
A Appendices

A.1 Guarantees on the decrease of the training loss

As the scores are updated, the relative order of the importances is likely shuffled, and some connections
will be replaced by more important ones. Under certain conditions, we are able to formally prove that
as these replacements happen, the training loss is guaranteed to decrease. Our proof is adapted from
[Ramanujan et al., 2020] to consider the case of fine-tuable W.

We suppose that (a) the training loss L is smooth and admits a first-order Taylor development
everywhere it is defined and (b) the learning rate of W (αW > 0) is small. We define the TopK
function as the analog of the Topv function, where k is an integer instead of a proportion. We first
consider the case where k = 1 in the TopK masking, meaning that only one connection is remaining
(and the other weights are deactivated/masked). Let’s denote Wi,j this sole remaining connection at
step t. Following Eq (1), it means that ∀1 ≤ u, v ≤ n, S(t)

u,v ≤ S(t)
i,j .

We suppose that at step t+ 1, connections are swapped and the only remaining connection at step
t+ 1 is (k, l). We have: {

At t, ∀1 ≤ u, v ≤ n, S(t)
u,v ≤ S(t)

i,j

At t+ 1, ∀1 ≤ u, v ≤ n, S(t+1)
u,v ≤ S(t+1)

k,l

(6)

Eq (6) gives the following inequality: S(t+1)
k,l − S(t)

k,l ≥ S
(t+1)
i,j − S(t)

i,j . After re-injecting the gradient
update in Eq (2), we have:
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∂ak
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k,l xl ≥ −αS

∂L
∂ai
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(t)
i,j xj (7)

Moreover, the conditions in Eq (6) lead to the following inferences: a(t)
i = W

(t)
i,j xj and a(t+1)

k =

W
(t+1)
k,l xl.

Since αW is small, ||(a(t+1)
i , a

(t+1)
k ) − (a

(t)
i , a

(t)
k )||2 is also small. Because the training loss L is

smooth, we can write the 1st order Taylor development of L in point (a
(t)
i , a

(t)
k ):
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(8)

The first term is null because of inequalities (6) and the second term is negative because of inequality
(7). Thus L(a

(t+1)
i , a

(t+1)
k ) ≤ L(a

(t)
i , a

(t)
k ): when connection (k, l) becomes more important than

(i, j), the connections are swapped and the training loss decreases between step t and t+ 1.

Similarly, we can generalize the proof to a set E = {
(
(ai, bi), (ci, di)

)
; i ≤ N} of N swapping

connections.

We note that this proof is not specific to the TopK masking function. In fact, we can extend the proof
using the Threshold masking function M := (S >= τ) [Mallya and Lazebnik, 2018]. Inequalities
(6) are still valid and the proof stays unchanged.
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Last, we note these guarantees do not hold if we consider the absolute value of the scores |Si,j | (as
it is done in Ding et al. [2019] for instance). We prove it by contradiction. If it was the case, it
would also be true one specific case: the negative threshold masking function (M := (S < τ) where
τ < 0).

We suppose that at step t+ 1, the only remaining connection (i, j) is replaced by (k, l):{
At t, ∀1 ≤ u, v ≤ n, S(t)

i,j ≤ τ ≤ S
(t)
u,v

At t+ 1, ∀1 ≤ u, v ≤ n, S(t+1)
k,l ≤ τ ≤ S(t+1)

u,v

(9)

The inequality on the gradient update becomes: −αS
∂L
∂ak

W
(t)
k,l xl < −αS

∂L
∂ai

Wi,jxj and following

the same development as in Eq (8), we have L(a
(t+1)
i , a

(t+1)
k )−L(a

(t)
i , a

(t)
k ) ≥ 0: the loss increases.

We proved by contradiction that the guarantees on the decrease of the loss do not hold if we consider
the absolute value of the score as a proxy for importance.

A.2 Code and Hyperparameters

Our code to reproduce our results along with the commands to launch the scripts are available3 through
the Hugging Face Transformers library [Wolf et al., 2019]. We also detail all the hyperparameters
used in our experiments.

All of the presented experiments run on a single 16GB V100.

A.3 Inference speed

Early experiments show that even though models fine-pruned with movement pruning are extremely
sparse and can be stored efficiently, they do not benefit from significant improvement in terms of
inference speed when using the standard PyTorch inference. In fact, in our implementation, sparse
matrices are simply matrices with lots of 0 inside which does not induce significant inference speedup
without specific hardware optimizations. Recently, hardware manufacturers have announced chips
specifically designed for sparse networks4.

3huggingface.co/mvp
4https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
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