N o g A W N =

38

39

40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

To Reviewer #1: Choosing any two distinct scalars on the line is equivalent. Specifically, the minimizer in Proposition
1 will not change if another two distinct scalers are chosen. Therefore, we choose 0, 1 to simplify the discussion.

We experimented on using Sigmoid functions, and it does not work. We approximate the indicator vector A€ by
s(x; — x4,), where i = 1,-- - n, and x,, is the k-th smallest input. We first take s(-) as a standard Sigmoid function,
and it quickly runs into numerical issues even with extensive parameter tuning. We then try a hard Sigmoid function
(arXiv:1811.03378) with different slopes. The best performance is 27% on CIFAR10 (worse than a simple kNN). The
gradient computed cannot provide effective guidance for the parameter updates.

To Reviewer #2: For beam search, n is very large. NeuralSort and Cuturi (2019) require O(n?) memory, which is not
affordable. We tried Softmax for k times (which is also proposed by us). The performance is comparable to SOFT, but
it often runs into numerical issues when computing the gradient since it nests Softmax for many times. The BLEU
score for a hard Top-k attention is 37.02 (SOFT 37.30). We will add more discussions in the next version.

To Reviewer #3: Our algorithm scales linearly w.r.t. the input size, which is not larger than any other algorithms.
Furthermore, we already applied our method to a structured prediction task, i.e., machine translation, where we use
beam search to search over all combinations of the tokens.

The proposed beam search method is a principled way to close the exposure bias between the training and the inference,
originating from curriculum learning (Bengio, 2015, arXiv:1506.03099). Traditionally, in training, the input to the
decoder is the gold sequence, while in the inference, its input is sequences decoded by beam search. So we incorporate
beam search into training to close this gap.

Furthermore, the proposed method achieves a significant improvement over a very strong baseline (Bahdanau, 2014)
with nearly identical hyperparameters, suggesting the proposed method is more than tricks. (Note that BLEU of our
implemented Bahdanau is 35.38, which is as far as we know the best score for RNN-based seq2seq single models. The
original Bahdanau is only 28.45).

We did not consider ties because this rarely happens in practice — the input of SOFT should be float number with at least
10~° precision. Furthermore, if there are ties, it does not matter which to choose among the ties for machine learning
algorithms. We also remark that our method can apply to cases with ties naturally: Instead of returning a smoothed
indicator vector, the entries for two tied scalars will be approximately 0.5.

We highlight our key contributions over Cuturi, (2019):

1. SOFT has O(n) complexity while the sorting algorithm in (Cuturi, 2019) is O(n?) (line 298).

2. We derive a fast and memory-efficient way to compute the gradient of the top-k operation (line 319).

3. We prove that the approximation error can be properly controlled (Theorem 2).

4. We propose novel applications, i.e., image classification with kNN and beam search training scheme (Section 4,
Section 5). We did not adopt the quantile loss or the top-/ loss. We propose new losses.

To Reviewer #5: We will include more discussions on the sensitivity and motivation in the next version.

W1 a) For beam search, we use 100 inner iterations for a relatively large € (0.05). We use 2000 inner iterations for kNN,
since we adopt a very small e (10~5 for CIFAR10). For very small e (10~5), we do observe significant performance
drop with fewer Sinkhorn iterations. For larger e, the performance is not sensitive to the number of iterations.

b) The sensitivity result of CIFAR 10 for template sample size is as follows:

Template batch size 100 (current) 200 300 400 500
Acc. change 0 +0.40 +0.34 +043 -0.18

The bias introduced by small template batch size does not significantly affect the final performance.

c) Current teacher forcing ratio p is 0.8. With p = 0.7, the BLUE score will decrease 0.25. Currently we have € = 0.05.
With € = 0.1, BLUE score will decrease 0.13.

W2 a). We compute the maximum likelihood of the predicted sequence in Lgopr (Equation (9)). This can be realized
by a max operation, which is differentiable. Note that we don’t need to use argmax operation to find the index r.
Accordingly, there is no need to compute a weighted linear combination of the embedding.

b). The exact correspondence between the hidden state and the token can be very complicated. An explicit characteriza-
tion requires sophisticated tools. On the contrary, we approximate the correspondence using a simple linear function.
The experimental results indicate that the performance (Table 2) is already superior over existing methods.

¢). A major benefit of the proposed decoding step is that the un-picked tokens are not abandoned in the computational
graph. Instead, every decoded token is involved in the later computation. Therefore, by comparing the weighted
sum of embedding to the gold token, we encourage the weight corresponding to the gold token to be larger, which is
connected to all former decoded tokens in the computational graph. As a result, although the proposed loss appears to
be token-level, we are essentially optimizing over all possible combinations of tokens. It is not necessary to adopt more
complicated losses.

d) We pad the shorter sentence (the decoded and the gold sequence) with <EOS> before feeding them into NLL.




