
Sanity-Checking Pruning Methods:
Random Tickets can Win the Jackpot

Jingtong Su1,∗ Yihang Chen2,∗ Tianle Cai3,4,∗

Tianhao Wu2 Ruiqi Gao3,4 Liwei Wang5 Jason D. Lee3

1Yuanpei College, Peking University
2School of Mathematical Sciences, Peking University

3Department of Electrical Engineering, Princeton University
4Zhongguancun Haihua Institute for Frontier Information Technology

5Key Laboratory of Machine Perception, MOE, School of EECS, Peking University

Abstract

Network pruning is a method for reducing test-time computational resource require-
ments with minimal performance degradation. Conventional wisdom of pruning
algorithms suggests that: (1) Pruning methods exploit information from training
data to find good subnetworks; (2) The architecture of the pruned network is crucial
for good performance. In this paper, we conduct sanity checks for the above beliefs
on several recent unstructured pruning methods and surprisingly find that: (1) A
set of methods which aims to find good subnetworks of the randomly-initialized
network (which we call “initial tickets”), hardly exploits any information from the
training data; (2) For the pruned networks obtained by these methods, randomly
changing the preserved weights in each layer, while keeping the total number of pre-
served weights unchanged per layer, does not affect the final performance. These
findings inspire us to choose a series of simple data-independent prune ratios for
each layer, and randomly prune each layer accordingly to get a subnetwork (which
we call “random tickets”). Experimental results show that our zero-shot random
tickets outperform or attain a similar performance compared to existing “initial
tickets”. In addition, we identify one existing pruning method that passes our sanity
checks. We hybridize the ratios in our random ticket with this method and propose
a new method called “hybrid tickets”, which achieves further improvement.2

1 Introduction

Deep neural networks have achieved great success in the overparameterized regime [44, 35, 8, 7, 2].
However, overparameterization also leads to excessive computational and memory requirements.
To mitigate this, network pruning [33, 22, 15, 14, 6] has been proposed as an effective technique to
reduce the resource requirements with minimal performance degradation.

One typical line of pruning methods, exemplified by retraining [14], can be described as follows: First,
find a subnetwork of original network using pruning methods (which we call the “pruning step”), and
then, retrain this subnetwork to obtain the final pruned network (which we call the “retraining step”).
(Figure 1). Different pruning methods are mainly distinguished by different criterion for finding the
subnetwork, different weights to assign to the subnetwork and retraining scheme.

∗Equal Contribution, reverse alphabetical order.
2Our code is publicly available at https://github.com/JingtongSu/sanity-checking-pruning.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/JingtongSu/sanity-checking-pruning


Input

Output

Cat

Data

Input

Output

Sample

Label

Final
Pruned

Network

Connections 
in Each Layer

Pruning Pipeline

Pruning

Retrain

Sanity
Check

Sanity
Check

Dog

Dog

Figure 1: A typical pipeline of obtaining the final pruned network. The first step is a (usually)
data-dependent pruning step that finds a subnetwork of the original network. The second step is a
retraining step that trains the subnetwork to achieve minimal performance drop compared to the full
network. Our sanity checks are applied to the data used in pruning step and the layerwise structure,
i.e., connections in each layer, of the subnetwork obtained in the pruning step.

Generally, there are two common beliefs behind this pruning procedure. First, it is believed that prun-
ing methods exploit the information from training data in the pruning step to find good subnetworks.
Therefore, there are only a few data-independent pruning methods [34], and it is not clear whether
these methods can get similar (or even better) performance than the popular data-dependent pruning
methods. Second, it is believed that the architecture of the pruned network is crucial for obtaining
the final pruned network with good performance [14]. As a result, most of the papers in the pruning
literature usually use “random pruning”, i.e., randomly selecting some number of weights/neurons
to be pruned according to the pruning ratio, as a weak baseline to show that the pruning methods
outperform the trivial random architecture. However, we put into question whether these two beliefs
really hold. To evaluate them, we propose two sets of sanity check approaches which examine
whether the data used in the pruning step and the structure of pruned network are essential for the
final performance of pruned networks for unstructured pruning methods (See Section 2.2) 3.

To evaluate the dependency on the data, we propose to corrupt the data in the pruning step while
using the original data in the retraining step, and see if the subnetworks pruned using the corrupted
data can achieve similar performance as those pruned using the true data. To test the importance of
the architecture of the pruned subnetwork, we introduce a novel attack on the network architecture
which we call layerwise rearrange. This attack rearranges all the connections of neurons layerwise
and thus totally destroys the structure obtained in pruning step. It is worth noting that, after applying
layerwise rearranging, the number of preserved weights in each layer stays unchanged. In contrast, if
we rearrange the connections in the entire subnetwork, the resulting subnetwork is basically the same
as that obtained by random pruning. We refer the readers to Figure 1 for an illustration of where we
deploy our sanity checks.

We then apply our sanity checks on the pruning methods in four recent papers from ICLR 2019 and
2020 [23, 9, 41, 37]. We first classify the subnetworks found by these methods into “initial tickets”,
i.e., the weights before retraining are set to be the weights at initialization (this concept is the same as
“winning tickets” in [9]), and “partially-trained tickets”, i.e., the weights before retraining are set to
be the weights from the middle of pretraining process4 (See Section 4.1 for the formal definition and
Figure 2 for an illustration). The effectiveness of “initial tickets” is highlighted by “the lottery ticket
hypothesis (LTH)” [9], and the methods on “partially-trained tickets” make some modifications on
the original method in [9].

We show that both of the beliefs mentioned above are not necessarily true for “initial tickets”.
Specifically, the subnetworks can be trained to achieve the same performance as initial tickets even
when they are obtained by using corrupted data in the pruning step or rearranging the initial tickets
layerwise. This surprising finding indicates that true data may not be necessary for these methods
and the architecture of the pruned network may only have limited impact on the final performance.

3Due to space limitation, we review some related works in Appendix F.
4When clear from the context, we may use “tickets” to refer to the subnetworks obtained by certain methods

or directly refer to the methods.

2



Inspired by the results of sanity checks, we propose to choose a series of simple data-independent
pruning ratios for each layer, and randomly prune each layer accordingly to obtain the subnetworks
(which we call “random tickets”) at initialization. This zero-shot method pushes beyond the one-shot
pruning-at-initialization methods [23, 41]. Concretely, our random tickets are drawn without any
pretraining optimization or any data-dependent pruning criterion, and thus we save the computational
cost of pruning. Experimental results show that our zero-shot random tickets outperforms or attains
similar performance compared to all existing “initial tickets”. Though we only try pruning ratios
in a few simple forms without much tuning, the success of random tickets further suggests that our
layerwise ratios can serve as a compact search space for neural architecture search [47, 48, 36, 25, 4].

