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Abstract

We present a consistent algorithm for constrained classification problems where the
objective (e.g. F-measure, G-mean) and the constraints (e.g. demographic parity
fairness, coverage) are defined by general functions of the confusion matrix. Our
approach reduces the problem into a sequence of plug-in classifier learning tasks.
The reduction is achieved by posing the learning problem as an optimization over
the intersection of two sets: the set of confusion matrices that are achievable and
those that are feasible. This decoupling of the constraint space then allows us to
solve the problem by applying Frank-Wolfe style optimization over the individual
sets. For objective and constraints that are convex functions of the confusion matrix,
our algorithm requires O(1/ε2) calls to the plug-in subroutine, which improves on
the O(1/ε3) calls needed by the reduction-based algorithm of Narasimhan (2018)
[29]. We show empirically that our algorithm is competitive with prior methods,
while being more robust to choices of hyper-parameters.

1 Introduction

In an increasing number of machine learning tasks, one is required to train a classifier with constraints
on multiple metrics such as fairness, coverage, recall, etc [16, 17, 2, 9, 10]. Often, the objective and
constraints in these problems are not simple metrics such as classification error, and may have a
more complex non-decomposable structure, i.e. may not be expressible a simple average of errors on
individual data points. Examples of such metrics include the F-measure and G-mean used in class-
imbalanced problems [27, 24], the predictive parity criteria used in ML fairness [7], KL-divergence
based metrics used in distribution matching tasks [12, 14], and many more.

A common feature of the above metrics is that they can all be defined as a function of a classifier’s
confusion matrix. We are therefore interested in constrained learning problems where the objectives
and constraints are general functions of the confusion matrix. Our goal is to design a statistically
consistent algorithm for solving these problems, i.e. an algorithm that converges in the limit of infinite
training data to an optimal feasible classifier for these problems.

In previous work, Narasimhan (2018) [29] provide consistent algorithms for constrained learning
problems by reducing them into a sequence of easy-to-solve sub-problems. Each of these sub-
problems is a linear metric minimization task and involves learning a plug-in classifier, a classifier
constructed by fine-tuning a threshold (or a weight matrix for multiclass problems) on a pre-trained
class probability model. For convex functions of the confusion matrix, their method requires O(1/ε3)
calls to the plug-in learning routine to converge to a classifier that is ε-optimal and ε-feasible. In this
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paper, we build on their work and provide an algorithm which requires only O(1/ε2) calls to the
plug-in routine to reach a classifier of the same quality.

Like the prior method, the key to our approach is to translate the constrained learning problem
into an optimization problem over a finite dimensional space. While Narasimhan (2008) formulate
this optimization problem over the space of confusion matrices that are achievable by a classifier,
we formulate the problem over the intersection of two convex sets: the set of confusion matrices
that are achievable, and the set of confusion matrices that are feasible, i.e. satisfy the constraints.
The decoupling of the search space into two sets then allows us to adapt the Frank-Wolfe based
algorithm of Gidel et al. (2018) [15] to solve the optimization. Our approach makes use of two
oracle subroutines, both of which can be implemented efficiently. The first oracle minimizes a
linear function over the space of achievable confusion matrices, which amounts to learning a plug-in
classifier. The second performs a linear minimization over the space of feasible matrices, which is
often a straight-forward convex program.

The proposed algorithm enjoys several practical benefits. Firstly, the algorithm is computationally
efficient to implement: given a pre-trained class probability model (e.g. logistic regression), the
algorithm performs a sequence of efficient threshold optimizations on the predicted class probability
outputs. Secondly, it can be applied readily to multi-class problems and fairness problems with
multiple groups. Thirdly, the number of optimization parameters needed by our algorithm scales
linearly with the number of classes and groups, and does not directly depend of the number of
constraints. This is in contrast to the method of Narasimhan (2018), which maintains an explicit
parameter for each constraint. Our approach instead solves a linear minimization problem over the
feasible matrices, which has the advantage of leveraging specialized convex solvers that exploit
redundancies in the constraints.

Contributions. The following are the main contributions in this paper. (i) We provide an algorithm
for complex constrained classification problems , which solves a sequence of plug-in learning tasks
(see Section 3). (ii) We show that our algorithm is statistically consistent and enjoys improved
convergence guarantees (see Section 4). (iii) We present experiments on benchmark fairness datasets
and show that the proposed algorithm performs at least as well as existing methods, while being more
robust to choices of hyper-parameters (see Section 5).

Related Work. Prior methods for optimizing complex evaluation metrics fall mainly under two
broad categories: plug-in style methods that enjoy consistency guarantees [35, 25, 34, 33, 44, 3, 29],
and approaches that optimize convex relaxations to the metrics and are not necessarily consistent
[20, 22, 32, 21, 16, 37, 30, 19]. There has also been much work on training classifiers with objectives
and constraints that are linear constraints on the confusion matrix, with the main focus being on
fairness constraints [16, 46, 2, 23, 11, 9, 10, 31]. There’s however been relatively lesser work on
handling objectives and constraints that are non-linear in the confusion matrix [29, 30, 5]. The more
recent of these approaches by Narasimhan et al. (2019) [30] formulates the constrained learning
problem as a Lagrangian game played by three players, and seeks to find an equilibrium of the game.
However, their main proposal makes use of “surrogate relaxations” for the entries of the confusion
matrix and does not come with consistency guarantees. We compare against this algorithm in our
experiments. Narasimhan et al. (2019) do however also provide a more idealized algorithm that
enjoys the same convergence rate as our approach to the optimal feasible solution, but do not provide
a consistency analysis for this method. In Section 4 and Appendix B, we discuss in detail about the
technical differences between this idealized algorithm of theirs and our approach.

2 Preliminaries and Background

We are interested in general multiclass learning problems with an instance space X and label space
Y = [n] = {1, 2, . . . , n}. For binary classification problems, we will denote the label space using
Y = {0, 1}. We use ∆n to denote the probability simplex in Rn+. We assume examples are drawn
i.i.d. from some distribution D on X × [n], with marginal µ on X , conditional class probabilities
ηi(x) = P(Y = i|X = x), and class priors πi = P(Y = i). Given a finite training sample
S = ((x1, y1), ..., (xN , yN )) ∈ (X × [n])

N drawn i.i.d. from D, the task is to learn a multiclass
classifier h : X → [n], or more generally, a randomized multiclass classifier h : X → ∆n, which
given an instance x predicts a class label in [n] according to the probability distribution specified by
h(x). LetH denote the the space of all randomized classifiers.
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We will also be interested in fair classification problems where each instance belongs to one of m
protected groups, and will denote the protected group associated with instance X by A(X) ∈ [m].
We denote νa = P(A(X) = a) and πa,i = P(A(X) = a, Y = i).

Learning problem. We measure the performance of a classifier w.r.t. distribution D using a perfor-
mance measure ψ̄ : H → R+ that associates a non-negative value ψ̄(h;D) ∈ R+ to each classifier
h ∈ H, with lower values indicating better performance. We also require the classifier to satisfy
K constraints, given by φ̄k(h;D) ≤ 0, k ∈ [K], where φ̄k : H → R associates a real value to a
classifier. Our goal is to then solve the following optimization problem over classifiers:

min
h∈H

ψ̄(h) s.t. φ̄k(h) ≤ 0, ∀k ∈ [K]. (OP1)

Confusion matrices. We define the confusion matrix of a classifier h as a n × n matrix C[h] ∈
[0, 1]n×n where the ij-the entry is the probability that the true class for an instance is i and the
predicted class is j:

Cij [h] = PY,Ŷ∼h(X)(Y = i, Ŷ = j),

where Ŷ ∼ h(X) denotes a random draw of label from h(X). For fairness settings, we will also be
interested in the group-specific confusion matrices:

Caij [h] = PX,Y,Ŷ∼h(X)(Y = i, Ŷ = j, A(X) = a)

Complex objectives and constraints. We will consider performance metrics ψ̄ and constraint
functions φ̄k’s that are general functions of the confusion matrix of classifier h. This includes several
common examples, including those that are non-decomposable and cannot be expressed as a simple
expectation of errors on individual examples.

• Class-imbalanced metrics such as the G-mean, H-mean and Q-mean that emphasize equal perfor-
mance acrossa all classes [27, 24, 39, 42, 26, 28] and metrics used in signal detection [41]:

G-mean = 1−
(∏n

i=1
Cii
πi

)1/n
; H-mean = 1− n

(∑n
i=1

πi
Cii

)−1
Q-mean =

√
1
n

∑n
i=1

(
1− Cii

πi

)2
; Min-max = maxi∈[n]

(
1− Cii

πi

)
• Fairness constraints used to control the discrepancy in the performance of a classifier across

different protected groups [17]:

Demographic Parity: maxa∈[m]

∣∣∣ 1
νa

(Ca01 + Ca11)− 1
m

∑m
b=1

1
νb

(
Cb01 + Cb11

)∣∣∣ ≤ ε
Equal Opportunity: maxa∈[m]

∣∣∣ 1
πa,1

Ca11 − 1
m

∑m
b=1

1
πb,1

Cb11

∣∣∣ ≤ ε,
where ε is an acceptable slack.

• Coverage constraints that require the proportion of predictions in a particular class to match a
target value [16, 10, 8], and the related KL-divergence metric used in the quantification literature
[12, 14, 21]:

Binary Coverage: C01 + C11 ≤ ε

KL-divergence:
∑n
i=1 πi log

(
πi∑n

j=1 Cji

)
≤ ε.

