- **To Reviewer #1:** Choosing any two distinct scalars on the line is equivalent. Specifically, the minimizer in Proposition 1 will not change if another two distinct scalers are chosen. Therefore, we choose 0.1 to simplify the discussion.
- 3 We experimented on using Sigmoid functions, and it does not work. We approximate the indicator vector A^{ϵ} by
- 4 $s(x_i x_{\sigma_k})$, where $i = 1, \dots, n$, and x_{σ_k} is the k-th smallest input. We first take $s(\cdot)$ as a standard Sigmoid function,
- $s(x_i x_{\sigma_k})$, where $i = 1, \dots, n$, and x_{σ_k} is the k-th smallest input. We first take $s(\cdot)$ as a standard Sigmoid function, and it quickly runs into numerical issues even with extensive parameter tuning. We then try a hard Sigmoid function
- 6 (arXiv:1811.03378) with different slopes. The best performance is 27% on CIFAR10 (worse than a simple kNN). The
- 6 (arXiv:1811.033/8) with different slopes. The best performance is 27% on CIFAR10 (worse than a simple kN gradient computed cannot provide effective guidance for the parameter updates.
- To Reviewer #2: For beam search, n is very large. NeuralSort and Cuturi (2019) require $O(n^2)$ memory, which is not affordable. We tried Softmax for k times (which is also proposed by us). The performance is comparable to SOFT, but
- it often runs into numerical issues when computing the gradient since it nests Softmax for many times. The BLEU score for a hard Top-k attention is 37.02 (SOFT 37.30). We will add more discussions in the next version.
- 12 **To Reviewer #3**: Our algorithm scales linearly w.r.t. the input size, which is not larger than any other algorithms.
- Furthermore, we already applied our method to a structured prediction task, i.e., machine translation, where we use
- beam search to search over all combinations of the tokens.
- 15 The proposed beam search method is a principled way to close the exposure bias between the training and the inference,
- originating from curriculum learning (Bengio, 2015, arXiv:1506.03099). Traditionally, in training, the input to the
- decoder is the gold sequence, while in the inference, its input is sequences decoded by beam search. So we incorporate
- beam search into training to close this gap.
- ¹⁹ Furthermore, the proposed method achieves a significant improvement over a very strong baseline (Bahdanau, 2014)
- 20 with nearly identical hyperparameters, suggesting the proposed method is more than tricks. (Note that BLEU of our
- implemented Bahdanau is 35.38, which is as far as we know the best score for RNN-based seq2seq single models. The
- original Bahdanau is only 28.45).
- 23 We did not consider ties because this rarely happens in practice the input of SOFT should be float number with at least
- 10^{-5} precision. Furthermore, if there are ties, it does not matter which to choose among the ties for machine learning
- 25 algorithms. We also remark that our method can apply to cases with ties naturally: Instead of returning a smoothed
- 26 indicator vector, the entries for two tied scalars will be approximately 0.5.
- 27 We highlight our key contributions over Cuturi, (2019):
- 1. SOFT has O(n) complexity while the sorting algorithm in (Cuturi, 2019) is $O(n^2)$ (line 298).
- 29 2. We derive a fast and memory-efficient way to compute the gradient of the top-k operation (line 319).
- 3. We prove that the approximation error can be properly controlled (Theorem 2).
- 4. We propose novel applications, i.e., image classification with kNN and beam search training scheme (Section 4,
- Section 5). We did not adopt the quantile loss or the top-l loss. We propose new losses.
- 33 **To Reviewer #5**: We will include more discussions on the sensitivity and motivation in the next version.
- W1 a) For beam search, we use 100 inner iterations for a relatively large ϵ (0.05). We use 2000 inner iterations for kNN,
- since we adopt a very small ϵ (10⁻⁵ for CIFAR10). For very small ϵ (10⁻⁵), we do observe significant performance
- drop with fewer Sinkhorn iterations. For larger ϵ , the performance is not sensitive to the number of iterations.
 - b) The sensitivity result of CIFAR 10 for template sample size is as follows:

	Template batch size	100 (current)	200	300	400	500
38	Acc. change	0	+0.40	+0.34	+0.43	-0.18

- The bias introduced by small template batch size does not significantly affect the final performance.
- 40 c) Current teacher forcing ratio ρ is 0.8. With $\rho = 0.7$, the BLUE score will decrease 0.25. Currently we have $\epsilon = 0.05$.
- With $\epsilon = 0.1$, BLUE score will decrease 0.13.
- W2 a). We compute the maximum likelihood of the predicted sequence in \mathcal{L}_{SOFT} (Equation (9)). This can be realized
- by a max operation, which is differentiable. Note that we don't need to use argmax operation to find the index r.
- Accordingly, there is no need to compute a weighted linear combination of the embedding.
- b). The exact correspondence between the hidden state and the token can be very complicated. An explicit characteriza-
- 46 tion requires sophisticated tools. On the contrary, we approximate the correspondence using a simple linear function.
- 47 The experimental results indicate that the performance (Table 2) is already superior over existing methods.
- 48 c). A major benefit of the proposed decoding step is that the un-picked tokens are not abandoned in the computational
- 49 graph. Instead, every decoded token is involved in the later computation. Therefore, by comparing the weighted
- sum of embedding to the gold token, we encourage the weight corresponding to the gold token to be larger, which is
- 51 connected to all former decoded tokens in the computational graph. As a result, although the proposed loss appears to
- be token-level, we are essentially optimizing over all possible combinations of tokens. It is not necessary to adopt more
- 53 complicated losses.

37

d) We pad the shorter sentence (the decoded and the gold sequence) with <EOS> before feeding them into NLL.