In addition, we also find a very recent pruning method in ICLR 2020 [37] for obtaining “partially-
trained tickets” can pass our sanity checks. We then hybridize the insights for designing random
tickets with partially-trained tickets and propose a new method called “hybrid tickets”. Experimental
results show that the hybrid tickets can achieve further improve the partially-trained tickets.

In summary, our results advocate for a re-evaluation of existing pruning methods. Our sanity checks
also inspire us to design data-independent and more efficient pruning algorithms.

2 Preliminaries

2.1 Notations

We use D = {xi, yi}ni=1 to denote the training dataset where xi represents the sample and yi
represents the label. We consider a neural network with L layers for classification task on D. We use
vector wl ∈ Rml to denote the weights in layer l where ml is the number of weights in layer l. Then
the network can be represented as f(w1, · · · ,wL;x) where x is the input to the network. The goal
of classification is minimizing an error function ` over the outputs of network and target labels, i.e.,∑n

i=1 ` (f(w1, · · · ,wL,xi), yi), and the performance is measured on a test set.

2.2 Unstructured Pruning (Pruning Individual Weights)

One major branch of network pruning methods is unstructured pruning, and it dates back to Optimal
Brain Damage [22] and Optimal Brain Surgeon [16], which prune weights based on the Hessian
of the loss function. Recently, [13] proposes to prune network weights with small magnitude and
incorporates the pruning method to “Deep Compression” pipeline to obtain efficient models. Several
other criterions and settings are proposed for unstructured pruning[6, 39, 31]. Apart from unstructured
pruning, there are structured pruning methods [20, 29, 26, 21, 24, 42, 1] which prune at the levels of
convolution channels or higher granularity. In this paper, we mainly focus on unstructured pruning.

Unstructured pruning can be viewed as a process to find a mask on the weights which determines the
weights to be preserved. Formally, we give the following definitions for a clear description:

Mask. We use cl ∈ {0, 1}ml to denote a mask on wl. Then the pruned network is given by
f (c1 �w1, · · · , cL �wL;x).

Sparsity and keep-ratios. The sparsity p of the pruned network calculates as p = 1 −
∑L

l=1‖cl‖0∑L
l=1 ml

,
where ‖·‖0 denotes the number of nonzero elements. We further denote pl as the “keep-ratio” of layer
l calculated as ‖cl‖0

ml
.

2.3 Pruning Pipeline and Tickets

In Figure 1, we show a typical pipeline of network pruning in which we first prune the full network
and obtain a subnetwork, then retrain the pruned subnetwork. The processes of pruning and retraining
can be repeated iteratively [13], which requires much more time. In this paper, we focus on one shot
pruning [14], which does not iterate the pipeline.

We evaluate several recently proposed pruning methods which can be classified as follows using the
names “tickets” adopted from “Lottery Ticket Hypothesis” [9]:

3



Randomly-
initialized 
Network

Trained Network

GraSP

Rewind to 
Initialization

Pruned Network

Training
Pruning

Initial 
Tickets

Random
Tickets

SNIP

Partially
-trained 
Tickets

Hybrid
Tickets

Rewind to 
Middle

Zoology of Tickets

Figure 2: Zoology of the tickets considered in this paper. Initial tickets and partially trained tickets
are introduced in Section 2.3, random tickets are proposed in Section 4.2, and hybrid tickets are
proposed in Section 5.2.

• Initial tickets: This kind of methods aim to find a subnetwork of the randomly-initialized network
which we call “initial tickets” that can be trained to reach similar test performance of the original
network. Initial tickets include pruning at initialization [23, 41] and the method proposed in [9].

• Partially-trained tickets: Different from initial tickets, partially-trained tickets are constructed by
first training the network, pruning it, and then rewinding the weights to some middle stage [37].
Initial tickets found by the method in [9] can be viewed as rewinding to epoch 0.

We illustrate these two kinds of tickets in Figure 2 together with our proposed new tickets that will be
introduced in later sections.

3 Sanity Check Approaches

In this section, we propose sanity check approaches for testing if some common beliefs of pruning
methods truly hold in several recently proposed methods.

3.1 Checking the Dependency on Data

Popular pruning methods usually utilize data in the pruning step to find a good pruned subnetwork
that can be trained to perform as well as the full network on the same data (Figure 1).

However, there is no clear evidence showing that the data used in pruning step is important. Further-
more, from the few existing data-independent pruning methods [34], it is also hard to judge whether
data-independent methods have the potential to attain similar performance as popular data-dependent
pruning methods. Therefore, we ask the following question:

Is data information useful for finding good subnetworks in the pruning step?

To answer this question, we introduce two operations, using random labels and random pixels,
to corrupt the data [44]. Note that different from [44] in which these two operations are used to
demonstrate whether overparameterized network can converge on bad data, we apply these operations
on the data used in the pruning step to check if corrupted data still leads to good subnetworks. In
addition to these strong corruptions, we also provide a weaker check that only reduces the number of
data but not corrupts the data. Concretely, we define the two operations as follows:

• Random labels: In the pruning step, we replace the datasetD = {xi, yi}ni=1 with D̂ = {xi, ŷi}ni=1
where ŷi is randomly generated from a uniform distribution over each class.

• Random pixels: In the pruning step, we replace the datasetD = {xi, yi}ni=1 with D̂ = {x̂i, yi}ni=1

where x̂i is the randomly shuffled5 xi and shuffling of each individual sample is independent.

• Half dataset: We reduce the number of data used in the pruning step. For convenience, in this
setting, we simply take half of the data in the dataset for the pruning step.

5By shuffling, we mean generating a random permutation and then reordering the vector by this permutation.

4



3.2 Checking the Importance of the Pruned Network’s Architecture

In unstructured pruning, the architecture, or the connections of neurons, of the pruned subnetwork has
long been considered as the key to make the pruned network able to achieve comparable performance
to the original network [14]. As a result, random pruning, i.e., randomly selecting (1− p) ·

∑L
l=1 ml

weights to preserve according to a given sparsity level p, is widely used as a baseline method to show
the effectiveness of pruning methods with more carefully designed criterion.

However, we cast doubt on whether these individual connections in the pruned subnetwork is crucial,
or if there any intermediate factors that determine the performance of pruned network. Concretely,
we answer the following question:

To what extent does the architecture of the pruned subnetwork affect the final performance?

Towards answering this question, we propose a novel layerwise rearranging strategy, which keeps
the number of preserved weights in each layer but completely destroys the network architecture
(connections) found by the pruning methods for each individual layer. As an additional reference, we
also introduce a much weaker layerwise weight shuffling operation, which only shuffle the unmasked
weights but keep the connections.