Confusion vectors. For ease of presentation, we will work with a generalized version of a confusion
matrix, which we refer to as a confusion vector. For a classifier h, we overload notation and define a
confusion vector C[h] ∈ Rd as:

Ci[h] = EX,Y [EŶ∼h(X)[σi(X,Y, Ŷ )]],

for some sufficient statistics σi : X × [n]× [n]→ [0, 1] computed on the instance X , true labels Y
and predicted labels Ŷ . For example, when σi(X,Y, Ŷ ) = 1(Y = i, Ŷ = i), we get the diagonal
elements of the standard confusion matrix with d = n. When we set σi(X,Y, Ŷ ) = 1(Y = j, Ŷ =
k), we get back the jk-th entry of the standard confusion matrix, with the entire matrix can be
represented by a n2-dimensional confusion vector. When we set σi(X,Y, Ŷ ) = 1(A(X) = a, Y =

j, Ŷ = k), we get back the jk-th entry of the group-specific confusion matrix for group a. The set of
m group-specific matrices can then be represented by a mn2-dimensional confusion vector.
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Figure 1: An illustration of Algorithm 1 for a toy 2-class
problem, with equal prior probabilities and with class con-
ditionals X|Y = 0 and X|Y = 1 distributed as a standard
normal with means +1 and −1 respectively. The goal is
to minimize H-mean subject to a coverage constraint that
forces the fraction of class 1 predictions to be not more than
0.3. The objective and constraint functions are given by:
ψ(C) = 1−2

(
0.5
C00

+ 0.5
C11

)−1
and φ(C) = C11 +C01−0.3.
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3 Reduction-based Algorithm

We now describe our approach for solving the learning problem in (OP1) by reducing the problem
into a sequence of plug-in classifier learning tasks. We will work with objectives and constraints
defined in terms of a confusion vector C[h] of dimension d, for some suitable choice of sufficient
statistics σi’s. Specifically, we consider an objective ψ̄(h) = ψ(C[h]) defined by a convex function
ψ : [0, 1]d→R of the confusion vector for h, and constraint functions φ̄k(h) = φk(C[h]) defined by
convex functions φk : [0, 1]d→R of the confusion vector for h.

3.1 Optimization Over Intersection of Convex Sets

Our key idea is to reformulate (OP1) as an optimization problem over the intersection of two convex
sets. To this end, we define the set of all confusion vectors that can be achieved by some classifier h:

Achievable Confusion Vectors: C = {u ∈ Rd : u = C[h], h : X→∆n},

and the set of confusion vectors that satisfy the K constraints:

Feasible Confusion Vectors: F = {u ∈ Rd : φk(u) ≤ 0, ∀k ∈ [K]}.

Proposition 1. C and F are convex sets.

The convexity of C follows from the use of randomised classifiers and the fact that C[h] is defined
as an expectation over random draw from h. The convexity of F follows from the convexity of the
constraint functions φk. Also notice that while the set of achievable confusion vectors C depends on
the data distribution D, the set of feasible confusion vectors does not. This means that optimizing
over F does not require access to D or a sample drawn form D.

Equipped with these two sets, we can reformulate the learning problem in (OP1) over the space of
classifiers, as an equivalent d-dimensional optimization problem over the intersection of C and F :

min
u∈C∩F

ψ(u). (OP2)

We will denote the solutions to the problems (OP1) and (OP2) by h∗ and u∗ respectively. Note that
C[h∗] = u∗. In Figure 1, we provide a simple illustration of an objective function and constraints on
a toy problem, and show the corresponding sets C and F .

3.2 Linear Minimization Oracles

The formulation (OP2) converts a classifier learning problem into a finite dimensional optimization
problem, but it still has one major issue: we do not have direct access to the set C. However, as we
shall see shortly, performing a linear minimization over this set amounts to a cost-sensitive learning
problem, which can be solved using a plug-in method. Similarly, performing a linear minimization
over F amounts to solving a convex program.

So, we assume access to the following linear minimization oracles (LMOs):

LMOC : Given a ∈ Rd, returns argmin
u∈C

〈a,u〉,

LMOF : Given b ∈ Rd, returns argmin
v∈F

〈b,v〉.
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Algorithm 1 The Split Bayes-Frank-Wolfe (SBFW) Algorithm

1: Input: ψ : [0, 1]d → R+, Linear minimization oracle over F
Training sample S = {(x1, y1), . . . , (xN , yN )}

2: Parameters: λ > 0, Step sizes ηt = C/t, and γt = 4ηt
λ for t ∈ [T ], where C is some constant.

3: Initialize: Initialize classifier h0 : X→∆n and vectors u0 = v0 = C[h0], w0 = 0.
4: For t = 1 to T do:
5: ĝt, ũt = plug-in(at−1;S), where at−1 = ∇uL(ut−1,vt−1,wt−1) (LMO over C)
6: ṽt = argminv∈F 〈bt−1,v〉, where bt−1 = ∇vL(ut−1,vt−1,wt−1) (LMO over F)
7: (ut,vt, ht) = (1− γt)(ut−1,vt−1, ht−1) + γt(ũt, ṽt, ĝt)
8: wt = wt−1 + ηt−1(ut − vt)
9: end For

10: Return: Return ĥ = hBest, where Best = argmint>T/2 ||ut − vt||2

Of the two oracles, LMOF does not need access to the data and can performed with standard convex
solvers. So, we will be primarily interested in the number of calls needed to be made to LMOC . Also
note that in practice, one may not be able to solve the minimization over C exactly. In our theoretical
analysis in Section 4, we take this into account and show that our approach is robust to approximation
errors in the linear minimization.

3.3 Frank-Wolfe Based Algorithm

The challenge now is to optimize over the intersection of the two sets C ∩ F . For this, we adopt
the Frank-Wolfe based approach of Gidel et al. (2018) [15] that enables optimization of a convex
objective over the intersection of two convex sets with access to only linear minimization oracles for
the individual sets. To this end, we introduce auxiliary variables v in (OP2) and decouple the two
constraint sets. This gives us the following equivalent optimization problem:

min
u∈C,v∈F

ψ(u) + ψ(v) s.t. u− v = 0. (OP3)

We then define the augmented Lagrangian L : [0, 1]d × [0, 1]d × Rd→R of the above problem as:

L(u,v,w) = ψ(u) + ψ(v) + w>(u− v) +
λ

2
||u− v||2, (1)

where w ∈ Rd denotes the Lagrange multipliers for the equality constraints and λ > 0 is a constant.

Gidel at al. (2018) [15] propose a simple gradient ascent step for w, a linear minimization step for
u over C and a linear minimization step for v over F . Specifically, at each iteration, we perform
a Frank-Wolfe style update for u and v [18]. We linearize the Lagrangian with respect to u and
minimize the linearized objective over C using LMOC :

at−1 = ∇uL(ut−1,vt−1,wt−1); ũt ∈ argminu∈C〈at−1,u〉. (2)

We also linearize L with respect to v and minimize the linearized objective over F using LMOF :

bt−1 = ∇vL(ut−1,vt−1,wt−1); ṽt ∈ argminv∈F 〈bt−1,v〉. (3)

This is followed by a set of simple updates on the optimization variables:

ut = (1− γt)ut−1 + γtũt; vt = (1− γt)vt−1 + γtṽt; (4)
wt = wt−1 + ηt−1(ut − vt), (5)

where the coefficients γt and ηt are step-size parameters. The procedure outlined in Algorithm 1
maintains both a confusion vector and the corresponding classifier at each iteration, and returns a
classifier ĥ that combines multiple classifiers via randomization.

3.4 Plug-in Classifier for LMO over C

All that remains is to perform the linear minimization over C in Equation 2. We show below that this
can be solved using a plug-in method.
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Algorithm 2 Plug-in Method for LMOC

1: Input: Weight vector a ∈ Rd, Training sample S = {(x1, y1), . . . , (xN , yN )}
2: Given: A conditional probability model η̂ : X→∆n pre-trained with samples {(xi, yi)}N/2i=1 ,

Sufficient statistic functions σi : X × [n]× [n]→[0, 1]

3: Define L : X→Rn×n by Lj,k(x) =
∑d
i=1 aiσi(x, j, k)

4: Construct ĝ : X→[n] as ĝ(x) = argminŷ∈[n]
∑n
j=1 η̂j(x)Lj,ŷ(x),

5: Estimate confusion vector ũi = 2
N

∑N
j=N/2 σi(xj , yj , ĝ(xj)) from samples {(xi, yi)}Ni=N/2

6: Return: Confusion vector ũ and corresponding classifier ĝ

Proposition 2 (LMOC through Bayes-optimal Classifier). Suppose we wish to minimize 〈a,u〉
over u ∈ C. Define the example-dependent loss matrix L : X→Rn×n as Lj,k(x) =∑d
i=1 aiσi(x, j, k). Then the solution to the linear minimization problem is directly given by the

Bayes-optimal classifier for this loss matrix. Specifically, construct a classifier g∗ : X→[n] with

g∗(x) = argmin
ŷ∈[n]

n∑
j=1

ηj(x)Lj,ŷ(x),

where ηj(x) = P(Y = 1|x) is the class-conditional probability. Then C[g∗] ∈ argminu∈C〈a,u〉.

The classifier g∗ defined above is a deterministic classifier that thresholds the conditional probability
η based on the example-dependent loss matrix L(x). For the special case where the confusion vectors
represent the set of confusion matrices for the m groups, the weight vector a ∈ Rmn2

effectively
describes m loss matrices L1, . . . ,Lm ∈ Rn×n, one for each group. For a given instance x, the
classifier g∗ picks the loss matrix LA(x) associated with the protected group attribute A(x), and
then uses the conditional probability vector η(x) to make the optimal prediction for that loss matrix:
g∗(x) = argminŷ∈[n]

∑n
j=1 ηj(x)L

A(x)
j,ŷ (x).

The above characterization directly motivates the use of a plug-in method to solve the LMO over
C. Specifically, we can use an estimator η̂ : X → ∆n of the conditional probabilities η to construct
an approximate version of g∗. The confusion vector C[g∗] can then be estimated from samples.
This procedure is outlined in Algorithm 2 and returns both a confusion vector that approximately
solves the linear minimization over C and the corresponding classifier ĝ. Notice that the conditional
probability estimator η̂ (e.g. logistic regression) needs to be trained only once, and can be re-used for
every call to the plug-in routine.

Figure 1 shows the iterates of the proposed algorithm over a simple toy dataset. The trajectory of ut
is given in blue and the trajectory of vt is given in yellow. It can be seen that both these trajectories
approach the optimal solution C[h∗].

4 Consistency Results

In this section we give the main theoretical result of the paper. We show that with O(1/ε2) calls to
the plug-in LMO routine, Algorithm 1 outputs a classifier ĥ that is O(ε+

√
ρ)-close to the optimal-ψ

value and satisfies the constraint φk’s with a slack of O(ε+
√
ρ), where ρ is a term which depends

on the approximation level of the plug-in LMO. This result then directly implies that Algorithm 1 is
statistically consistent, i.e. converges to the optimal-feasible classifier in the limit of infinite samples.

We will make a few regularity assumptions. We assume that the objective function ψ and constraint
functions φk are L-Lipschitz and objective function ψ is β-smooth. We will also assume that (OP2)
is strictly feasible.

