A Additional Proof Details

Proof. of Lemma 5. Fix some w. Denote $h(\mathbf{x})=x_{j} \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)$. Let $A^{\prime} \subseteq[n]$ be some subset with $\left|A^{\prime}\right|=k$ and $j \notin A^{\prime}$.

$$
\mathbb{E} x_{j} f_{A^{\prime}}(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)=\hat{h}\left(A^{\prime}\right)
$$

Now, we have

$$
\underset{A^{\prime}}{\mathbb{E}}\left|\hat{h}\left(A^{\prime}\right)\right|^{2}=\frac{1}{\binom{n-1}{k}} \sum_{A^{\prime} \in\left(\begin{array}{c}
{\left[\begin{array}{c}
n-1] \\
k
\end{array}\right)}
\end{array}\right.}\left|\hat{h}\left(A^{\prime}\right)\right|^{2} \leq \frac{\|h\|_{2}^{2}}{\binom{n-1}{k}} \leq \frac{1}{\binom{n-1}{k}}
$$

Finally,

$$
\underset{A^{\prime}}{\mathbb{E}}\left|\hat{h}\left(A^{\prime}\right)\right| \leq \sqrt{\underset{A^{\prime}}{\mathbb{E}}|\hat{h}(A)|^{2}} \leq \sqrt{\frac{1}{\binom{n-1}{k}}}
$$

Since the above holds for all \mathbf{w}, we get that:

$$
\underset{A^{\prime}}{\mathbb{E}} \underset{\mathbf{w}}{\mathbb{E}}\left|\hat{h}\left(A^{\prime}\right)\right|=\underset{\mathbf{w}}{\mathbb{E}} \underset{A^{\prime}}{\mathbb{E}}\left|\hat{h}\left(A^{\prime}\right)\right| \leq \sqrt{\frac{1}{\binom{n-1}{k}}}
$$

Fix some $A^{\prime} \subseteq[n]$ (with $\left|A^{\prime}\right|=k$ and $j \notin A^{\prime}$), and observe that, from symmetry to permutations of the uniform distribution, we have:

$$
\begin{aligned}
\underset{\mathbf{w}}{\mathbb{E}}\left|\hat{h}\left(A^{\prime}\right)\right| & =\underset{\mathbf{w}}{\mathbb{E}}\left|\underset{\mathbf{x}}{\mathbb{E}} x_{j} f_{A^{\prime}}(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)\right| \\
& =\underset{\mathbf{w}}{\mathbb{E}}\left|\underset{\mathbf{x}}{\mathbb{E}} x_{j} f_{A}(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)\right|=\underset{\mathbf{w}}{\mathbb{E}}|\hat{h}(A)|
\end{aligned}
$$

And therefore, we get that: $\mathbb{E}_{\mathbf{w}}|\hat{h}(A)|=\mathbb{E}_{A^{\prime}} \mathbb{E}_{\mathbf{w}}\left|\hat{h}\left(A^{\prime}\right)\right| \leq \sqrt{\frac{1}{\binom{n-1}{k}}}$. Now, using Markov's inequality achieves the required. A similar calculation is valid for $h(\mathbf{x})=\sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)$.

Proof. of Lemma 7. W.l.o.g., assume $A=[k]$ and $j=k+1$. We will show that the conclusion of the lemma is true even if we condition of the value of x_{k+1}, \ldots, x_{n}. Indeed, in that case the conditional expectation of $x_{j} f(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)$ is

$$
\begin{aligned}
& \frac{1}{2} x_{k+1} f\left(1, \ldots, 1, x_{k+1} \ldots, x_{k}\right) \cdot \sigma^{\prime}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right) \\
& +\frac{1}{2} x_{k+1} f\left(-1, \ldots,-1, x_{k+1} \ldots, x_{k}\right) \cdot \sigma^{\prime}\left(\sum_{i=1}^{k}-w_{i}+\sum_{i=1}^{n} w_{i} x_{i}+b>0\right) \\
= & \frac{1}{2} x_{k+1} \cdot \sigma^{\prime}\left(\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right) \\
& -\frac{1}{2} x_{k+1} \cdot \sigma^{\prime}\left(\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right) \\
= & 0
\end{aligned}
$$