• Layerwise rearrange: After obtaining the pruned network, i.e., f (c1 �w1, · · · , cL �wL,x),
we randomly rearrange the mask cl of each layer, independently, into ĉl, and then train on the
network with the rearranged masks f (ĉ1 �w1, · · · , ĉL �wL;x). We give an illustration of this
operation in Appendix A.

• Layerwise weights shuffling: Layerwise weights does not change the masks but shuffles the
unmasked weights in each layer independently.

With the approaches above, we are ready to perform sanity-check on existing pruning methods.

4 Case Study: Initial Tickets

In this section, we will apply our sanity checks to “initial tickets” defined in Section 2.3. Surprisingly,
our results suggest that the final performance of the retrained “initial tickets” does not drop when
using corrupted data including random labels and random pixels in the pruning step. Moreover, the
layerwise rearrangement does not affect the final performance of “initial tickets” either. This finding
further inspires us to design a zero-shot pruning method, dubbed “random tickets”.

4.1 Initial Tickets Fail to Pass Sanity Checks

We conduct experiments on three recently proposed pruning methods that can be classified as “initial
tickets”. We first briefly describe these methods:

• SNIP [23] and GraSP [41]: These two methods prune the network at initialization by finding the
mask using different criterion. Specifically, SNIP leverages the notion of connection sensitivity
as a measure of importance of the weights to the loss, and then remove unimportant connections.
GraSP aims to preserve the gradient flow through the network by maximizing the gradient of
the pruned subnetwork. The merit of these methods is that they can save the time of training by
pruning at initialization compared to methods that require pretraining[13].

• Lottery Tickets (LT) [9]: The pruning procedure of Lottery Tickets follows a standard three-step-
pipeline: training a full network firstly, using magnitude-based pruning [13] to obtain the ticket’s
architecture, and resetting the weights to the initialization to obtain the initial ticket.6

After obtaining the initial tickets, we train them by standard methods and evaluate the test accuracy
of the final models. We follow a standard training procedure as [23, 41, 17] throughout the entire
paper on ResNet [19] and VGG [38]. The detailed setting can be found in Appendix B.

6In the main body of our paper, we focus on one-shot pruning methods since: 1. SNIP and GraSP are both
pruning methods without significant training expenses, and 2. iterative pruning cannot consistently outperform
one shot pruning, and even when iterative pruning is better, the gap is small, as shown in [27] and [37]. The
discussions and experiments about Iterative Magnitude Pruning are deferred to Appendix D, from which we
conclude the iterative procedure hardly helps initial tickets.

5



0.4 0.6 0.8 0.9 0.95 0.98 0.99
Sparsity Ratio

85

90

95

R
es

N
et

32
T

es
t A

cc
ur

ac
y

GraSP

0.4 0.6 0.8 0.9 0.95 0.98 0.99
Sparsity Ratio

85

90

95

T
es

t A
cc

ur
ac

y

SNIP

0.4 0.6 0.8 0.9 0.95 0.98 0.99
Sparsity Ratio

85

90

95

T
es

t A
cc

ur
ac

y

Lottery Ticket

0.4 0.6 0.8 0.9 0.95 0.98 0.99
Sparsity Ratio

88

90

92

94
V

G
G

19
T

es
t A

cc
ur

ac
y

0.4 0.6 0.8 0.9 0.95
Sparsity Ratio

88

90

92

94

T
es

t A
cc

ur
ac

y

0.4 0.6 0.8 0.9 0.95
Sparsity Ratio

88

90

92

94

T
es

t A
cc

ur
ac

y

original layerwise rearrange corrupted data

Figure 3: Sanity checks of the initial tickets of ResNet32 and VGG19 on CIFAR10.

To sanity-check these three methods and answer the motivating questions proposed in Section 3, we
apply the two strongest checks in our toolbox.

We first check if the pruning procedure can utilize information on the training data. Towards this goal,
we use the combination of random label and random pixel corruptions in Section 3 in the pruning
step. We then train these tickets on the original CIFAR-10 dataset. Surprisingly, all initial tickets
generated by the corrupted dataset behave as well as the originally picked tickets (Figure 3).7 That is
to say, even corrupted data can be used to find good initial tickets.

Given the weak dependency on the data used in the pruning step, we then investigate whether the
architecture (connections between neurons) of the initial tickets matter. We then apply our layerwise
rearrange attack, which totally removes the dependency of the learned connections in each layer on
the initial tickets. We find that the performance of initial tickets does not drop when applying the
layerwise rearrange attack (Figure 3). This contradicts the belief that the pruned structure is essential
for obtaining a subnetwork with good performance.8 We also conduct experiments on the CIFAR-100
dataset. The results are deferred to Appendix E.

4.2 Random Tickets Win the Jackpot

The results of sanity check on initial tickets suggest that:

• Data may not be important for finding good initial tickets.

• The connections of neurons in individual layers in initial tickets can be totally rearranged without
any performance drop, indicating that only the number of remained connections or keep-ratio
(recall the definition in Section 2.2) in each layer matters.

Based on these observations, we only need to find a series of good keep-ratios and randomly prune the
network accordingly. We call the subnetworks obtained by this rule “random tickets”. As illustrated
in the Ticket Zoo in Figure 2, random tickets can be viewed as a special kind of initial tickets since
they use the weights at initialization. Meanwhile, applying layerwise rearrangement to initial tickets
obtained by existing pruning methods can transform these initial tickets to random tickets with the
layerwise keep-ratios determined by the initial tickets.

Though we can obtain the keep-ratios from existing initial tickets in the above way, we are more
willing to push even further to directly design a series of simpler but effective keep-ratios. Towards
this goal, we first investigate the ratios of the initial tickets obtained using GraSP, SNIP and Lottery
Tickets on both VGG and ResNet architectures. From these initial tickets, we extract the following
principle of keep-ratios that leads to good final performance:

7We omit results with significantly high variances or are trivial, i.e. have a 10% accuracy. This kind of
omitting is used on figures shown throughout our paper.

8In the paper [32]’s Appendix A2 part, the authors report applying layerwise rearrange can hurt the perfor-
mance when the pruning ratio is high. However, in their setting they use a "late resetting" trick which is kind of
similar to the Learning Rate Rewinding as we will discuss in the next section of our paper. So it is not surprising
to see that Figure A1 in [32] show evidence that the method may pass the layerwise rearrange check.