Assumption 1. ∃u ∈ C ∩ F , r > 0 such that B(u, r) ∩ affine-space(C) ⊆ C ∩ F .

We stress that these assumptions are not very restrictive and can be verified to be satisfied by all of the
objectives and constraints described in Section 2, as long as the prior probabilities πa,i are non-zero
for all classes i ∈ [n] and protected groups a ∈ [m].
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Theorem 3. Let h∗ denote the optimal feasible solution for (OP1), i.e. φk(C[h∗]) ≤ 0,∀k and
ψ(C[h∗]) ≤ ψ(C[h]) for all h that is feasible. Under the regularity assumptions, for large enough λ
and an appropriate step-size parameter C, there exists an ε̄ > 0 such that, for all ε ≤ ε̄, and T ≥ c

ε2
,

with probability 1− δ over draw of the training samples S i.i.d. from D, the classifier ĥ returned by
Algorithm 1 is near-optimal and near-feasible:

Optimality : ψ(C[ĥ]) ≤ ψ(C[h∗]) + c
√
ρ+ ε,

Feasibility : φk(C[ĥ]) ≤ c√ρ+ Lε, ∀k ∈ [K],

where ρ =
√
dE||η(X)− η̂(X)||1 + d

√
d log(d)+log(Nn2)+log(1/δ)

N captures the approximation level
of the LMO given by Algorithm 2, and c > 0 is a constant not dependent on the number of iterations
T and the training samples.

The key to proving this convergence result is (i) establishing that the plug-in classifier solves the
linear minimization problem over C approximately, (ii) applying the convergence results of Gidel
et al. (2018) [15] (extended to handle an approximate LMO) to get a bound on the duality gap for
(OP2), and (iii) translating this to a bound on the optimality and feasibility for (OP2).

Remark (Consistency). The term ρ in Theorem 3 has two sources of error: the error E||η(X) −
η̂(X)||1 in the class probability model η̂ used to construct the plug-in classifier and the sample error

Õ
(
d
√

d
N

)
. If the conditional-class estimator is such that E||η(X)− η̂(X)||1 → 0 as the sample size

N→∞, which is the case when e.g. η̂ is learned by minimizing a strictly proper composite loss over
a suitably flexible function class [40], then Algorithm 1 is guaranteed to be statistically consistent.
Specifically, setting ε =

√
1/N and running Algorithm 1 for the prescribed O(1/ε2) iterations, we

have that as N →∞, ψ(C[ĥ])
P−→ ψ(C[h∗]) and φk(C[ĥ])

P−→ 0,∀k.

Remark (Improvements over COCO [29]). The previous reduction-based algorithm of Narasimhan
(2018) [29] for (OP1), referred to as COCO by the author, similarly poses the problem as an
optimization over C but retains explicit constraints φk(C) ≤ 0, ∀k. The idea is to then formulate
the Lagrangian for the constrained problem with one Lagrange multiplier for each constraint, and
maximize the Lagrangian over the multipliers using gradient ascent. Each gradient step, however,
involves a full run of the classical Frank-Wolfe method [18] over C using an LMO, resulting in an
algorithm with multiple levels of nesting. Our approach is better than COCO in the following aspects:

• Better convergence rate. In the largeN setting, COCO requiresO(1/ε3) calls to the plug-in routine
to reach a solution that is O(ε)-optimal and O(ε)-feasible. In contrast, by posing (OP1) as an
optimization over two convex sets, we avoid the nested structure, and need only O(1/ε2) calls to
the plug-in routine to reach a solution of the same quality.

• Weaker dependence on the number of constraints. While COCO maintains one optimization
parameter per constraint, the number of parameters in our algorithm (i.e. u, v) is only twice the
dimension d of the confusion vector, and depends on the number of constraints K only through the
LMO over F . This has the added advantage of being able to use specialized solvers for this step
that better exploit the redundancies in the constraint set.

Remark (Prior 3-player approach [30]). As noted in the introduction, another closely re-
lated method for solving complex constrained classification problems is the 3-player approach
of Narasimhan et al. (2019) [30]. Their idea is to introduce additional slack variables, formulate the
Lagrangian for the problem with one parameter per constraint, and find an equilibrium of the resulting
min-max game between the primal and dual variables. They first provide an idealized version of
their algorithm which makes use of an oracle (similar to LMOC) to optimize a linear metric over the
space of classifiers, and requires a similar number of calls to the oracle as our approach to reach a
near-optimal near-feasible solution. However, they do not provide a full-fledged consistency analysis
for this idealized algorithm. Instead they prescribe a “practical” alternative which replaces the oracle
with stochastic gradient updates on a relaxed Lagrangian, where the entries of the confusion matrix
are replaced with surrogate relaxations, and this variant does not come with consistency guarantees.
We compare with this surrogate-based algorithm in our experiments. Again, an important difference
between our approach and Narasimhan et al. (2019) is that we do not maintain an explicit parameter
for each constraint and access the constraint set only through an LMO.
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Table 1: Minimizing Q-mean s.t. Demographic Parity ≤ 0.05. We report test Q-mean and constraint
violations (in parentheses) measured as the positive part of Demographic Parity−0.05. Lower values
are better. Bold indicates that the method has the least objective and the least violation, among the
last three columns.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.05) 0.30 (0.00) 0.31 (0.00) 0.18 (0.00) 0.18 (0.00)
COMPAS 0.32 (0.10) 0.36 (0.00) 0.35 (0.03) 0.33 (0.00) 0.32 (0.00)

Crimes 0.16 (0.22) 0.30 (0.01) 0.30 (0.01) 0.24 (0.05) 0.22 (0.03)
Default 0.33 (0.01) 0.54 (0.00) 0.35 (0.00) 0.36 (0.00) 0.33 (0.00)

Lawschool 0.21 (0.25) 0.47 (0.00) 0.35 (0.16) 0.24 (0.03) 0.25 (0.02)

Table 2: Minimizing G-mean s.t. Equal Opportunity ≤ 0.05. We report G-mean and constraint
violations measured as the positive part of Equal Opportunity− 0.05. Lower values are better.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.00) 0.24 (0.01) 0.17 (0.03) 0.18 (0.01) 0.18 (0.00)
COMPAS 0.32 (0.09) 0.35 (0.00) 0.32 (0.00) 0.33 (0.00) 0.32 (0.00)

Crimes 0.15 (0.17) 0.19 (0.09) 0.16 (0.06) 0.16 (0.08) 0.16 (0.03)
Default 0.33 (0.00) 0.51 (0.00) 0.39 (0.00) 0.36 (0.00) 0.34 (0.00)

Lawschool 0.21 (0.23) 0.47 (0.00) 0.23 (0.00) 0.22 (0.04) 0.26 (0.03)

We provide more details about the prior COCO and 3-player methods in Appendix B.

5 Experiments

We show that the proposed algorithm performs comparable to or better than than prior methods for
constrained classification on a number of benchmark datasets for fair classification.

Datasets. We ran experiments on five datasets: (1) COMPAS, where the goal is to predict recidivism
with gender as the protected attribute [4]; (2) Communities & Crime, where the goal is to predict if a
community in the US has a crime rate above the 70th percentile [13], and we consider communities
having a black population above the 50th percentile as protected [23]; (3) Law School, where the
task is to predict whether a law school student will pass the bar exam, with race (black or other)
as the protected attribute [43]; (4) Adult, where the task is to predict if a person’s income exceeds
50K/year, with gender as the protected attribute [13]; (5) Default, where the task is to predict if a
credit card user defaulted on a payment, with gender as the protected attribute [13]. The details are
summarized in Table 4 in Appendix C. We used 2/3-rd of the data for training and 1/3-rd for testing.
All experiments use a linear model.1

Comparisons. We compare our method against (i) the approach of optimizing the given objective
without constraints [33] (Unconstrained), (ii) the approach of optimizing classification error subject
to the given constraints, e.g. [1] (Error-Con), (iii) the prior COCO method [29] for solving the
constrained learning problem at hand, and (iv) the 3-player approach [30] which solves the constrained
learning problem with surrogates. We describe how we choose hyper-parameters in Appendix C

Objectives and Constraints. We consider the following constrained learning tasks:
1. Minimizing Q-mean s.t. Demographic Parity Violation ≤ 0.05

2. Minimizing G-mean s.t. Equal Opportunity Violation ≤ 0.05

3. Minimizing H-mean s.t. Coverage for Class 1 ≤ 0.25

We report the objectives and constraint violations (the positive part of φ(h) − ε ) for the different
methods in Tables 1–3. On a majority of the datasets, the proposed method is able to closely satisfy the
constraints while achieving comparable or better objectives. As expected, unconstrained optimization
of the objective performs poorly on the constraints. Similar, optimizing for plain error rate subject
to the specified constraints fares poorly on the desired objective, demonstrating the need to directly
optimize for the metric one cares about. Among the SBFW (proposed), COCO and 3-Player methods,
our approach is able to more often achieve the least objective and the least violation.

1Code available at: https://github.com/shivtavker/constrained-classification.
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Table 3: Minimizing H-mean s.t. Class-1 Coverage ≤ 0.25. We report etst H-mean and constraint
violations measured as the positive part of Coverage− 0.25. Lower values are better. Bold indicates
that the method has the least objective and the least violation, among last three columns.

Dataset Unconstrained Error-Con COCO 3-Player Proposed

Adult 0.18 (0.09) 0.26 (0.00) 0.21 (0.00) 0.21 (0.00) 0.21 (0.00)
COMPAS 0.32 (0.23) 0.44 (0.00) 0.45 (0.00) 0.45 (0.00) 0.44 (0.00)

Crimes 0.16 (0.11) 0.21 (0.01) 0.21 (0.01) 0.23 (0.00) 0.21 (0.01)
Default 0.33 (0.16) 0.62 (0.00) 0.34 (0.00) 0.42 (0.00) 0.34 (0.00)

Lawschool 0.21 (0.47) 0.56 (0.01) 0.58 (0.00) 0.56 (0.00) 0.55 (0.01)
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Figure 2: Training G-mean (left) and equal opportunity violation (right) on COMPAS for varying
number of calls to the plug-in routine. The hyper-parameters were tuned separately for each method
using the heuristic of Cotter et al. (2019) [10] to trade-off between the objective and the violations.