Similarly, the conditional expectation of $f(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b>0\right)$ is

$$
\begin{aligned}
& \frac{1}{2} f\left(1, \ldots, 1, x_{k+1} \ldots, x_{k}\right) \cdot \sigma^{\prime}\left(\sum_{i=1}^{k} w_{i}+\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right) \\
& +\frac{1}{2} f\left(-1, \ldots,-1, x_{k+1} \ldots, x_{k}\right) \cdot \sigma^{\prime}\left(\sum_{i=1}^{k}-w_{i}+\sum_{i=1}^{n} w_{i} x_{i}+b>0\right) \\
= & \frac{1}{2} \cdot \sigma^{\prime}\left(\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right) \\
= & -\frac{1}{2} \cdot \sigma^{\prime}\left(\sum_{i=k+1}^{n} w_{i} x_{i}+b>0\right)
\end{aligned}
$$

Proof. of Lemma 8. Fix some $y \in\{ \pm 1\}$. Denote \hat{S} to be the random variable $\hat{S}:=\sum_{j \notin A} w_{j} x_{j}=$ $\sum_{j \in J} w_{j} x_{j}$. Notice that for every $y \in\{ \pm 1\}$, the following holds:

$$
\begin{aligned}
\mathbb{P}\left[h(\mathbf{x})=y \wedge \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=1\right] & \leq \mathbb{P}\left[h(\mathbf{x})=y \wedge \hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right] \\
& +\mathbb{P}\left[h(\mathbf{x})=y \wedge \hat{S}+b \in\left(-\frac{k}{\sqrt{n}}, \frac{k}{\sqrt{n}}\right] \cup\left[6-\frac{k}{\sqrt{n}}, 6\right)\right] \\
& =\mathbb{P}[h(\mathbf{x})=y] \mathbb{P}\left[\hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right] \\
& +\mathbb{P}\left[h(\mathbf{x})=y \wedge \hat{S}+b \in\left(-\frac{k}{\sqrt{n}}, \frac{k}{\sqrt{n}}\right] \cup\left[6-\frac{k}{\sqrt{n}}, 6\right)\right]
\end{aligned}
$$

Where we use the fact that $h(\mathbf{x})$ is independent from every x_{j} with $j \notin A$. Since $\left\{\sqrt{n} x_{j}\right\}_{j \in J}$ are Rademacher random variables, from Littlewood-Offord there exists a universal constant B such that $\mathbb{P}[\hat{S} \in I] \leq \frac{B}{\sqrt{|J|}}$, for every open interval I of length $\frac{1}{\sqrt{n}}$. Using the union bound we get that $\mathbb{P}\left[\hat{S}+b \in\left(-\frac{k}{\sqrt{n}}, \frac{k}{\sqrt{n}}\right] \cup\left[6-\frac{k}{\sqrt{n}}, 6\right)\right] \leq \frac{3 k+2}{\sqrt{|J|}}$. Therefore, we get the following:

$$
\begin{aligned}
& \left|\mathbb{P}\left[h(\mathbf{x})=y \wedge \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=1\right]-\mathbb{P}[h(\mathbf{x})=y] \mathbb{P}\left[\hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right]\right| \\
& \leq \mathbb{P}\left[h(\mathbf{x})=y \wedge \hat{S}+b \in\left(-\frac{k}{\sqrt{n}}, \frac{k}{\sqrt{n}}\right] \cup\left[6-\frac{k}{\sqrt{n}}, 6\right)\right] \\
& =\mathbb{P}[h(\mathbf{x})=y] \mathbb{P}\left[\hat{S}+b \in\left(-\frac{k}{\sqrt{n}}, \frac{k}{\sqrt{n}}\right] \cup\left[6-\frac{k}{\sqrt{n}}, 6\right)\right] \\
& \leq \mathbb{P}[h(\mathbf{x})=y] \frac{(3 k+1) B}{\sqrt{|J|}}
\end{aligned}
$$