6



Table 1: Test accuracy of pruned VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets. In
the full paper, the bold number indicates the average accuracy is within the best confidence interval.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19 (Full Network) 93.70 - - 72.60 - -

LT [9] 93.66±0.08 93.39±0.13 10.00±0.00 72.58±0.27 70.47±0.19 1.00±0.00
SNIP [23] 93.65±0.14 93.39±0.08 81.37±18.17 72.83±0.16 71.81±0.11 10.83±6.74
GraSP [41] 93.01±0.16 92.82±0.20 91.90±0.23 71.07±0.31 70.14±0.21 68.34±0.20

Random Tickets (Ours) 93.77±0.10 93.42±0.22 92.45±0.22 72.55±0.14 71.37±0.09 68.98±0.34

ResNet32 (Full Network) 94.62 - - 74.57 - -

LT [9] 92.61±0.19 91.37±0.28 88.92±0.49 69.63±0.26 66.48±0.13 60.22±0.60
SNIP [23] 92.81±0.17 91.20±0.19 87.94±0.40 69.97±0.17 64.81±0.44 47.97±0.82
GraSP [41] 92.79±0.24 91.80±0.11 89.21±0.26 70.12±0.15 67.05±0.39 59.25±0.33

Random Tickets (Ours) 92.97±0.05 91.60±0.26 89.10±0.33 69.70±0.48 66.82±0.12 60.11±0.16

Table 2: Test accuracy of pruned VGG19 and ResNet32 on Tiny-Imagenet dataset.
Network VGG19 ResNet32

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19/ResNet32 (Full Network) 61.57 - - 62.92 - -

SNIP [23] 61.65±0.17 58.72±0.20 9.37±13.67 54.53±0.34 47.68±0.20 32.09±1.87
GraSP [41] 60.71±0.25 59.11±0.03 57.08±0.16 56.23±0.09 51.36±0.37 39.43±1.52

Random Tickets (Ours) 60.94±0.38 59.48±0.43 55.87±0.16 55.26±0.22 51.41±0.38 43.93±0.18

Keep-ratios decrease with depth. For all these methods on both VGG and ResNet, we observe that
the keep-ratios of initial tickets have the common behavior that the keep-ratio of a deeper layer is
lower, i.e., the keep-ratios decay as a function of depth. Moreover, the keep-ratios of VGG decays
faster than ResNet for all three algorithms.9

We also observe that apart from the overall trend of declining in layerwise keep-ratios, the keep-ratios
in some special layers behave differently. For example, the keep-ratio of the downsampling layers in
ResNet are significantly larger than their neighboring layers.

Smart ratios. Based on these observations, we propose smart-ratios, a series of keep-ratios that take
the form of simple decreasing functions. Specifically, for an L-layer ResNet, we set the keep-ratio of
the linear layer to 0.3 for any sparsity p, and let the keep-ratio of a given layer l, i.e., pl (Section 2.2),
to be proportional to (L− l+1)2 + (L− l+1). For VGG, we divide (L− l+1)2 + (L− l+1) by
l2 for a faster decrease. The details can be found in Appendix C.

We note that we choose our ratio just by trying a few decreasing functions without careful tuning,
but already get good performance. We also conduct ablation studies on ascending keep-ratios and
different rates of decaying keep-ratios. Experimental results suggest that the descending order and,
upon that, the descent rate of keep-ratios is crucial for the final performance of random tickets. This
partially explains why the baseline of randomly pruning over the whole network other than using a
tailored layerwise ratio usually performs poorly. Due to space limitation, we put the detailed ablation
study in the Appendix. Moreover, we point out that as good keep-ratios produce good subnetworks,
one may use keep-ratios as a compact search space for Neural Architecture Search, which may be an
interesting future direction.

The test accuracy on CIFAR-10/CIFAR-100 and Tiny-Imagenet datasets are shown in Table 1 and
2. As reported, our random tickets with smart ratios surpass several carefully designed methods on
several benchmarks and sparsity. And we note that when the sparsity is very high, some layers might
retain only few weights when using SNIP or LT, so that the test accuracy drops significantly [17].
Recently [40] also observe this phenomenon and propose a pruning method without data and be able
to avoid the whole-layer collapse.

9Similar trends are also reported in Figure 3 of [41], Figure 1b of [32] and Figure 11 of [11].

7



5 Case Study: Partially-trained Tickets

In this section, we study pruning methods in a very recent ICLR 2020 paper [37], which is classified as
partially-trained tickets (Section 2.3). These methods can pass our sanity checks on data dependency
and architecture. We then combine our insights of random tickets with these partially-trained tickets
and propose a method called “hybrid tickets” (Figure 2) which further improves upon [37].

5.1 Partially-trained Tickets Pass Sanity Checks

Different from initial tickets, [37] propose a learning rate rewinding method that improves beyond
weights rewinding [10]. The methods used in [37] include weights rewinding and learning rate
rewinding. Both methods first fully train the unpruned network (which we call pretraining) and
generate the mask by magnitude pruning [14]. Then the two methods for retraining are

• Weights rewinding: First rewind the unmasked weights of the pruned subnetwork to their values
at some middle epoch of the pretraining step and then retrain the subnetwork using the same
training schedule as the pretraining step at that epoch.

• Learning rate rewinding: Retrain the masked network with its learned weights using the original
learning rate schedule.

These two methods can be classified as “partially-trained tickets” as they use weights from partially-
trained (or actually for the latter, fully-trained) network. And as pointed out in [37], learning rate
rewinding usually surpasses weights rewinding, so we mostly focus on learning rate rewinding.

Similar to Section 4.1, we conduct sanity checks on learning rate rewinding method. We show the
results of two weaker attacks, layerwise weight shuffling and half dataset (see Section 3) since if
learning rate rewinding can pass these checks, i.e., its performance degrades under these weaker
attacks, it will naturally pass the previous sanity check with strong attacks used in Section 4.1.

As shown in Table 3, both modifications do impair the performance. We note that the degradation
of test accuracy on VGG is not such significant as that on ResNet, which is understandable since
the number of parameters of VGG is huge and the gaps between different methods are small. When
using layerwise weight shuffling, the test accuracy is reduced to being comparable to the case when
the weights are rewound to the initialization (LT). When using half dataset in the pruning step, the
test accuracy also drops compared to learning rate rewinding while it is higher than LT (Section 4.1).
We conclude from these observations that the partially-trained tickets can pass our sanity checks.

5.2 Hybrid Tickets

As the results of the sanity checks on learning rate rewinding suggest, this method truly encodes
information of data into the weights, and the architectures of the pruned subnetworks cannot be
randomly changed without performance drop.

On another side, the success of random tickets shed light on using smarter keep-ratios to attain better
performance. Therefore, we combine our “smart ratios” (Section 4.2) and the idea of learning rate
rewinding. Concretely, we first pretrain the network as in learning rate rewinding, and then, while
pruning the pretrained network, we use magnitude-based pruning layerwise and the keep-ratios are
determined by the smart-ratios. In other words, for a given layer l, we only keep those weights whose
magnitude are in the largest pl portion in layer l, where pl is the smart-ratio of layer l. And finally,
the pruned network is retrained with a full learning-rate schedule as learning rate rewinding does.