Figure 3: Robustness to hyper-parameters: Train G-mean and equal opportunity violation for six step
sizes (lower is better) on the COMPAS dataset. For the proposed algorithm, all choices achieved
similar objectives and near-zero violations.

Convergence Analysis. We next compare the number of plug-in calls needed by the proposed algo-
rithm and the previous COCO method for the task of minimizing G-mean with an equal opportunity
constraint. The 3-player method does not use a plug-in subroutine. Figure 2 shows the train G-mean
and the train equal opportunity violation (the positive part of φ(h)− ε) for varying numbers of plug-in
calls for the COMPAS dataset. In this case, our algorithm converges to a classifier with zero violation
on the training set, with an objective similar to COCO, but with fewer calls (≤ 100). We also provide
similar plots for other datasets in Figure 4 in Appendix C. On Crimes and Law School, COCO fails
to converge to zero training violation even after 2000 calls. In contrast, on all five datasets, when
provided the same number of plug-in calls, the proposed algorithm is able to achieve zero training
violations (often within the first 100 calls). On Adult alone, COCO exhibits faster convergence.

Robustness to Hyper-parameter Choices. In our final experiment, we demonstrate the robustness
of our approach to the choice of step-size ηt. We ran COCO, 3-player and the proposed SBFW
methods for minimizing G-mean objective with an equal opportunity constraint on the COMPAS
dataset, with 6 different choices of step-sizes (10−4, 10−3, . . . , 10), and report the G-mean and equal
opportunity violation in Figure 3 (and also as a scatter plot in Figure 5 in the Appendix). While all 6
choices achieved close-to-best objectives and near-zero violations for the proposed SBFW algorithm,
only 2 (3 resp.) choices led to similar metrics for COCO (3-player resp.).

6 Conclusion

In numerous real-word prediction tasks, one is required to learn a classifier that optimizes a complex
evaluation metric subject to a set of constraints. In this paper, we developed a consistent learning
algorithm for handling objectives and constraints that are convex functions of the confusion matrix and
provided improved convergence guarantees. In our experiments, we demonstrated the effectiveness
of our approach, and also showed its robustness to hyper-parameter choices. In the future, it would
be interesting to explore lower bounds on the number of calls to the LMO, replace the plug-in
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LMO routine with more direct cost-sensitive learning methods (e.g. [38, 45]), and explore other
optimization methods in place of the augmented Lagrangian Frank-Wolfe algorithm.

Broader Impact

There’s an increasing impetus in the machine learning community to design algorithms that are fair
and free from bias and inequity. Most existing approaches for enforcing group-based fairness goals
have been limited to simple objectives and constraints. In this paper, we allow a user to specify for
more nuanced definitions of utilities and fairness goals than allowed by standard methods in the
literature, and provide an algorithm to directly and efficiently optimize for these goals. We show
theoretically that our algorithm is able to achieve a desired trade-off between overall utility and the
specified fairness criteria.

As with prior work on group-based fairness (and more generally with constrained supervised learning),
a drawback of our approach is that while we guarantee that the fairness criterion is likely to be satisfied
on new examples, there is a small probability that it isn’t, and these rare failures can have an adverse
impact in practice. Moreover, our algorithm requires the use of stochastic classifiers, which may
bring in additional ethical considerations. See Cotter et al. [8] for a discussion on the practical
ramifications of deploying a stochastic classifier, and for ways to convert a stochastic classifier into a
similar performing deterministic classifier.

All experiments in this paper were carried out with publicly available datasets.
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A Proofs

Before we give the proofs, we define some terms necessary for the proofs and make the assumptions on the
problem more explicit.

A.1 Proof Setup

A.1.1 Problem Assumptions

We had made several assumptions on the problem in the paper, which we recall here for reference.

1. The sufficient statistics functions σ1, . . . , σd are bounded between 0 and 1.

2. The functions ψ, φk are convex.

3. The function ψ : [0, 1]d→R is also bounded between 0 and R

4. The functions ψ and φk are L-Lipschitz, i.e. |ψ(u)−ψ(u′)| ≤ L||u−u′||2 and |φk(u)−φk(u′)| ≤
L||u− u′||2

5. The function ψ is β-smooth, i.e. ||∇ψ(u)−∇ψ(u′)||2 ≤ β||u− u′||2
6. The sets C ⊆ [0, 1]d and F ⊆ Rd are full-dimensional, i.e. interiors are not empty.

7. The interiors of the sets C and F intersect. For some r > 0, there exists c ∈ C ∩ F such that
B(c, r) ⊆ C ∩ F .

The last two assumptions are made only for convenience and can be relaxed to Assumption 1. Any problem
for which C and F are not full dimensional, can be converted to an equivalent problem where they are full
dimensional by projecting the sufficient statistic functions σ on to an appropriate affine space. Note that as the
sufficient statistic functions take values [0, 1], the set C is always a subset of [0, 1]d, and we can also assume
without loss of generality F ⊆ [0, 1]d.

In the proofs of the Theorems below, we will use c to denote constants independent of the LMO error ρ and
number of iterations T . The value of c can change even in consecutive expressions, to avoid cluttering the proof
with unnecessary subscripts.

A.1.2 Extra Definitions

Definition 1 (Linear Minimization Oracle). Let ρ, ρ′, δ ∈ (0, 1). A linear minimization oracle, denoted by Ω,
takes a loss vector a ∈ Rd and a sample S as input, and outputs a classifier ĝ and an estimate of its confusion
vector ũ ∈ Rd. We say the Ω is a (ρ, ρ′, δ)-approximate LMO for sample size N if for all a ∈ Rd, it outputs
(ĝ, ũ) = Ω(a;S) such that:

〈a,C[ĝ]〉 ≤ min
h:X→∆n

〈a,C[h]〉+ ρ′‖a‖

‖C[ĝ]− ũ‖ ≤ ρ.
where the second inequality above is only required to hold with probability 1 − δ over the sample S. The
approximation constants ρ and ρ′ may in turn depend on the sample size N , the dimension d and the confidence
level δ.

Definition 2 (Fat Achievable Set). The set Cρ is defined as follows:

Cρ = C +B(0, ρ) = {u + r : u ∈ C, r ∈ B(0, ρ)}

Definition 3 (Augmented Lagrangian). The Augmented Lagrangian L : Rd × Rd × Rd→R is defined as

L(u,v,w) = ψ(u) + ψ(v) +
λ

2
‖u− v‖2 + w>(u− v)

Simple algebra shows that L(., .,w) is convex, Lipschitz continuous and smooth. We will require the following
related inequalities for our Theorems.
Proposition 4. For all w ∈ Rd, we have

|ψ(u) + ψ(v)− ψ(u′)− ψ(v′)| ≤ 2L
√
‖u− u′‖2 + ‖v − v′‖2

‖∇uL(u,v,w)−∇uL(u′,v′,w)‖ ≤ βλ‖[u− u′,v − v′]‖
‖∇vL(u,v,w)−∇vL(u′,v′,w)‖ ≤ βλ‖[u− u′,v − v′]‖

where we use∇u and∇v to denote the gradient w.r.t. the first and second arguments of L, and βλ = 2β + 2λ.
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Definition 4 (Dual Function). The dual function ξ : Rd→R is defined as

ξ(w) = min
u∈Cρ,v∈F

L(u,v,w)

We also use û(w), v̂(w) to denote any arbitrary minimizer of L(., .,w) over Cρ × F . Thus ξ(w) =
L(û(w), v̂(w),w).

Let the maximum value of the dual function be ξ∗. By the min-max Theorem we have that

ξ∗ = max
w∈Rd

min
u∈Cρ,v∈F

L(u,v,w) = min
u∈Cρ,v∈F

max
w∈Rd

L(u,v,w) = min
u∈Cρ∩F

2ψ(u)

The last equality follows from the observation that if u 6= v then maxw∈Rd L(u,v,w) =∞.

Let u∗ ∈ Cρ ∩ F such that
ψ(u∗) = min

u∈Cρ∩F
ψ(u).

LetW∗ = argmaxw∈Rd ξ(w) ⊆ Rd.

Definition 5 (Primal and Dual gaps). For any u ∈ Cρ,v ∈ F and w ∈ Rd, we define the primal and dual gaps
as follows:

∆(p)(u,v,w) = L(u,v,w)− min
u∈Cρ,v∈F

L(u,v,w) = L(u,v,w)− ξ(w)

∆(d)(w) = ξ∗ − ξ(w) = 2ψ(u∗)− ξ(w)

and define the total gap as ∆(u,v,w) = ∆(p)(u,v,w) + ∆(d)(w).

In the Theorems and Lemmas below, we will refer to the iterates ut,vt, ũt, ṽt in the Algorithm 1. We use the
the short-hands ∆t,∆

(p)
t ,∆

(d)
t for representing the same primal and dual gaps evaluated at, (ut+1,vt+1,wt).

The overloading of notation for ρ in the definition of the duality gaps and the LMO confusion vector estimation
error is intentional. In our analysis of the algorithm using the duality gap, we will set ρ to be exactly equal to the
confusion vector estimation error in the plug-in algorithm referred to by Algorithm 1.

We will require the use of Theorem 1 and Corollary 1 from Gidel et al. [15], which we restate here in our
notation. We use the following facts to transform their Theorem.

|ψ(u) + ψ(v)− ψ(u′)− ψ(v′)| ≤ 2L‖[u− u′,v − v′]‖

‖[I,−I]>[−I, I]‖ = 2

(diam(F ))2 ≤ d
(diam(Cρ))2 ≤ 2d+ 2ρ2

(diam(Cρ ×F))2 ≤ 3d+ 2ρ2

where ‖M‖ of a matrix M refers to its spectral norm, and diam(A) refers to the diameter of a set A, i.e. the
maximum `2 distance between any two elements from the set A. We will use ζ2 as a shorthand for 3d+ 2ρ2.

Theorem. There exists a constant α > 0 such that

ξ∗ − ξ(w) ≥ 1

2Lλζ2
min

{
α2dist(w,W∗)2, αLλζ

2dist(w,W∗)
}

||∇ξ(w)|| ≥ 1

2Lλζ2
min

{
α2dist(w,W∗), αLλζ2}

||∇ξ(w)|| ≥ α√
2Lλζ2

min

{√
ξ∗ − ξ(w),

√
Lλζ2

2

}
where Lλ = 2L + 2λ and dist represents the standard distance function between a point and a set, i.e.
dist(x,A) = minx′∈A ‖x− x′‖.