Since the above is true for every $y \in\{ \pm 1\}$, we get that:

$$
\begin{aligned}
& \left|\mathbb{E}\left[h(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]-\mathbb{E}[h(\mathbf{x})] \mathbb{P}\left[\hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right]\right| \\
& =\left|\sum_{y \in\{ \pm 1\}} y \mathbb{P}\left[h(\mathbf{x})=y \wedge \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=1\right]-\sum_{y \in\{ \pm 1\}} y \mathbb{P}[h(\mathbf{x})=y] \mathbb{P}\left[\hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right]\right| \\
& \leq \sum_{y \in\{ \pm 1\}}\left|\mathbb{P}\left[h(\mathbf{x})=y \wedge \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)=1\right]-\mathbb{P}[h(\mathbf{x})=y] \mathbb{P}\left[\hat{S}+b \in\left(\frac{k}{\sqrt{n}}, 6-\frac{k}{\sqrt{n}}\right)\right]\right| \\
& \leq \frac{(3 k+1) B}{\sqrt{|J|}} \sum_{y \in\{ \pm 1\}} \mathbb{P}[h(\mathbf{x})=y]=\frac{(3 k+1) B}{\sqrt{|J|}}
\end{aligned}
$$

And this gives the required.
Proof. of Lemma 9. Denote $\mathbf{w}:=\mathbf{w}_{i}^{(0)}, b:=b_{i}^{(0)}$. We show that with probability at least $\frac{1}{14 \sqrt{k}}$ over the choice of $\mathbf{w}_{i}^{(0)}$ we have:

1. $\left|\mathbb{E}_{\mathbf{x}} x_{j} f(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \leq 14 \sqrt{k}(n-1) \sqrt{\frac{1}{\binom{n-1}{k}}}$ $\left|\mathbb{E}_{\mathbf{x}} f(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \leq 14 \sqrt{k}(n-1) \sqrt{\frac{1}{\left(\frac{n-1}{k}\right)}}$
2. $\sum_{j \in A} w_{j}=0$
3. $|J|:=\left|\left\{j \in[n] \backslash A: w_{j} \neq 0\right\}\right| \geq \frac{n-k}{3}$

We start by calculating the probability to get each of the above separately:

1. From Lemma 6, this holds with probability at least $1-\frac{1}{14 \sqrt{k}}$.
2. Denote $A_{0}=\left\{j \in A \mid w_{j}=0\right\}$. Now, to calculate the probability that 2 holds, we start by noting that it can hold only when $\left|A_{0}\right|$ is odd (since k is odd). Now, note that $\mathbb{P}\left[w_{j}=0\right]=\frac{1}{3}$ independently for every coordinate. Therefore, we have the following:

$$
\begin{aligned}
& \left(\left(1-\frac{1}{3}\right)+\frac{1}{3}\right)^{k}=\mathbb{P}\left[\left|A_{0}\right| \text { is even }\right]+\mathbb{P}[|A| \text { is odd }] \\
& \left(\left(1-\frac{1}{3}\right)-\frac{1}{3}\right)^{k}=\mathbb{P}\left[\left|A_{0}\right| \text { is even }\right]-\mathbb{P}[|A| \text { is odd }] \\
& \Rightarrow \mathbb{P}\left[\left|A_{0}\right| \text { is odd }\right]=\frac{1}{2}-\frac{1}{2}\left(\frac{1}{3}\right)^{k} \geq \frac{1}{3}
\end{aligned}
$$

Now, conditioning on the event that $\left|A_{0}\right|$ is odd, we have:

$$
\mathbb{P}\left[\sum_{j \in A} w_{j}=0\right]=\frac{1}{2^{k-\left|A_{0}\right|}}\binom{k-\left|A_{0}\right|}{\frac{1}{2}\left(k-\left|A_{0}\right|\right)} \geq \frac{1}{2 \sqrt{k-\left|A_{0}\right|}} \geq \frac{1}{2 \sqrt{k}}
$$

All in all, we get that 2 holds with probability at least $\frac{1}{6 \sqrt{k}}$.
3. Denote $X_{j}=\mathbf{1}\left\{w_{j} \neq 0\right\}$, and note that we have $\mathbb{E}\left[\sum_{j \notin A} X_{j}\right]=\frac{2(n-k)}{3}$. Then, from Hoeffding's inequality we get that $\mathbb{P}\left[|J| \leq \frac{n-k}{3}\right] \leq \exp \left(-\frac{2}{9}(n-k)\right) \leq \frac{1}{7}$, since we assume $n-k \geq \frac{9}{2} \log 7$.

To calculate the probability that both 1,2 and 3 hold, note that 2 and 3 are independent, and therefore the probability that both of them hold is at least $\frac{1}{7 \sqrt{k}}$. Using the union bound we get that the probability that all 1-3 hold is at least $\frac{1}{14 \sqrt{k}}$.