We call the pruned subnetworks obtained by this hybrid method “hybrid tickets” (See Figure 2). The
test accuracy on CIFAR-10 and CIFAR-100 is shown in Table 4. As reported, our hybrid tickets gain
further improvement upon learning rate rewinding, especially at high sparsity for both datasets and
network architectures. At the same time, hybrid tickets can avoid pruning the whole layer [17] which
may happen for learning rate rewinding.

6 Conclusion and Discussion

In this paper, we propose several sanity check methods (Section 3) on unstructured pruning methods
that test whether the data used in the pruning step and whether the architecture of the pruned

8



Table 3: Sanity-check on partially-trained tickets on CIFAR-10 dataset.
Network VGG19 ResNet32

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19/ResNet32 (Full Network) 93.70 - - 94.62 - -

LT [9] 93.66±0.08 93.39±0.13 10.00±0.00 92.61±0.19 91.37±0.28 88.92±0.49

Shuffle Weights 93.54±0.04 93.33±0.10 10.00±0.00 92.38±0.36 91.29±0.28 88.52±0.47
Half Dataset 93.79±0.14 93.53±0.13 10.00±0.00 93.01±0.18 92.03±0.21 89.95±0.08
Learning Rate Rewinding [37] 94.14±0.17 93.99±0.15 10.00±0.00 94.14±0.10 93.02±0.28 90.83±0.22

Table 4: Test accuracy of partially-trained tickets and our hybrid tickets of VGG19 and ResNet32 on
CIFAR-10 and CIFAR-100 datasets.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19 (Full Network) 93.70 - - 72.60 - -

OBD [22] 93.74 93.58 93.49 73.83 71.98 67.79
Learning Rate Rewinding [37] 94.14±0.17 93.99±0.15 10.00±0.00 73.73±0.18 72.39±0.40 1.00±0.00

Hybrid Tickets (Ours) 94.00±0.12 93.83±0.10 93.52±0.28 73.53±0.20 73.10±0.11 71.61±0.46

ResNet32 (Full Network) 94.62 - - 74.57 - -

OBD [22] 94.17 93.29 90.31 71.96 68.73 60.65
Learning Rate Rewinding [37] 94.14±0.10 93.02±0.28 90.83±0.22 72.41±0.49 67.22±3.42 59.22±1.15

Hybrid Tickets (Ours) 93.98±0.15 92.96±0.13 90.85±0.06 71.47±0.26 69.28±0.40 63.44±0.34

subnetwork are essential for the final performance. We find that one kind of pruning method,
classified as “initial tickets” (Section 2.3) hardly exploit any information from data, because randomly
changing the preserved weights of the subnetwork obtained by these methods layerwise does not
affect the final performance. These findings inspire us to design a zero-shot data-independent pruning
method called “random tickets” which outperforms or attains similar performance compared to initial
tickets. We also identify one existing pruning method that passes our sanity checks, and hybridize the
random tickets with this method to propose a new method called “hybrid tickets”, which achieves
further improvement. Our findings bring new insights in rethinking the key factors on the success of
pruning algorithms.

Besides, a concurrent and independent work [11] got a similar conclusion to our layerwise rearrange
sanity check. As a complementary to our results, the results on ImageNet in [11] shows our finding
can be generalized to large-scale datasets. Both our works advocate to rigorously sanity-check future
pruning methods and take a closer look at opportunities to prune early in training.

9



Acknowledge

We thank Jonathan Frankle, Mingjie Sun and Guodong Zhang for discussions on pruning literature.
YC and TW are partially supported by the elite undergraduate training program of School of Mathe-
matical Sciences in Peking University. TC and RG are supported in part by the Zhongguancun Haihua
Institute for Frontier Information Technology. LW was supported by National Key R&D Program of
China (2018YFB1402600), Key-Area Research and Development Program of Guangdong Province
(No. 2019B121204008) and Beijing Academy of Artificial Intelligence. JDL acknowledges support
of the ARO under MURI Award W911NF-11-1-0303, the Sloan Research Fellowship, and NSF CCF
2002272.

Broader Impact

We investigate into neural network pruning methods, which is an important way to reduce compu-
tational resource required in modern deep learning. It can potentially help enable faster inference,
conserve less energy, and make AI widely deployable and assessable in mobile and embedded systems.
Our experiments can also provide more insight for neural networks in deep learning algorithms,
which could potentially lead to the development of better deep learning algorithms.

References
[1] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In

Advances in Neural Information Processing Systems, pages 2270–2278, 2016.

[2] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 322–332, Long Beach, California, USA, 09–15 Jun 2019.
PMLR.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019.

[5] Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-compression” algorithms for
neural net pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8532–8541, 2018.

[6] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon. pages 4857–4867, 2017.

[7] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685, 2019.

[8] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

[9] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[10] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. arXiv preprint arXiv:1912.05671, 2019.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neu-
ral networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576,
2020.

10



[12] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[13] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[15] Babak Hassibi, David G.Stork, and Gregory Wolff. Optimal brain surgeon and general network
pruning. pages 293 – 299 vol.1, 02 1993.

[16] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[17] Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Pruning untrained
neural networks: Principles and analysis. arXiv preprint arXiv:2002.08797, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
1389–1397, 2017.

[21] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
In Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

[22] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[23] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations,
2019.

[24] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search.
In International Conference on Learning Representations, 2019.

[26] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2736–2744, 2017.

[27] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019.

[28] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l0 regularization. In International Conference on Learning Representations, 2018.

[29] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In Proceedings of the IEEE international conference on computer
vision, pages 5058–5066, 2017.

[30] Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. arXiv preprint arXiv:2002.00585, 2020.

11



[31] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference.

[32] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. In Advances in Neural
Information Processing Systems, pages 4933–4943, 2019.

[33] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Advances in neural information processing systems,
pages 107–115, 1989.

[34] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman.
Data-independent neural pruning via coresets. In International Conference on Learning Repre-
sentations, 2020.

[35] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann Lecun, and Nathan Srebro. To-
wards understanding the role of over-parametrization in generalization of neural networks.
arXiv: Learning, 2018.

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pages
4095–4104, 2018.

[37] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in
neural network pruning. In International Conference on Learning Representations, 2020.

[38] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[39] Suraj Srinivas and R Venkatesh Babu. Generalized dropout. arXiv preprint arXiv:1611.06791,
2016.

[40] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467,
2020.

[41] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[42] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in neural information processing systems, pages 2074–2082,
2016.

[43] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G.
Baraniuk, Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more
efficient training of deep networks. In International Conference on Learning Representations,
2020.