A.2 Proof of Proposition 2

Proposition (LMOC through Bayes-optimal Classifier). Suppose we wish to minimize 〈a,u〉 over u ∈ C.
Define the example-dependent loss matrix L : X→Rn×n asLj,k(x) =

∑d
i=1 aiσi(x, j, k). Then the solution to
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the linear minimization problem is directly given by the Bayes-optimal classifier for this loss matrix. Specifically,
construct a classifier g∗ : X→[n] with

g∗(x) = argmin
ŷ∈[n]

n∑
j=1

ηj(x)Lj,ŷ(x),

where ηj(x) = P(Y = 1|x) is the class-conditional probability. Then C[g∗] ∈ argminu∈C〈a,u〉.

Proof.

min
u∈C
〈a,u〉 = min

g∈H

d∑
i=1

aiEX∼µ
[
EY∼η(X)[EŶ∼g(X)[σi(X,Y, Ŷ )]]

]
= EX∼µ

[
min
g∈∆n

EŶ∼g

[
EY∼η(X)

[
d∑
i=1

aiσi(X,Y, Ŷ )

]]]

= EX∼µ

[
min
ŷ∈[n]

n∑
j=1

ηj(X)

d∑
i=1

aiσi(X, j, ŷ)

]

= EX∼µ

[
min
ŷ∈[n]

n∑
j=1

ηj(X)Lj,ŷ(X)

]

Now,

〈a, C[g∗]〉 =

d∑
i=1

aiEX∼µ
[
EY∼η(X)

[
EŶ∼g∗(X)

[
σi(X,Y, Ŷ )

]]]
= EX∼µ

[
EY∼η(X)

[
d∑
i=1

aiσi(X,Y, g
∗(X))

]]

= EX∼µ

[
n∑
j=1

ηj(X)

d∑
i=1

aiσi(X, j, g
∗(X))

]

= EX∼µ

[
n∑
j=1

ηj(X)Lj,g∗(X)(X)

]

= EX∼µ

[
min
ŷ∈[n]

n∑
j=1

ηj(X)Lj,ŷ(X)

]
where the last equation follows from construction of g∗.

A.3 Proof of Theorem 3

Theorem. Let h∗ denote the optimal feasible solution for (OP1), i.e. φk(C[h∗]) ≤ 0, ∀k and ψ(C[h∗]) ≤
ψ(C[h]) for all h that is feasible. Under the regularity assumptions, for large enough λ and an appropriate
step-size parameter C, there exists an ε̄ > 0 such that, for all ε ≤ ε̄, and T ≥ c

ε2
, with probability 1 − δ

over draw of the training samples S i.i.d. from D, the classifier ĥ returned by Algorithm 1 is near-optimal and
near-feasible:

Optimality : ψ(C[ĥ]) ≤ ψ(C[h∗]) + c
√
ω + ε,

Feasibility : φk(C[ĥ]) ≤ c
√
ω + Lε, ∀k ∈ [K],

where ω =
√
dE||η(X) − η̂(X)||1 + d

√
d log(d)+log(Nn2)+log(1/δ)

N
captures the approximation level of the

LMO given by Algorithm 2, and c > 0 is a constant not dependent on the number of iterations T and the training
samples.

Proof. Firstly, we prove in Corollary 7 that the Algorithm 2 gives an approximate LMO over C even though it
uses only finite data. These Lemmas are more general than those in Narasimhan et al. (2015) [33], because they
accommodate more general sufficient statistics functions σ.

Secondly, we show that the usage of an approximate LMO in Equations (4), and (5) does not affect the
convergence results by Gidel et al. [15]. They measure the sub-optimality of an iterate using a duality gap
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measure. In Lemma 9 we show that a similar bound on the duality gap can be derived with an approximate LMO
over C as well.

Thirdly, we use the strict feasibilty assumption to convert a bound on the duality gap into a bound on the
sub-optimality of problem (OP2) in Lemma 8.

Lemmas 9 can be applied to Lemma 8 setting both τ and κ to be equal to c
T

+ c(ρ+ ρ′). In both the inequalities,
the
√
κ term dominates, and hence

||C[hb]− vb||22 ≤ c(ρ+ ρ′) +
c

T

ψ(C[hb]) ≤ min
u∈C∩F

ψ(u) + c

√
ρ+ ρ′ +

1

T

For large enough T , these can be simplified as follows,

||C[hb]− vb|| ≤ c
√
ρ+ ρ′ +

c√
T

ψ(C[hb]) ≤ min
u∈C∩F

ψ(u) + c
√
ρ+ ρ′ +

c√
T

Observing that vb ∈ F and the constraint functions φk are L-Lipschitz, we get the Theorem statement. The
expressions for ω = ρ+ ρ′ follow from Corollary 7.

A.3.1 LMO Lemmas

Lemma 5. Let a ∈ Rd. Let ĝ, ũ = plug-in(a) as in Algorithm 2, then

〈a, C[ĝ]〉 ≤ min
u∈C
〈a,u〉+ 2||a||2

√
dE||η(X)− η̂(X)||1

for some constant c3 > 0.

Proof. Fix some a ∈ Rd. Let L : X→Rn×n, be such that,

Lj,k(x) =

d∑
i=1

aiσi(x, j, k) ≤ ||a||1 ≤
√
d||a||2

From Proposition 2, the Bayes optimal classifier g∗ : X→[n] is

g∗(x) = argmin
ŷ∈[n]

n∑
j=1

ηj(x)Lj,ŷ(x),

Recall that ĝ is the same as g∗ above, with η replaced by η̂. We have that,

〈a, C[ĝ]〉 = EX [EY∼η(X)[

d∑
i=1

aiσi(X,Y, ĝ(X))]]

= EX

[
n∑
y=1

ηy(X)Ly,ĝ(X)(X)

]

= EX

[
n∑
y=1

(ηy(X)− η̂y(X))Ly,ĝ(X)(X)

]
+ EX

[
n∑
y=1

η̂y(X)Ly,ĝ(X)(X)

]

≤ ||a||2
√
dEX [||η(X)− η̂(X)||1] + EX

[
n∑
y=1

η̂y(X)Ly,ĝ(X)(X)

]

≤ ||a||2
√
dEX [||η(X)− η̂(X)||1] + EX

[
n∑
y=1

η̂y(X)Ly,g∗(X)(X)

]

≤ ||a||2
√
dEX [||η(X)− η̂(X)||1] + EX

[
n∑
y=1

(η̂y(X)− ηy(X)Ly,g∗(X)(X)

]
+ EX

[
n∑
y=1

(ηy(X)Ly,g∗(X)(X)

]
≤ 2||a||2

√
dEX [||η(X)− η̂(X)||1] + min

u∈C
〈a,u〉

16



Lemma 6. Let ĝa, ũa = plug-in(a) as in Algorithm 2, then with probability 1 − δ over the samples
{(xN/2, yN/2), . . . , (xN , yN )}, we have that for all a ∈ Rd

||C[ĝa]− ũa||2 ≤ cd
√
d log(d) + log(Nn2) + log(1/δ)

N

where c is an absolute constant.

Proof. Fix some z ∈ [d]. We have for any a ∈ Rd,

Cz[ĝ
a] = EX,Y σz(X,Y, ĝ

a(X)) = ED [σz(X,Y, ĝ
a(X))]

ũa
z =

2

N

N∑
j=N/2

σz(xj , yj , ĝ
a(xj)) = ES [σz(X,Y, ĝ

a(X))]

where we abuse notation by denoting the empirical expectation over the last N/2 samples as ES and the
population expectation as ED .

For any x ∈ X , ŷ ∈ [n], let θ(x, ŷ) ∈ Rd be such that

θi(x, ŷ) =

n∑
y=1

η̂y(x)σi(x, y, ŷ).

Then, by definition of ĝa, we have that

ĝa(x) = argminŷ∈[n] a
>θ(x, ŷ).

We have that the Natarajan dimension dNat of the function class

G = {ĝa(x) = argminŷ∈[n] a
>θ(x, ŷ) : a ∈ Rd} ⊆ [n]X

is O(d log(d)) [36]. The growth function ΠG(N) denoting the number of distinct labellings of N points is
given by Cesa-Bianchi and Haussler [6] as,

ΠG(N) ≤ dNatN
dNatn2dNat .

Using standard Hoeffding inequality and uniform convergence arguments, we have that with probability 1− δ

sup
a∈Rd

|Cz[ĝa]− ũa
z | = sup

g∈G
|ES [σz(X,Y, g(X))]−ED [σz(X,Y, g(X))]|

≤ c

(√
log(ΠG(N)) + log(1/δ)

N

)

≤ c

(√
d log(d) + log(Nn2) + log(1/δ)

N

)

We thus have that,

sup
a∈Rd

||C[ĝa]− ũa||2 ≤ sup
a∈Rd

||C[ĝa]− ũa||1

= sup
a∈Rd

d∑
z=1

|Cz[ĝa]− ũa
z |

≤
d∑
z=1

sup
a∈Rd

|Cz[ĝa]− ũa
z |

≤ c

(
d

√
d log(d) + log(Nn2) + log(1/δ)

N

)
.

where the last statement holds with probability 1− δ.

Corollary 7. The function plug-in in Algorithm 2 is a (ρ, ρ′, δ)-approximate LMO with ρ =

cd

√
d log(d)+log(Nn2)+log(1/δ)

N
and ρ′ = 2

√
dE||η(X)− η̂(X)||1 for some constant c > 0.

We will fix a δ probability of failure throughout the rest of the proof, and assume that the training sample S is
“good”, in which case the empirical confusion vector output by the plug-in algorithm is ρ close to the true
confusion vector of the classifier whenever it is called by Algorithm 1.
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A.3.2 Converting Duality Gap Bounds to Primal Sub-Optimality Bounds

Lemma 8. Let g : X→∆n be a randomized classifier, and u ∈ Rd be such that ‖u − C[g]‖ ≤ ρ. Let
v ∈ F ,w ∈ Rd be such that ∆(u,v,w) ≤ τ and ||u− v||2 ≤ κ. Then,

ψ(C[g]) ≤ min
u′∈C∩F

ψ(u′) + cτ + c
√
κ+ Lρ

‖C[g]− v‖ ≤ ρ+
√
κ

for some constant c > 0.