Now, we assume that the above hold. In this case we have:

$$
\begin{aligned}
\left|b_{i}^{(1)}-b_{i}^{(0)}\right| & =\left|\eta_{1} \frac{\partial}{\partial b_{i}} L_{\mathcal{D}}\left(g^{(0)}\right)\right| \\
& =\left|\mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(0)}(\mathbf{x})\right) \frac{\partial}{\partial b_{i}} g^{(0)}(\mathbf{x})\right]\right| \\
& =\left|u_{i}^{(0)}\right|\left|\frac{1}{2} \underset{\mathcal{D}_{A}^{(1)}}{\mathbb{E}} f_{A}(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)-\frac{1}{2} \underset{\mathcal{D}_{A}^{(2)}}{\mathbb{E}} f_{A}(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \\
& =\frac{n}{2 k}\left|\underset{\mathcal{D}_{A}^{(1)}}{\mathbb{E}} f(\mathbf{x}) \cdot \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \\
& \leq 7 \frac{n(n-1)}{\sqrt{k}} \sqrt{\frac{1}{\binom{n-1}{k}}} \leq 7(n-1)^{2} \sqrt{\frac{1}{\binom{n-1}{5}}} \leq 7(n-1)^{2} \sqrt{\left(\frac{5}{n-1}\right)^{5}} \leq \frac{\sqrt{2} \cdot 7 \cdot 5^{2.5}}{\sqrt{n}}
\end{aligned}
$$

Where we use the result of Lemma 7 and the above conditions. Now, for all $j \in[n]$ we have:

$$
\begin{aligned}
w_{i, j}^{(1)} & =w_{i, j}^{(0)}-\eta_{1}\left(\frac{\partial}{\partial w_{i, j}} L_{\mathcal{D}}\left(g^{(0)}\right)+\lambda_{1} R\left(g^{(0)}\right)\right) \\
& =w_{i}^{(0)}-\mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(0)}(\mathbf{x})\right) \frac{\partial}{\partial w_{i, j}} g^{(0)}(\mathbf{x})\right]-\frac{1}{2} \frac{\partial}{\partial w_{i, j}^{(0)}} R\left(g^{(0)}\right) \\
& =-u_{i}^{(0)} \mathbb{E}\left[x_{j} f_{A}(\mathbf{x}) \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]
\end{aligned}
$$

So, denote $h(\mathbf{x})=\sqrt{n} x_{j} f_{A}(\mathbf{x})$ and note that for every $j \in A$ we get $h(\mathbf{x}) \equiv 1$. So, from Lemma 8 we get that for every $j \in A$ we have:

$$
\begin{aligned}
\left|w_{i, j}^{(1)}-\varphi(\mathbf{w}, b) \frac{u_{i}^{(0)}}{\sqrt{n}}\right| & =\left|\frac{u_{i}^{(0)}}{\sqrt{n}}\right|\left|\underset{\mathcal{D}_{A}}{\mathbb{E}} h(\mathbf{x}) \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)-\varphi(\mathbf{w}, b) \underset{\mathcal{D}_{A}}{\mathbb{E}} h(\mathbf{x})\right| \\
& \leq \frac{C_{1} \sqrt{n}}{\sqrt{|J|}} \leq \frac{\sqrt{3} C_{1} \sqrt{n}}{\sqrt{(n-k)}} \leq \sqrt{6} C_{1}
\end{aligned}
$$

Now, let $\alpha_{i}=\varphi(\mathbf{w}, b)$ and recall that $\varphi(\mathbf{w}, b)=\mathbb{P}\left[\frac{k}{\sqrt{n}}<\sum_{j \in J} w_{j} x_{j}+b<6-\frac{k}{\sqrt{n}}\right]$, and since $\frac{k}{\sqrt{n}} \leq \frac{1}{8 k}$ and $b=\frac{1}{8 k}$ we have:

$$
\alpha_{i} \geq \mathbb{P}\left[0 \leq \sum_{j \in J} w_{j} x_{j}<5\right]=\frac{1}{2}-\mathbb{P}\left[\sum_{j \in J} w_{j} x_{j}>5\right]
$$