[44] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[45] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:
Zeros, signs, and the supermask. In Advances in Neural Information Processing Systems, pages
3592–3602, 2019.

[46] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

[47] Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. 2016.

[48] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

12



A Illustration of Layerwise Rearrange

The operation layerwise arrangement is illustrated in Figure 4.

Input

Output

Input

Output

Rearrange

Retrain

Shuffle connections in 
each layer separately

Layerwise

Figure 4: Layerwise rearrange. This operation keeps the number of preserved weights in each layer
but totally destroys the network architecture (connections) found by the pruning methods for each
individual layer.

B Experiment Settings

In all experiments throughout the paper, we use three benchmark image classification datasets, i.e.,
CIFAR-10, CIFAR-100 and Tiny-ImageNet10 with VGG [38] and ResNet [19]. The CIFAR-10
dataset consists of 50,000 32x32 color (three-channel) training examples and 10,000 test examples,
and has 10 classes of labels. The CIFAR-100 dataset consists of 50,000 32x32 color training examples
and 10,000 test examples. Different from CIFAR-10, CIFAR-100 has 100 classes of labels with
500/100 training/test examples for each class. The Tiny-Imagenet dataset consists of 100,000 64x64
color training examples and 10,000 test examples. It has 200 classes, and each class has 500 training
examples with 50 validation examples.

Following the setting in [41, 17], we double the number of filters in each convolutional layer of all
the ResNet architectures throughout the paper in order to make comparisons with these baseline
algorithms. The pruned network is trained with Kaiming initialization [18], using SGD for 160
epochs for CIFAR-10/100, and 300 epochs for Tiny-ImageNet, with an initial learning rate of 0.1 and
batch size 64. The learning rate is decayed by a factor of 0.1 at 1/2 and 3/4 of the total number of
epochs, together with a weight decay factor of 1e-4. Moreover, we run each experiment for 3 trials
and report the best test accuracy and the corresponding standard deviations.

Our code is based on the released code of [41, 27] (https://github.com/alecwangcq/GraSP,
https://github.com/Eric-mingjie/rethinking-network-pruning).

C Details of Random Tickets and Ablation Studies

In this section, we first describe the detailed process of generating random tickets. Then we provide
ablation studies on the performance of different smart ratios; and the performance of our proposed
methods (random tickets, hybrid tickets) on different network architectures.

C.1 Generation of Random Tickets

We first note that in different pruning methods, the number of weights retained in linear layer is
chosen differently. In SNIP [23] and GraSP [41], the linear layer is pruned together with other

10Can be downloaded from http://cs231n.stanford.edu/tiny-imagenet-200.zip

13

https://github.com/alecwangcq/GraSP
https://github.com/Eric-mingjie/rethinking-network-pruning
http://cs231n.stanford.edu/tiny-imagenet-200.zip


Table 5: Ablation study of different keep-ratios on CIFAR-10 dataset.
Network VGG19 ResNet32

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19/ResNet32 (Full Network) 93.70 - - 94.62 - -

Random Tickets (Ours) 93.77±0.10 93.42±0.22 92.45±0.22 92.97±0.05 91.60±0.26 89.10±0.33
Balanced 91.30±0.22 89.79±0.22 86.31±0.32 91.78±0.17 90.06±0.16 86.52±0.36
Ascending 91.79±0.24 90.29±0.17 87.22±0.30 10.00±0.00 10.00±0.00 10.00±0.00
Linear Decay 93.83±0.23 93.34±0.12 92.32±0.14 92.68±0.03 91.60±0.23 88.54±0.14
Cubic Decay 93.90±0.15 93.63±0.29 92.66±0.28 92.74±0.13 91.56±0.23 89.14±0.16

convolutional layers, while in Lottery Tickets [9], the linear layer is fully preserved. For simplicity,
we fix the keep-ratio of linear layer to be 30%11 for all experiments on smart ratio.

The smart ratios for the convolutional layers are designed as follows. As mentioned in Section 4.2, for
an L-layer ResNet12, we set the keep-ratio of l-th layer to be proportional to (L− l+1)2+(L− l+1).
Concretely, this is achieved by following steps:

1. Calculate the number of weights to be retained as (1− p)
∑L

i=1 ml.

2. Set the keep-ratio of layer l as (L− l + 1)2 + (L− l + 1).
3. Linearly scale the keep-ratio of each layer such that the final number of retained weights is equal

to (1− p)
∑L

i=1 ml.

For an L-layer VGG net, the process is similar except that we add an extra heterogeneous constant
penalty for each layer to make the smart ratios decay faster. Specifically, we replace (L− l + 1)2 +

(L− l + 1) with (L−l+1)2+(L−l+1)
l2 in the second step.

We further note that, for several small sparsity parameters p (e.g., p = 0.9), linearly scaling the
keep-ratio as in step 3 may result in a keep-ratio greater than 1. Under these circumstances, we
simply set these layers’ keep-ratios to be 1 and move the extra retained parameters to the deeper layer
immediately behind them.

C.2 Ablation Studies on Smart Ratio

We conduct experiments on CIFAR-10 dataset to compare several types of keep-ratios including
ascending, balanced, and descending.

1. Ascending keep-ratio: Reverse our smart ratio.
2. Balanced keep-ratio: Set the keep-ratio of each layer to be 1− p, where p is the target sparsity.
3. Linear decay: Set the keep-ratio of l-th convolutional layer to be proportional to L− l + 1.
4. Cubic decay: Set the keep-ratio of l-th convolutional layer to be proportional to (L− l + 1)3.

For all the ratios, the keep-ratio of linear layer is uniformly set to be 30%. The results can be found
in Table 5. We observe that the balanced and ascending keep-ratios lead to much worse performance
than the descending keep-ratios, while descending keep-ratios with different decaying speeds are
comparative on CIFAR10. As mentioned in Section 4.2, we did not tune the ratio so much, and the
results in Table 5 suggest that to get a better performance, one may use different keep-ratios for
different sparsity to generate high-performance random tickets.

C.3 Ablation Studies on Different Architectures

We test our proposed random tickets and hybrid tickets on more architectures including ResNet20/56
and VGG11/16 on CIFAR-10/100 datasets. The comparison of our random tickets and those baseline
methods with VGG11/16 and ResNet20/56 on CIFAR-10/100 can be found in Table 6, while the
results of our hybrid tickets can be found in Table 7. These results show that our smart ratio can
generalize at both ResNet/VGG architectures with different depths.

1130% is similar to those keep-ratios of linear layers obtained by SNIP and GraSP, and we also find that the
choice of keep-ratio of linear layer hardly affects the final performance.

12L denotes the total number of convolutional and linear layers in a network.