Proof. The second inequality in the lemma trivially follows from the triangle inequality. We will prove the first
inequality below.

By construction, u ∈ Cρ. As ∆(u,v,w) ≤ τ we have,

∆(p)(u,v,w) = L(u,v,w)− min
u′∈Cρ,v′∈F

L(u′,v′,w) ≤ τ (6)

∆(d)(w) = 2ψ(u∗)− min
u′∈Cρ,v′∈F

L(u′,v′,w) ≤ τ (7)

where u∗ ∈ argminu′∈Cρ∩F ψ(u′). Setting u′ = v′ = u∗ in the second term of Eqn. (6), we get

ψ(u) + ψ(v) + wT (u− v) +
λ

2
‖u− v‖2 ≤ 2ψ(u∗) + τ . (8)

Now from our assumption that there exists a ball of radius r contained in C ∩F , we can set u′,v′ = c± r
||w||w

in the second term of Eqn. (7) to get

2ψ(u∗) ≤ ψ(u′) + ψ(v′)− 2r‖w‖+ 2λr2 + τ. (9)

This can be reduced to a bound on ||ŵ||,

‖w‖ ≤ 2R

r
+ 2λr +

τ

r
(10)

Eqn. (8) becomes the following by Cauchy-Schwarz:

ψ(u) + ψ(v) ≤ 2ψ(u∗) + τ −w>(u− v)− λ

2
‖u− v‖2 ≤ 2ψ(u∗) + τ +

(
2R

r
+ 2λr +

τ

r

)√
κ. (11)

As ψ is L-Lipschitz, we have
ψ(u)− ψ(v) ≤ L‖u− v‖ ≤ L

√
κ (12)

Adding Eqns. (11) and 12 and dividing by 2, we get

ψ(u) ≤ min
u′∈Cρ∩F

ψ(u′) +
τ

2
+

(
2R
r

+ 2λr + τ
r

)
+ L

2

√
κ

As Cρ ⊇ C, and ψ is L-Lipschitz, we have

ψ(C[g]) ≤ ψ(u) + L‖u− C[g]‖

≤ min
u′∈Cρ∩F

ψ(u′) +
τ

2
+

(
2R
r

+ 2λr + τ
r

)
+ L

2

√
κ+ Lρ

≤ min
u′∈C∩F

ψ(u′) +
τ

2
+

(
2R
r

+ 2λr + τ
r

)
+ L

2

√
κ+ Lρ

A.3.3 Bounding the Duality Gap

Lemma 9. Let b ∈ [T ] be such that ĥ = hb in Algorithm 1. Let the plug-in sub-routine used be a (ρ, ρ′, δ)-
approximate LMO. For large enough T and λ, with probability 1 − δ over the training samples we have
that

∆(ub,vb,wb−1) ≤ c(ρ+ ρ′) +
c

T

||ub − vb||2 ≤ c(ρ+ ρ′) +
c

T

where hb,vb,wb−1 are as defined in Algorithm 1, and c is a constant independent of ρ, ρ′ and T .
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Proof. For large λ and T , the conditions in Corollary 16 and Lemma 17 are satisfied, and hence the Lemma
follows directly.

Lemma 10. For all u ∈ Cρ, v ∈ F and w ∈ Rd

‖(u− v)− (û(w)− v̂(w))‖2 ≤ 2

λ
(L(u,v,w)− L(û(w), v̂(w),w)) (13)

where û(w), v̂(w) ∈ argminu∈Cρ,v∈F L(u,v,w) are functions of w.

Proof. We drop the dependence on w in û, v̂ for simplicity below.

By convexity of ψ we have that,

ψ(u)− ψ(û) ≥ (∇ψ(û))T (u− û) and ψ(v)− ψ(v̂) ≥ (∇ψ(v̂))T (v − v̂)

then by simple algebra,

L(u,v,w)− L(û, v̂,w)

= ψ(u)− ψ(û) + ψ(v)− ψ(v̂) + w>(u− v − û + v̂) +
λ

2
(‖u− v‖2 − ‖û− v̂‖2)

≥ (∇ψ(û) + w)> (u− û) + (∇ψ(v̂)−w)> (v − v̂) +
λ

2
(‖u− v‖2 − ‖û− v̂‖2)

= (∇ψ(û) + w + λ(û− v̂))> (u− û) + (∇ψ(v̂)−w − λ(û− v̂))> (v − v̂)

+
λ

2
‖(u− v)− (û− v̂)‖2

= (∇uL(û, v̂,w))>(u− û) + (∇vL(û, v̂,w))>(v − v̂) +
λ

2
‖(u− v)− (û− v̂)‖2

≥ λ

2
‖(u− v)− (û− v̂)‖2

The last inequality follows from the definition û, v̂.

The next lemma captures the essence of what happens in one iteration of Algorithm 1 in lines 5-8. We use the
same symbols as in the algorithm for ease of reference.

Lemma 11. Let ut−1 ∈ Cρ,vt−1 ∈ F ,wt−1 ∈ Rd. Let at−1 = ∇uL(ut−1,vt−1,wt−1) and
bt−1 = ∇vL(ut−1,vt−1,wt−1). Let Ω be a (ρ, ρ′, δ)-approximate LMO. Let ĝt, ũt = Ω(at−1;S), and
ṽt ∈ argminv∈F 〈bt−1,v〉. Let ut = (1 − γt)ut−1 + γtũt and vt = (1 − γt)vt−1 + γtṽt. Let
ût−1, v̂t−1 = û(wt−1), v̂(wt−1) as defined in Lemma 10. Then

L(ut,vt,wt−1)− L(ût−1, v̂t−1,wt−1)

≤ (1− γt) (L(ut−1,vt−1,wt−1)− L(ût−1, v̂t−1,wt−1)) + γt‖at−1‖(ρ+ ρ′) +
1

2
βλγ

2
t ζ

2

Proof. Using smoothness,

L(ut,vt,wt−1)− L(ut−1,vt−1,wt−1)

≤ ∇uL(ut−1,vt−1,wt−1)>[ut − ut−1] +∇vL(ut−1,vt−1,wt−1)>[vt − vt−1] +
βλ
2

(
‖ut − ut−1‖2 + ‖vt − vt−1‖2

)
= a>t−1[γt(ũt − ut−1)] + b>t−1[γt(ṽt − vt−1)] +

βλ
2
γ2
t

(
‖ũt − ut−1‖2

)
+
βλ
2
γ2 (‖ṽt − vt−1‖2

)
≤ γta>t−1(ũt − ut−1) + γtb

>
t−1(ṽt − vt−1) + γ2

t
βλ
2

(diam2(Cρ) + diam2(F))

≤ γta>t−1(ũt − ut−1) + γtb
>
t−1(v̂t−1 − vt−1) +

1

2
βλγ

2
t ζ

2

≤ γta>t−1(ût−1 − ut−1) + γt‖at−1‖ρ′ + γt‖at−1‖ρ+ γtb
>
t−1(ṽt − vt−1) +

1

2
βλγ

2
t ζ

2

≤ γt (L(ût−1, v̂t−1,wt−1)− L(ut−1,vt−1,wt−1)) + γt‖at−1‖(ρ+ ρ′) +
1

2
βλγ

2
t ζ

2

Rearranging the terms we get the statement of the lemma.

The next lemma captures the essence of what happens in one iteration of Algorithm 1 in Line 9. We use the
same symbols as in the algorithm for ease of reference.
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Lemma 12 (Variant of Fundamental Descent Lemma in Gidel et al. (2018) [15]). Let wt ∈ Rd,ut+1 ∈
Cρ,vt+1 ∈ F . Let wt+1 = wt + ηt(ut+1 − vt+1). Then,

∆t+1 −∆t ≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) +
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))

− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
where α > 0 is as defined in Section A.1.2. (Also Theorem 1 of Gidel et al. (2018) [15])

Proof. Let ût, v̂t ∈ argminu∈Cρ,v∈F L(u,v,wt). We have that,

∆(d)
t+1 −∆(d)

t = ξ(wt)− ξ(wt+1)

= L(ût, v̂t,wt)− L(ût+1, v̂t+1,wt+1)

≤ L(ût+1, v̂t+1,wt)− L(ût+1, v̂t+1,wt+1)

= 〈wt −wt+1, ût+1 − v̂t+1〉
= −ηt〈ut+1 − vt+1, ût+1 − v̂t+1〉

∆(p)
t+1 −∆(p)

t = ∆(p)(ut+2,vt+2,wt+1)−∆(p)(ut+1,vt+1,wt)

= L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt) + ξ(wt)− ξ(wt+1)

= L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) + 〈wt+1 −wt,ut+1 − vt+1〉+ ξ(wt)− ξ(wt+1)

= L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) + ηt‖ut+1 − vt+1‖2 + ξ(wt)− ξ(wt+1)

Putting both the bounds together, we get,

∆t+1 −∆t

≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) + ηt||ut+1 − vt+1||2 − 2ηt〈ut+1 − vt+1, ût+1 − v̂t+1〉
= L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) + ηt||(ut+1 − vt+1)− (ût+1 − v̂t+1)||2 − ηt||ût+1 − v̂t+1||2

≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) +
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))

− ηt||ût+1 − v̂t+1||2 (14)

The last inequality above follows from Lemma 10.

We have that ût+1− v̂t+1 = ∇ξ(wt+1), and by Theorem 1 of Gidel et al. [15] (also in Section A.1.2), we have
that

||∇ξ(wt+1)||2 ≥ α2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
.

Putting it together we get

∆t+1 −∆t ≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) +
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))

− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}

We use Lemma 13 to prove Lemma 9. The proof of Lemma 13 closely follows the proof of Theorem 2 in [15]
and is split into Lemmas 14, 15, 17. However, we make the iterates C[ht],vt over the set C and F explicit and
derive results taking into account the approximate LMO for the set C.

Lemma 13.

