0)
j)]− s|S(0)

i |p(i, j)
∣∣∣∣. (40)

60

Let A be the set of partitions {Sk}1≤k≤K of the set S. Recall that S is of cardinality n0. Then,

|A| ≤ Kn0 . (41)

Now, we fix one partition {Sk} ∈ A. Then, by Chernoff-Hoeffding bound,

P
(∣∣e(Si, Sj)− E[e(Si, Sj)]

∣∣ <√mn0 logm for all i, j
)
≥ 1− exp (−Θ (n0 logm)) . (42)

Combining (41) and (42), we deduce that the following event holds:∣∣e(Si, Sj)− E[e(Si, Sj)]
∣∣ <√mn0 logm

for all i, j and {Sk} ∈ A with probability 1− exp (−Θ (n0 logm)) (just applying a union bound).

Since {S(0)
k } ∈ A, with probability 1− exp (−Θ (n0 logm)),∣∣e(S(0)

i , S
(0)
j)− E[e(S

(0)
i , S

(0)
j)]

∣∣ <√mn0 logm (43)

for all i, j.

On the other hand, since |E(0)| = O
(
n2
0 logm
m

)
from the assumption, with probability 1 −

exp (−Θ (n0 logm)),

1

s|S(0)
i |

∣∣∣∣E[e(S
(0)
i , S

(0)
j)]− s|S(0)

i |p(i, j)
∣∣∣∣ = O

(
n0 logm

m
p(i, j)

)
, (44)

for all i, j.

Then, conditioned on (44) for all 1 ≤ i, j ≤ K, we can derive an upper bound of |p(i, j)− p̂(i, j)|
for 1 ≤ i, j ≤ K, using (40), (43) and (44):

|p(i, j)− p̂(i, j)| = O

(√
n0 logm

m
p(i, j)

)
,

which implies that for all 1 ≤ i, j ≤ K

∣∣∣∣ log
p̂(i, j)

p(i, j)

∣∣∣∣ ≤ |p(i, j)− p̂(i, j)|p(i, j)

= O

(√
n0 logm

m

)
. (45)

Furthermore, an upper bound of
∣∣∣∣ log p̂(i,0)

p(i,0)

∣∣∣∣ is

∣∣∣∣ log
p̂(i, 0)

p(i, 0)

∣∣∣∣ = O

(
1

n0

√
n0 logm

m

)
, (46)

with probability at least 1− exp (−Θ (n0 logm)).

We also have E[e(v,S)] ≤ m
n0

and from Chernoff inequality,

P
(
|e(v,S)− E[e(v,S)]| >

√
4m logm

)
≤ 1

m2
. (47)

Finally, we obtain the following from (45), (46) and (47):

K∑
i=0

e
(
v, S

(t)
i

) ∣∣∣∣ log
p(k, i)

p̂(k, i)

∣∣∣∣ = O

(√
m logm

n0

)
,

61

with probability at least 1− 2
m2 . This concludes the proof. �

Proof of Lemma 20. We have:∑
v∈E(t+1)

(
e(v, E(t))− E[e(v, E(t))]

)
≤ 1TE(t)(A− E[A])1E(t+1) ,

where 1S is the vector whose i-th component is equal to 1 if i ∈ S and to 0 otherwise. Since
E[e(v, E(t))] ≤ 2m

n2
0
|E(t)| ≤ 2 logm,

∑
v∈E(t+1)

e(v, E(t)) ≤
∑

v∈E(t+1)

(
e(v, E(t))− E[e(v, E(t))]

)
+ 2|E(t+1)| logm

≤ ‖1TE(t)(A− E[A])1E(t+1)‖+ 2|E(t+1)| logm

≤ ‖1TE(t)‖‖(A− E[A])‖‖1E(t+1)‖+ 2|E(t+1)| logm

(a)
= O

(√
|E(t)||E(t+1)|m logm

n0

)
,

where for (a), we used the assumption that ‖A− E[A]‖ = O
(√

m logm
n0

)
and the definition of `2

norm. �

Proof of Lemma 21.

From Chernoff-Hoeffding bound, there exists C > 0 such that

P

(
|e(v, Va)− E[e(v, Va)]| > C

√
m logm

n0

)
≤ 1

m3
. (48)

We also have for all v ∈ Vk and all k,

K∑
a=0

E[e(v, Va)] log

(
p(k, a)

p(k′, a)

)
= Ω

(
m

n0

)
for all k′ 6= k. (49)

Since log
(
p(k,a)
p(k′,a)

)
= Θ(1) and m

n0
= Ω((log T)2), from (48) and (49), we have Lemma 21. �

62

	Introduction
	Related Work
	Models and Preliminaries
	Problem structures and regrets
	Preliminaries – User arrival process

	Regret Lower Bounds
	Clustered items and statistically identical users
	Unclustered items and statistically identical users
	Clustered items and clustered users

	Algorithms
	Clustered items and statistically identical users
	Unclustered items and statistically identical users
	Clustered items and clustered users

	Conclusion
	Table of Notations
	Algorithms and experiments
	Clustered items and statistically identical users
	Unclustered items and statistically identical users
	Clustered items and users
	Experimental set-up

	Preliminaries: Properties of the user arrival process
	Justifying the regret definitions
	Fundamental limits for Model A: Proof of Theorem 1
	Proof of Lemma 7

	Fundamental limits for Model B: Proof of Theorem 2
	Fundamental limits for Model C: Proof of Theorem 3
	Examples
	Proof

	Performance guarantees of ECT: Proof of Theorem 4
	Performance guarantees of ET: Proof of Theorem 5
	Performance guarantees of EC-UCS: Proof of Theorem 6
	Clustering items in EC-UCS and ECB
	Regret of EC-UCS: Proof of Theorem 6
	Technical lemmas for the proof of Theorem 6

	Performance guarantees of ECB and Item Clustering: Proof of Theorems 7 and 9
	Performance guarantees of ECB: Proof of Theorem 7
	Item Clustering Phase: Proof of Theorem 9
	Proof of the lemmas