14



Table 6: Test accuracy of pruned VGG11/16 and ResNet20/56 on CIFAR-10 and CIFAR-100 datasets.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG11 (Full Network) 92.05 - - 69.09 - -

LT [9] 91.50±0.27 90.35±0.12 86.71±0.34 68.58±0.18 67.42±0.32 65.23±0.55
SNIP [23] 91.29±0.06 90.77±0.35 89.16±0.07 68.65±0.58 67.48±0.35 64.05±0.37
GraSP [41] 90.48±0.08 89.70±0.12 88.46±0.31 66.11±0.18 64.47±0.56 62.07±0.18

Random Tickets (Ours) 91.67±0.24 90.86±0.26 89.11±0.16 68.82±0.47 66.90±0.09 63.85±0.19

VGG16 (Full Network) 93.77 - - 73.24 - -

LT [9] 93.56±0.17 93.23±0.08 36.27±45.5 72.32±0.11 70.65±0.18 64.88±0.72
SNIP [23] 93.47±0.16 93.13±0.05 92.05±0.02 72.41±0.18 71.18±0.26 67.25±0.37
GraSP [41] 93.03±0.16 92.71±0.33 91.79±0.11 71.08±0.43 69.99±0.41 67.68±0.29

Random Tickets (Ours) 93.80±0.06 93.31±0.17 92.13±0.15 72.42±0.14 71.12±0.28 68.17±0.36

ResNet20 (Full Network) 94.37 - - 73.45 - -

LT [9] 91.69±0.06 90.12±0.12 86.92±0.21 67.25±0.44 63.47±0.10 52.40±0.42
SNIP [23] 91.76±0.06 89.91±0.07 85.28±0.07 67.21±0.38 61.88±0.23 47.25±0.77
GraSP [41] 91.64±0.17 90.24±0.15 86.60±0.05 67.53±0.46 63.60±0.06 53.82±0.38

Random Tickets (Ours) 91.88±0.01 90.13±0.10 86.66±0.09 67.49±0.35 63.42±0.18 54.62±0.32

ResNet56 (Full Network) 94.49 - - 76.94 - -

LT [9] 92.70±0.42 92.14±0.23 89.59±0.40 71.50±0.44 69.11±0.43 54.24±0.56
SNIP [23] 93.37±0.11 43.05±19.67 10.00±0.00 63.01±4.15 6.52±3.86 1.00±0.00
GraSP [41] 93.30±0.15 92.22±0.10 22.14±13.56 73.64±0.19 70.03±0.51 10.50±9.22

Random Tickets (Ours) 93.53±0.11 92.24±0.21 89.80±0.24 72.87±0.66 70.88±0.39 63.60±0.58

Table 7: Test accuracy of partially-trained tickets and our hybrid tickets of VGG11/16 and
ResNet20/56 on CIFAR-10 and CIFAR-100 datasets.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG11 (Full Network) 92.05 - - 69.09 - -

Learning Rate Rewinding [37] 92.23±0.07 91.81± 0.22 88.71±0.36 69.41±0.29 68.70±0.25 66.64±0.36

Hybrid Tickets (Ours) 92.21±0.13 91.61± 0.12 91.04±0.21 69.60±0.34 69.08±0.41 67.45±0.02

VGG16 (Full Network) 93.77 - - 73.24 - -

Learning Rate Rewinding [37] 94.01±0.12 93.70±0.22 10.00±0.00 74.14±0.17 72.82±0.35 65.51±1.41

Hybrid Tickets (Ours) 94.01±0.11 93.89±0.22 93.31±0.04 73.81±0.28 72.88±0.44 70.75±0.15

ResNet20 (Full Network) 94.37 - - 73.45 - -

Learning Rate Rewinding [37] 93.46±0.15 92.12±0.14 88.78±0.23 70.45±0.10 65.27±1.26 54.77±0.55

Hybrid Tickets (Ours) 93.18±0.19 92.13±0.12 89.06±0.17 68.83±0.31 65.77±0.84 57.74±0.59

ResNet56 (Full Network) 94.49 - - 76.94 - -

Learning Rate Rewinding [37] 94.57±0.34 94.13±0.26 92.35±0.14 75.69±0.71 68.22±0.46 57.82±0.48

Hybrid Tickets (Ours) 94.10±0.34 93.39±0.13 92.02±0.13 73.37±1.12 71.20±0.90 65.44±1.70

D Discussions of Iterative Magnitude Pruning (IMP)

In [9], the authors propose to find initial tickets with extremely high sparsities by iteratively throwing
out weights with the smallest magnitude since one-shot LT method can find initial tickets with a
certain layer being fully pruned. This method is named as iterative magnitude pruning (IMP) and is
regarded as a standard pruning method such as in [37] and [10]. In this section, however, we show
that the iterative procedure itself cannot help initial tickets to pass our sanity-checks although it can
help these tickets to be trainable at a high level of sparsity.

In both [9] and [27], the authors admit that initial tickets found in VGG and ResNet architectures
with CIFAR-10 and more complicated datasets are robust to re-initialization, and thus is not efficient.
However, since this phenomenon is verticle to the property we discuss throughout our paper, i.e.,
whether the iterative procedure can help to find a good structure or to encode data information into

15



initial tickets, for the integrity of our work, we apply our sanity-checks on iteratively-found initial
tickets and show the experiment results in Figure 5.

0.59 0.672 0.738 0.79 0.832 0.866 0.9 0.95 0.98 0.99

Sparsity Ratio

84

86

88

90

92

94

T
es

t 
A

cc
u
ra

cy

ResNetIMP

0.59 0.6720.738 0.79 0.8320.866 0.9 0.95 0.98 0.99

Sparsity Ratio

84

86

88

90

92

94

T
es

t 
A

cc
u
ra

cy

VGGIMP

original layerwise rearrange corrupted data

Figure 5: Sanity checks of iteratively-found initial tickets of ResNet32 and VGG19 on CIFAR10.

The results are similar to those of one-shot LT initial tickets, that is iteratively-found initial tickets
cannot pass sanity-checks. One interesting thing we observe from the figure is that although on VGG
the corrupt data check causes a performance gap, the tickets obtained by it is much more stable when
the sparsity is high.13 This suggests there is still room to explore how to use the data effectively to
get trainable sparse initial tickets.

Moreover, we investigate the efficiency of iterative tickets including iterative LT and iterative LR
rewinding. The results can be found in Table 8. From the table we can get the following several
conclusions.