∆t+1 −∆t ≤ −
2

t+ 2
min(∆t+1, θ1) +

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

where θ1 = Lλζ
2

2
, θ2 = 32 βλζ

2

χ2λ2

(
1 + 2

χλ

)
and θ3 = 8

χλ

(
1 + 2

χλ

)
maxt ‖at+1‖.
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Proof. Lemma 12 and Lemma 11 leads to the following equation holding for γ ∈ [0, 1],

∆t+1 −∆t ≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) +
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))

− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
≤ γt+2 (L(ût+1, v̂t+1,wt+1)− L(ut+1,vt+1,wt+1)) + γt+2‖at+1‖(ρ+ ρ′) +

1

2
βλγ

2
t+2ζ

2

+
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
=

(
2ηt
λ
− γt+2

)
(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1)) + γt+2‖at+1‖(ρ+ ρ′) +

1

2
βλγ

2
t+2ζ

2

− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}

Then for γt+2 = 4ηt
λ

we get,

∆t+1 −∆t ≤ −
(

2ηt
λ

)
(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1)) +

4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2

− ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
(15)

We also have that,

L(ut+2,vt+2,wt+1) ≤ L(ut+1,vt+1,wt+1) + 〈at+1,ut+2 − ut+1〉+ 〈bt+1,vt+2 − vt+1〉

+
βλ
2

(‖ut+2 − ut+1‖2 + ‖vt+2 − vt+1‖2)

= L(ut+1,vt+1,wt+1) + γt+2〈at+1, ũt+2 − ut+1〉+ γt+2〈bt+1, ṽt+2 − vt+1〉

+
βλ
2
γ2
t+2(‖ũt+2 − ut+1‖2 + ‖ṽt+2 − vt+1‖2)

≤ L(ut+1,vt+1,wt+1) + γt+2‖at+1‖(ρ+ ρ′) +
βλ
2
γ2
t+2(ζ2) (16)

Rearrranging terms we get

− L(ut+1,vt+1,wt+1) ≤ −L(ut+2,vt+2,wt+1) + γt+2‖at+1‖(ρ+ ρ′) +
βλ
2
γ2
t+2ζ

2 (17)

Substituting Eqn. (17) in Eqn. (15), we get

∆t+1 −∆t ≤ −
(

2ηt
λ

)(
L(ut+2,vt+2,wt+1)− L(ût+1, v̂t+1,wt+1)− 4ηt

λ
‖at+1‖(ρ+ ρ′)− 8η2

t βλζ
2

λ2

)
+

4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2 − ηtα

2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
= −

(
2ηt
λ

)
∆p
t+1 −

ηtα
2

2Lλζ2
min

{
∆(d)
t+1,

Lλζ
2

2

}
+

(
4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2

)(
1 +

2ηt
λ

)
≤ −χηt∆p

t+1 − χηt min

{
∆(d)
t+1,

Lλζ
2

2

}
+

(
4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2

)(
1 +

2ηt
λ

)
≤ −χηt min

{
∆t+1,

Lλζ
2

2

}
+

(
4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2

)(
1 +

2ηt
λ

)
where χ = min

{
2
λ
, α2

2βλζ
2

}
. Letting ηt = 2

χ(t+2)
, we get

∆t+1 −∆t ≤ −
2

t+ 2
min

{
∆t+1,

Lλζ
2

2

}
+

(
8

χλ(t+ 2)
‖at+1‖(ρ+ ρ′) + 32

βλζ
2

χ2λ2(t+ 2)2

)(
1 +

4

χλ(t+ 2)

)
We thus have that,

∆t+1 −∆t ≤ −
2

t+ 2
min(∆t+1, θ1) +

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′) (18)

where θ1 = Lλζ
2

2
, θ2 = 32 βλζ

2

χ2λ2

(
1 + 2

χλ

)
and θ3 = 8

χλ

(
1 + 2

χλ

)
maxt ‖at+1‖.
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From Lemma 8, we have that ‖wt‖ is bounded by a constant if the duality gap ∆t is bounded, and hence
‖at+1‖ = ‖∇uL(ut+1,vt+1,wt+1)‖ = ‖∇ψ(ut+1) + wt+1 + λ(ut+1 − vt+1)‖ can also be bounded by a
constant. We will need 2θ1 > θ3(ρ+ ρ′) for there to be a decrease in ∆t, this can be simply achieved by setting
λ to be a large enough value. Because if λ is large, χ ≈ c

λ
, and hence θ3 becomes a constant when increasing λ

further, but θ1 keeps increasing linearly with λ.

Lemma 14. Let ∆t be a sequence satisfying Eqn. (18). Let 2θ1 > θ3(ρ + ρ′). Let there exist a t0 >
θ2

2θ1−θ3(ρ+ρ′) − 2 such that ∆t0 ≤ θ1, then

∆t ≤ min

{
4θ1(t0 + 2)

t+ 2
+
θ3(ρ+ ρ′)

2
, θ1

}
∀t ≥ t0 . (19)

Proof. For t = t0 the bound on ∆t simplifies to θ1 and hence is true. This will form our base case for proof by
induction. We make the induction assumption that for a t ≥ t0, ∆t ≤ min

{
4θ1(t0+2)

t+2
+ θ3(ρ+ρ′)

2
, θ1

}
.

If ∆t+1 > θ1, then

θ1 < ∆t+1 ≤ ∆t −
2θ1

t+ 2
+

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

∆t+1 ≤ θ1 −
2θ1

t+ 2
+

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

2θ1 − θ3(ρ+ ρ′) <
θ2

t+ 2

t <
θ2

2θ1 − θ3(ρ+ ρ′)
− 2

which contradicts t ≥ t0 > θ2
2θ1−θ3(ρ+ρ′) − 2. Hence ∆t+1 < θ1. Thus, from Eqn. (18), we have

∆t+1 ≤ ∆t −
2

2 + t
∆t+1 +

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

∆t+1
t+ 4

t+ 2
≤ ∆t +

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

∆t+1
t+ 4

t+ 2
≤ 4θ1(t0 + 2)

t+ 2
+
θ3(ρ+ ρ′)

2
+

θ2

(t+ 2)2
+

θ3

t+ 2
(ρ+ ρ′)

∆t+1 ≤
4θ1(t0 + 2)

t+ 4
+
θ3(ρ+ ρ′)

2
(
t+ 2

t+ 4
+

2

t+ 4
) +

θ2

(t+ 2)(t+ 4)

∆t+1 ≤
4θ1(t0 + 2)

t+ 4
+
θ3(ρ+ ρ′)

2
+

2θ1(t0 + 2)

(t+ 2)(t+ 4)

∆t+1 ≤ 4θ1(t0 + 2)

(
1

t+ 4
+

1

2(t+ 2)(t+ 4)

)
+
θ3(ρ+ ρ′)

2

∆t+1 ≤ 4θ1(t0 + 2)

(
1

t+ 4
+

1

(t+ 3)(t+ 4)

)
+
θ3(ρ+ ρ′)

2

∆t+1 ≤ 4θ1(t0 + 2)

(
1

t+ 3

)
+
θ3(ρ+ ρ′)

2

And hence, we have

∆t+1 ≤ min

{
4θ1(t0 + 2)

t+ 3
+
θ3(ρ+ ρ′)

2
, θ1

}
The Lemma thus holds by induction.

Now we have to show that in a constant number of iterations t0 we can reach a point such that ∆t0 ≤ θ.

Lemma 15. Let ∆t be a sequence satisfying Eqn. (18). Let 2θ1 > θ3(ρ + ρ′). Then there exists a constant
t0 >

θ2
2θ1−θ3(ρ+ρ′) − 2 such that ∆t0 ≤ θ1.

Proof. Clearly, there must exist a t0 such that ∆t0 ≤ θ1, because 1
t

is a divergent series, and 1
t2

is a convergent
series and ∆t is bounded below by 0.

The same argument can be used for saying that ∆t drops below θ1 infinitely often, and hence there exists
t0 >

θ2
2θ1−θ3(ρ+ρ′) − 2 such that ∆t0 ≤ θ1.
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Let t0 be the first instant t > θ2
2θ1−θ3(ρ+ρ′) − 2 such that ∆t ≤ θ1, clearly this t0 can be upper bounded by a

constant that depends only on the two numbers 2θ1 − θ3(ρ+ ρ′) and θ2.

Putting together Lemmas 13, 14 and 15, we get the following corollary.

Corollary 16. Let 2θ1 > θ3(ρ+ ρ′). There exists a constant t0 > 0 such that

∆t ≤
4θ1(t0 + 2)

t+ 2
+
θ3(ρ+ ρ′)

2
∀t ≥ t0 .

where θ1 = Lλζ
2

2
and θ3 = 8

χλ

(
1 + 2

χλ

)
maxt ‖at+1‖.

Lemma 17. Let 2θ1 > θ3(ρ+ ρ′). Let t0 ∈ N be as in Lemma 15. Let ut,vt,wt be as in Algorithm 2. Then
for all T > 2t0 and T > 10, there exists a t ∈ [T/2, T ] such that

||ut − vt||2 ≤
c

T
+ c(ρ+ ρ′)

for some constant c > 0.

Proof. Rewriting Eqn. (14) here, we have

∆t+1 −∆t

≤ L(ut+2,vt+2,wt+1)− L(ut+1,vt+1,wt+1) +
2ηt
λ

(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1))

− ηt||ût+1 − v̂t+1||2

With the above equation as the starting point and proceeding as we do in Lemma 13, we get the below inequality
that is similar to Eqn. (15)

∆t+1 −∆t ≤ −
(

2ηt
λ

)
(L(ut+1,vt+1,wt+1)− L(ût+1, v̂t+1,wt+1)) +

4ηt
λ
‖at+1‖(ρ+ ρ′) + βλ

8η2
t

λ2
ζ2

− ηt||ût+1 − v̂t+1||2

Let ht+1 = (L(C[ht+1],vt+1,wt+1)− L(ût+1, v̂t+1,wt+1)) ≥ 0. We then have

2

λ

(
ht+1 − 2‖at+1‖(ρ+ ρ′)

)
+ ||ût+1 − v̂t+1||2 ≤

∆t −∆t+1

ηt
+ ηt

8βλζ
2

λ2
(20)

Let the dual step size ηt = 2
χ(t+2)

. Let {wt}TT/2 be a sequence of positive weights. We set wt = t− T/2. Let
τt = wt∑T

t=T
2

wt
= 2t−T

(T/2)(T/2+1)
be the associated normalized weights. The convex combination of Eqn. (20)
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with weights τt gives us

T∑
t=T/2

τt

(
2

λ

(
ht+1 − 2‖at+1‖(ρ+ ρ′)

)
+ ||ût+1 − v̂t+1||2

)

≤
T∑

t=T/2

τt
∆t −∆t+1

ηt
+

T∑
t=T/2

τtηt
8βλζ

2

λ2

=
τT/2
ηT/2

∆T/2 −
τT
ηT

∆T +

T∑
t=T/2+1

∆t

(
τt+1

ηt+1
− τt
ηt

)
+

T∑
t=T/2

τtηt
8βλζ

2

λ2

≤
T∑

t=T/2+1

(
4θ1(t0 + 2)

t+ 2
+
θ3(ρ+ ρ′)

2

)(
τt+1

ηt+1
− τt
ηt

)
+

T∑
t=T/2

τtηt
8βλζ

2

λ2

=

T∑
t=T/2+1

(
4θ1(t0 + 2)

t+ 2

)(
8t− 2T + 12

χT (T + 2)

)
+

(
θ3(ρ+ ρ′)

2

)(
τT
ηT

)
+

T∑
t=T/2

τtηt
8βλζ

2

λ2

≤
T∑

t=T/2+1

(
4θ1(t0 + 2)

T/2 + 2

)(
8T − 2T + 12

χT (T + 2)

)
+

(
θ3(ρ+ ρ′)

2

)(
4(T + 2)

T2χ

)
+

T∑
t=T/2

τT ηT/2
8βλζ

2

λ2

≤
T∑

t=T/2+1

(
8θ1(t0 + 2)

T

)(
12

χT

)
+

(
θ3(ρ+ ρ′)

2

)(
8

2χ

)
+

T∑
t=T/2

4

T

4

χT

8βλζ
2

λ2

≤ 48θ1(t0 + 2)

χT
+

2θ3(ρ+ ρ′)

χ
+

64βλζ
2

χλ2T

Thus, there must exist a t ∈ [T/2, T ] such that

2ht+1

λ
+ ||ût+1 − v̂t+1||2 ≤

48λ2θ1(t0 + 2) + 64βλζ
2

χλ2T
+

(
2θ3

χ
+

4

λ
max
t
‖at‖

)
(ρ+ ρ′). (21)

Now from Lemma 10 we have

‖(ut+2 − vt+2)− (ût+1 − v̂t+1)‖2 ≤ 2

λ
(L(ut+2,vt+2,wt+1)− L(ût+1, v̂t+1,wt+1)) =

2

λ
∆(p)
t (22)

From Eqn. (16), we have

∆(p)
t+1 − ht+1 = L(ut+2,vt+1,wt+1)− L(ut+1,vt+1,wt+1)

≤ 4ηt
λ
‖at+1‖(ρ+ ρ′) +

32βλζ
2

λ2χ2(t+ 2)2
(23)

Putting Eqns. (21), (22) and (23), we get Thus, there must exist a t ∈ [T/2, T ] such that

||ut−vt||2 ≤
48λ2θ1(t0 + 2) + 64βλζ

2 + 16λmaxt ‖at‖(ρ+ ρ′)

χλ2T
+

(
2θ3

χ
+

4

λ
max
t
‖at‖

)
(ρ+ρ′)+O

(
1

T 2

)
.

(24)

B Further Related Work

B.1 The COCO Approach

We elaborate on the COCO approach of Narasimhan (2018) [29], which is statistically consistent, but is shown
to achieve only a O(1/ε3) convergence rate. Like us, this approach also reformulates (OP1) as an optimization
over C but retains explicit constraints φk(C) ≤ 0, ∀k:

min
C∈C

ψ(C)

s.t. φk(C) ≤ 0, ∀k ∈ [K].
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The idea is to then formulate the Lagrangian for the constrained problem with Lagrange multipliers λ ∈ Λ ⊂ RK+ :

L(C, λ) = ψ(C) +

K∑
k=1

λkφk(C),

and to maximize the Lagrangian over the multipliers using gradient ascent:

C(t+1) ∈ argmin
C∈C

L(C, λ(t)) (25)

λt+1 = ΠΛ

(
λ(t) − ∇λL(C(t+1)λ(t))

)
, (26)

where ΠΛ is the projection onto the set Λ.

Note, however, that each gradient update on λ requires a minimization of the Lagrangian over C in (25), and this
is performed with a full run of the classical Frank-Wolfe method [18] using calls to a plug-in routine to solve the
LMO needed in each iteration. The final algorithm has two levels of nesting, where the inner level solves the
minimization in (25) with O(1/ε) calls to the plug-in routine, and the outer level performs O(1/ε2) gradient
ascent steps, resulting in a total O(1/ε3) calls to the plug-in routine to reach an ε-optimal, ε-feasible solution.

B.2 The 3-player Approach

As noted in Section 1, Narasimhan et al. (2019) [30] provide an idealized algorithm that enjoys the same
convergence rate as our approach to the optimal feasible solution, but do not provide a full-fledged consistency
analysis for this method. We elaborate on this method below.

Under the assumption that ψ and φk’s are monotonically non-decreasing in their arguments, Narasimhan et al.
reformulate (OP1) by introducing slack variables ξ ∈ [0, 1]d and arrive at the following equivalent problem:

min
h∈H, ξ∈[0,1]d

ψ(ξ)

s.t. φk(ξ) ≤ 0, ∀k ∈ [K]

ξ ≥ C[h]

They then formulate the Lagrangian for this problem with multipliers λ ∈ Λ ⊂ RK+d
+ :

L(h, ξ, λ) = ψ(ξ) +

K∑
k=1

λkφk(ξ) +

d∑
i=1

λK+i (Ci[h] − ξi),

and perform the following sequence of updates at each step t:

h(t+1) ∈ argmin
h∈H

L(h, ξ(t), λ(t)) (27)

ξ(t+1) ∈ argmin
ξ∈[0,1]d

L(h(t), ξ, λ(t)) (28)

λt+1 = ΠΛ

(
λ(t) − ∇λL(h(t+1), ξ(t+1)λ(t))

)
, (29)

where ΠΛ is the projection onto the set Λ.

The authors then show that when ψ and φk’s are convex, these updates converge to an ε-optimal, ε-feasible
classifier after O(1/ε2) steps. However, this result relies on access to an oracle for performing the optimization
in (27) over the space of classifiers H near-optimally. The authors further acknowledge that such an oracle
may not exist for general settings, and prescribe a more ‘practical’ algorithm that replaces (27) with a gradient
update on a relaxed Lagrangian objective, but does not enjoy the same convergence guarantees. We compare
against this surrogate-based approach (referred to as the 3-player method) in the experiments in Section 5. In the
open-source implementation the authors provide [10], they further replace (28) with a gradient update on ξ.

The algorithm we propose in this paper also uses two minimization subroutines, namely an LMO over C and
an LMO over F , but both of these can be implemented efficiently. The LMO over C is implemented in our
approach using a plug-in classifier, and the LMO over F reduces to a simple convex program and can often be
implemented very efficiently with a specialized solver. Unlike the the 3-player approach, we do not maintain an
explicit Lagrange multiplier for each constraint, and access the constraint set only through an LMO. In Section
4, we then provide a complete consistency analysis, showing optimality and feasibility bounds in terms of the
quality of class-probability estimates used to implement the plug-in classifier. Our results, however, require the
objective function ψ to be smooth, whereas Narasimhan et al. do not require this.
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Table 4: Datasets used in our experiments.
Dataset Instances Features Protected Attribute Prot. group frac.

COMPAS 6172 32 Gender 0.19
Communities & Crime 1994 132 Race 0.49

Law School 20798 16 Race 0.06
Adult 48842 123 Gender 0.10

Default 30000 23 Gender 0.40
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Figure 4: Training objective (left) and constraint violation (right) as function of no. of plug-in calls
for the task of minimizing G-mean subject to an equal opportunity constraint.

C Additional Experimental Details

Table 4 lists the datasets used in our experiments. Figure 4 shows convergence of the proposed method and the
prior COCO method as function of the number of calls to the plug-in method. Figure 5 demonstrates robustness
of our approach to hyper-parameter choices.

Hyper-parameters. To implement the plug-in routine, we use a pre-trained linear logistic regression model to
estimate η̂ηη, with the protected attribute included as one of the features. For the problems we consider in the
experiments, the LMO over the feasible set F in the proposed SBFW method is a linear program (LP), which
we solve using a standard LP solver. For the proposed SBFW, we set ηt as a decreasing step function with
values {0.5, 0.1, 0.001} , set λ = 10 and γt = 2

t+2
. For COCO, we tuned the learning rates from the range

{0.01, 0.1, 0.5, 1, 10, 20}. For the 3-player approach, we tuned the learning rates for the model and constraint
from {0.01, 0.1, 0.5, 1}. We note that SBFW requires almost no tuning compared to COCO and 3-player for the
experiments. In each case, we pick the best hyper-parameter using a heuristic provided by Cotter et al. (2019)
[10] to find the best trade-off between the training objective and constraint violations. We ran the 3-player
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Figure 5: Robustness to hyper-parameters: Scatter plot of train G-mean and equal opportunity violation (with
negative values clipped to zero) for six step sizes. While all six choices achieved close-to-best objective and
near-zero violations for the proposed algorithm, only two choices led to similar metrics for COCO, and three
choices led to similar metrics for the 3-player method.
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Figure 6: An illustration of Algorithm 1 for a synthetic 2-class problem with 20 constraints. We consider a
data distribution with equal prior probabilities and with class conditionals X|Y = 0 and X|Y = 1 distributed
as a standard normal with means 1 and 0 respectively. The goal is to minimize H-mean subject to a 20-sided
polygonal constraint.

method for 2000 iterations and ran COCO and SBFW with 2000 calls to the plug-in routine. In the experiments
in Figure 4, we separately tune the hyper-parameters for each method. For all experiments, we measure the
constraint violation by the positive part of φ(h)− ε, that is using max{0, φ(h)− ε}.

Larger number of constraints. In our final experiment, we demonstrate the effectiveness of the proposed
approach in handling a larger number constraints than considered in Section 5. For this, we consider a synthetic
2-class problem, with equal prior probabilities and with class conditionals X|Y = 0 and X|Y = 1 distributed
as a standard normal with means +1 and 0 respectively. The goal is to minimize H-mean subject to the diagonal
entries of the confusion matrix that the confusion matrix lies within a polygon centered at (0.2, 0.2). Figure
6 shows that contours of the objective function and the polygonal constraint region highlighted in red. The
polygon is represented by 20 linear constraints. We find that the proposed method converges to a near-optimal,
near-feasible solution within 40 calls to the plug-in routine.
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