• The iterative procedure even hardly helps when finding initial tickets of modern architec-
tures as ResNet and VGG. Compared to LT, Iterative LT only gains a little improvement or
even performs much worse than LT. Furthermore, our Random Tickets can behave better than
both Iterative LT and LT. This observation further strengthens our statement that initial tickets’
performance to a large extent depend on the layerwise keep-ratios obtained. At the same time, this
observation suggests that it may be difficult to answer the question of whether we can find a kind
of initial ticket that can pass sanity-checks. The exploration will be left as future works.

• The iterative procedure helps a LOT when finding partially-trained tickets. Compared to
Learning Rate Rewinding, Iterative LR rewinding can benefit from the iterative process and thus
becomes a hard-to-beat sota up to now.

• Iterative Hybrid Tickets can also benefit from the iterative procedure. Due to the simple
structure of our smart ratio, the Iterative Hybrid Tickets (IHT) cannot surpass the Iterative LR
rewinding method. However, note that the performance gap is small, we assert that this phenomenon
together with our sanity-checks on LR rewinding suggests there must be some information encoded
in both weights and partially-trained tickets’ structure, and that’s the reason causes the different
effectiveness of the iterative procedure on initial/partially-trained tickets. This sheds light that if
we can find a better way to determine the layerwise keep-ratios explicitly, we can find a better
pruning method instead of keeping weights of largest magnitude globally to implicitly find those
keep-ratios.

E Sanity-Checks on More Complicated Dataset

Also for the integrity of our work, in this section we provide results of applying our sanity-checks
using the CIFAR-100 dataset with ResNet32/VGG19 architectures on initial tickets. The results are
presented in Figure 6.

Obviously, as we expect, we can see conclusions on initial tickets still hold on this more complicated
dataset: initial tickets all failed to pass our sanity-checks, suggesting the generalizability across
datasets of our checking methods.

13As a comparison, the original VGGIMP’s 0.98 sparsity result is 78.85± 9.76.

16



Table 8: Test accuracy of pruned VGG19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets,
indicating the effectiveness of the iterative procedure on both LR Rewinding and Hybrid Tickets.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%

VGG19 (Full Network) 93.70 - - 72.60 - -

LT [9] 93.66±0.08 93.39±0.13 10.00±0.00 72.58±0.27 70.47±0.19 1.00±0.00
Random Tickets (Ours) 93.77±0.10 93.42±0.22 92.45±0.22 72.55±0.14 71.37±0.09 68.98±0.34
Iterative LT [9] 93.72±0.16 92.84±0.49 78.85±9.80 72.74±0.36 71.18±0.12 67.69±0.50

Learning Rate Rewinding [37] 94.14±0.17 93.99±0.15 10.00±0.00 73.73±0.18 72.39±0.40 1.00±0.00
Iterative LR rewinding 94.13±0.09 94.16±0.19 93.95±0.14 74.53±0.09 74.52±0.07 72.90±0.11
Iterative Hybrid Tickets (Ours) 93.95±0.12 94.15±0.20 93.87±0.24 74.24±0.04 74.19±0.06 72.63±0.28

ResNet32 (Full Network) 94.62 - - 74.57 - -

LT [9] 92.61±0.19 91.37±0.28 88.92±0.49 69.63±0.26 66.48±0.13 60.22±0.60
Random Tickets (Ours) 92.97±0.05 91.60±0.26 89.10±0.33 69.70±0.48 66.82±0.12 60.11±0.16
Iterative LT [9] 92.46±0.15 91.22±0.36 88.44±0.19 69.13±0.21 66.69±0.45 59.53±0.57

Learning Rate Rewinding [37] 94.14±0.10 93.02±0.28 90.83±0.22 72.41±0.49 67.22±3.42 59.22±1.15
Iterative LR rewinding 94.86±0.07 94.71±0.08 93.43±0.15 74.57±0.08 72.59±0.12 67.17±0.72
Iterative Hybrid Tickets (Ours) 94.73±0.04 94.35±0.07 93.45±0.12 72.89±0.31 71.23±0.11 67.81±0.09

0.40 0.60 0.80 0.9 0.95 0.98 0.99

Sparsity Ratio

30

40

50

60

70

80

R
es

N
et

3
2

T
es

t 
A

cc
u
ra

cy

GraSP

0.40 0.60 0.80 0.9 0.95 0.98 0.99

Sparsity Ratio

30

40

50

60

70

80

T
es

t 
A

cc
u
ra

cy

SNIP

0.40 0.60 0.80 0.9 0.95 0.98 0.99

Sparsity Ratio

30

40

50

60

70

80

T
es

t 
A

cc
u
ra

cy

Lottery Ticket

0.40 0.60 0.80 0.9 0.95 0.98 0.99

Sparsity Ratio

60

65

70

75

V
G

G
1
9

T
es

t 
A

cc
u
ra

cy

0.40 0.60 0.80 0.9 0.95

Sparsity Ratio

60

65

70

75

T
es

t 
A

cc
u
ra

cy

0.40 0.60 0.80 0.9 0.95

Sparsity Ratio

60

65

70

75

T
es

t 
A

cc
u
ra

cy

original layerwise rearrange corrupted data

Figure 6: Sanity checks of the initial tickets of ResNet32 and VGG19 on CIFAR100.

F Other Related Works

We add some related works on network pruning. Most pruning methods are applied to pre-trained
networks and thus require training the full network [33, 22, 15, 6]. Another line of pruning methods
prune the models during training [28, 5, 46, 12]. However, these methods do not save many resources
as they require the whole network during training time [17].

Towards a better understanding of network pruning, [27] evaluates several structrued pruning methods
and concludes that training a large, over-parameterized model is often not necessary to obtain an
efficient final model. [3] releases a library, ShrinkBench, for comprehensively evaluating pruning
methods. [32] studies the transfer of pruned networks across datasets. [30] gives a theoretical
understanding of the lottery tickets hypothesis. [45] shows the importance of setting weights to zero,
the signs of weights and masking. [43] shows the tickets can be obtained in an earlier phase than that
in [9].

17


	Introduction
	Preliminaries
	Notations
	Unstructured Pruning (Pruning Individual Weights)
	Pruning Pipeline and Tickets

	Sanity Check Approaches
	Checking the Dependency on Data
	Checking the Importance of the Pruned Network's Architecture

	Case Study: Initial Tickets
	Initial Tickets Fail to Pass Sanity Checks
	Random Tickets Win the Jackpot

	Case Study: Partially-trained Tickets
	Partially-trained Tickets Pass Sanity Checks
	Hybrid Tickets

	Conclusion and Discussion
	Illustration of Layerwise Rearrange
	Experiment Settings
	Details of Random Tickets and Ablation Studies
	Generation of Random Tickets
	Ablation Studies on Smart Ratio
	Ablation Studies on Different Architectures

	Discussions of Iterative Magnitude Pruning (IMP)
	Sanity-Checks on More Complicated Dataset
	Other Related Works