From Markov's inequality we have: $\mathbb{P}\left[\left|\sum_{j \in J} w_{j} x_{j}\right|>5\right] \leq \frac{1}{5^{2}}$. And from symmetry we get that $\mathbb{P}\left[\sum_{j \in J} w_{j} x_{j}>5\right] \leq \frac{1}{2 \cdot 5^{2}} \leq \frac{1}{4}$, and so $\alpha_{i} \geq \frac{1}{4}$. Finally, for every $j \notin A$, using Lemma 7 we get:

$$
\begin{aligned}
\left|w_{i, j}^{(1)}\right| & =\left|u_{i}^{(0)}\right|\left|\frac{1}{2} \underset{\mathcal{D}_{A}^{(1)}}{\mathbb{E}} x_{j} f_{A}(\mathbf{x}) \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)+\frac{1}{2} \underset{\mathcal{D}_{A}^{(2)}}{\mathbb{E}} x_{j} f_{A}(\mathbf{x}) \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right| \\
& =\frac{n}{2 k}\left|\underset{\mathcal{D}_{A}^{(1)}}{\mathbb{E}} x_{j} f_{A}(\mathbf{x}) \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}\right)\right| \leq 7 \frac{n(n-1)}{\sqrt{k}} \sqrt{\frac{1}{\binom{n-1}{k}}} \\
& \leq \frac{7}{n-1}(n-1)^{3} \sqrt{\frac{1}{\binom{n-1}{6}}} \leq \frac{7}{n-1}(n-1)^{3} \sqrt{\frac{6^{6}}{(n-1)^{6}}} \leq 7 \cdot \frac{6^{3}}{n-1}
\end{aligned}
$$

Proof. of Lemma 10. Denote $u^{*}=-\frac{b n}{\alpha r}$, and let $\epsilon^{\prime}=\frac{b n}{\alpha|r| k} \epsilon$. Notice that $\left|u^{*}\right| \leq \frac{n}{2 k}$ so $\left[u^{*}-\epsilon^{\prime}, u^{*}+\right.$ $\left.\epsilon^{\prime}\right] \subset\left[-\frac{n}{k}, \frac{n}{k}\right]$. Therefore, we get that $\mathbb{P}\left[\left|u-u^{*}\right| \leq \epsilon^{\prime}\right]=\frac{\epsilon^{\prime} k}{n}=\frac{b \epsilon}{\alpha|r|} \geq \frac{1}{8 k^{2}} \epsilon$. Notice that:

$$
\phi_{r}(z)=\frac{|r|}{b} \sigma\left(\frac{\alpha}{n} u^{*} z+b\right)
$$

And therefore:

$$
\left|\frac{|r|}{b} \sigma\left(\frac{\alpha}{n} u z+b\right)-\phi_{r}(z)\right|=\frac{|r|}{b}\left|\sigma\left(\frac{\alpha}{n} u z+b\right)-\sigma\left(\frac{\alpha}{n} u^{*} z+b\right)\right| \leq \frac{|r z| \alpha}{b n}\left|u-u^{*}\right| \leq \frac{r \alpha k}{b n} \epsilon^{\prime}=\epsilon
$$

Proof. of Lemma 11. From Lemma 9, with probability at least $\frac{1}{14 \sqrt{k}}$ over the choice of $\mathbf{w}_{i}^{(0)}$, we have that: $\max _{j \in A}\left|w_{i, j}^{(0)}-\frac{\alpha_{i}}{\sqrt{n}} u_{i}^{(0)}\right| \leq C_{1}, \max _{j \notin A}\left|w_{i, j}^{(0)}-\frac{\alpha_{i}}{\sqrt{n}} u_{i}^{(0)}\right| \leq \frac{C_{2}}{n-1}$ and $\left|b^{(1)}-b^{(0)}\right| \leq \frac{C_{3}}{\sqrt{n}}$ for some universal constants C_{1}, C_{2}, C_{3}, and some $\alpha_{i} \in\left[\frac{1}{4}, 1\right]$ depending only on $\mathbf{w}_{i}^{(0)}$. From Lemma 10 , with probability at least $\frac{\epsilon}{8 k^{2}}$ over the choice of $u_{i}^{(0)}$ (and independently of the choice of $\mathbf{w}_{i}^{(0)}$), we have $\left|\frac{|r|}{b_{i}^{(0)}} \sigma\left(\frac{\alpha}{n} u_{i}^{(0)} z+b_{i}^{(0)}\right)-\phi_{r}(z)\right| \leq \epsilon$ for every $z \in[-k, k]$.
Assume the results of both lemmas hold, which happens with probability at least $\frac{\epsilon}{112 k^{2.5}}$. Now, fix some $\mathrm{x} \in \mathcal{X}$ and let $z=\sqrt{n} \sum_{j \in A} x_{j} \in[-k, k]$. Then we have:

$$
\begin{aligned}
\left|\widehat{\psi}_{i}(\mathbf{x})-\psi_{r}(\mathbf{x})\right| & =\left|\frac{|r|}{b_{i}^{(0)}} \sigma\left(\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}\right)-\sigma(-\operatorname{sign}(r) z+|r|)\right| \\
& =\frac{|r|}{b_{i}^{(0)}}\left|\sigma\left(\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}\right)-\sigma\left(\frac{\alpha_{i}}{n} u_{i}^{(0)} z+b_{i}^{(0)}\right)\right| \\
& +\left|\frac{|r|}{b_{i}^{(0)}} \sigma\left(\frac{\alpha_{i}}{n} u_{i}^{(0)} z+b_{i}^{(0)}\right)-\sigma(-\operatorname{sign}(r) z+|r|)\right|
\end{aligned}
$$

From the result of Lemma 9:

$$
\begin{aligned}
& \left|\sigma\left(\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}\right)-\sigma\left(\frac{\alpha_{i}}{\sqrt{n}} u_{i}^{(0)} z+b_{i}^{(0)}\right)\right| \\
& \leq\left|\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}-\frac{\alpha_{i}}{n} u_{i}^{(0)} z+b_{i}^{(0)}\right| \\
& \leq\left|\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle-\frac{\alpha_{i}}{\sqrt{n}} u_{i}^{(0)} \sum_{j \in A} x_{j}\right|+\left|b_{i}^{(1)}-b_{i}^{(0)}\right| \\
& \leq \sum_{j \in A}\left|w_{i, j}^{(1)} x_{j}-\frac{\alpha_{i}}{\sqrt{n}} u_{i}^{(0)} x_{j}\right|+\sum_{j \notin A}\left|w_{i, j}^{(1)} x_{j}\right|+\left|b_{i}^{(1)}-b_{i}^{(0)}\right| \\
& \leq \frac{k C_{1}}{\sqrt{n}}+\frac{C_{2}}{\sqrt{n}}+\frac{C_{3}}{\sqrt{n}}
\end{aligned}
$$

Using the result of Lemma 10 we get that:

$$
\left|\widehat{\psi}_{i}(\mathbf{x})-\psi_{r}(\mathbf{x})\right| \leq \frac{|r|}{b_{i}^{(0)}}\left(\frac{C_{1} k+C_{2}+C_{3}}{\sqrt{n}}\right)+\epsilon \leq \frac{C_{4} k^{4}}{\sqrt{n}}+\epsilon
$$

For some universal constant C_{4}. Using the assumption on k concludes the proof.
Proof. of Lemma 12. Fix some $r \in\{-k,-k+2, \ldots, k-2, k\}$. Let $\epsilon=\frac{1}{10 k}$, and from Lemma 11, with probability at least $\frac{1}{1120 k^{3.5}}$ over the choice of $\mathbf{w}_{i}^{(0)}, u_{i}^{(0)}$ we have:

$$
\left|\widehat{\psi}_{i}(\mathbf{x})-\psi_{r}(\mathbf{x})\right| \leq \frac{1}{10 k}
$$

Assume $q \geq 2 \cdot 1120^{2} k^{7} \log \left(\frac{k+1}{\delta}\right)$. Denote $I_{r}=\left\{i \in[q]:\left|\widehat{\psi}_{i}(\mathbf{x})-\psi_{r}(\mathbf{x})\right| \leq \frac{1}{10 k}\right\}$. Denote $p:=\frac{1}{1120 k^{3.5}}$, and using Hoeffding's inequality, with probability at least $1-\exp \left\{-\frac{p^{2}}{2} q\right\} \geq 1-\frac{\delta}{k+1}$
we have $\left|I_{r}\right| \geq \frac{p}{2} q$. Therefore, using the union bound we get that with probability at least $1-\delta$, for every $r \in\{-k,-k+2, \ldots, k-2, k\}$ we have $\left|I_{r}\right| \geq \frac{p}{2} q$. Let $J_{r} \subset I_{r}$ be some subset of size $\left|J_{r}\right|=\frac{p}{2} q$. Define:

$$
v_{r}= \begin{cases}1 & |r|=k \\ 2.5 & |r|=1 \\ 2 & 1<|r|<k\end{cases}
$$

Observe that $\sum_{r}(-1)^{\frac{k-r}{2}} v_{r} \psi_{r}(\mathbf{x})=f_{A}(\mathbf{x})$. Therefore, we have that:

$$
\begin{aligned}
\left|\frac{2}{p q} \sum_{r} \sum_{i \in J_{r}}(-1)^{\frac{k-r}{2}} v_{r} \widehat{\psi}_{i}(\mathbf{x})-f_{A}(\mathbf{x})\right| & =\left|\frac{2}{p q} \sum_{r} \sum_{i \in J_{r}}(-1)^{\frac{k-r}{2}} v_{r} \widehat{\psi}_{i}(\mathbf{x})-\sum_{r}(-1)^{\frac{k-r}{2}} v_{r} \psi_{r}(\mathbf{x})\right| \\
& \leq \frac{2}{p q} \sum_{r} \sum_{i \in J_{r}}\left|v_{r}\right|\left|\widehat{\psi}_{i}(\mathbf{x})-\psi_{r}(\mathbf{x})\right| \\
& \leq 2.5(k+1) \frac{1}{10 k} \leq \frac{1}{2}
\end{aligned}
$$

Define:

$$
u_{i}^{*}= \begin{cases}(-1)^{\frac{k-r}{2}} \frac{2 v_{r}|r|}{p q b_{i}^{(0)}} & \exists r \text { s.t } i \in J_{r} \\ 0 & \text { o.w }\end{cases}
$$

Now, we have $\left|u_{i}\right| \leq \frac{2}{p q} 10(k+1) k \leq \frac{B k^{5.5}}{q}$ where B is a universal constant. Therefore, we get that $\left\|\mathbf{u}^{*}\right\| \leq \sqrt{\frac{q(k+1)}{2240 k^{2}}} \cdot \frac{B k^{5.5}}{q}=B^{\prime} \frac{k^{5}}{\sqrt{q}}$. From what we showed, such \mathbf{u}^{*} achieves the required.

Proof. of Theorem 13. We follow an analysis similar to [23]. Let $R_{t}(\theta)=\sum_{i=1}^{t}\left\langle\theta, \nabla f_{i}\right\rangle+\frac{1}{2 \eta}\|\theta\|^{2}$, and notice that $\arg \min _{\theta} R_{t}=-\eta \sum_{i=1}^{t} \nabla f_{i}=\theta_{t+1}-\theta_{1}$. We show by induction that for every θ^{*} we have:

$$
\begin{equation*}
\sum_{t=1}^{T}\left\langle\theta_{t+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq \sum_{t=1}^{T}\left\langle\theta^{*}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle+\frac{1}{2 \eta}\left\|\theta^{*}\right\|^{2}=R_{T}\left(\theta^{*}\right) \tag{5}
\end{equation*}
$$

First, we have:

$$
\left\langle\theta_{2}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq R_{1}\left(\theta_{2}-\theta_{1}\right) \leq R_{1}\left(\theta^{*}\right)
$$

since $\theta_{2}-\theta_{1}$ minimizes R_{1}. Now, assume the above is true for $T-1$, then we have:

$$
\sum_{t=1}^{T-1}\left\langle\theta_{t+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq \sum_{t=1}^{T-1}\left\langle\theta_{T+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle
$$

And by adding $\left\langle\theta_{T+1}-\theta_{1}, \nabla f_{T}\left(\theta_{T}\right)\right\rangle$ to both sides we get:

$$
\sum_{t=1}^{T}\left\langle\theta_{t+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq \sum_{t=1}^{T}\left\langle\theta_{T+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq R_{T}\left(\theta_{T+1}-\theta_{1}\right) \leq R_{T}\left(\theta^{*}\right)
$$

Now, from (5) we get that:

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle\theta_{t}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle-R_{T}\left(\theta^{*}\right) & \leq \sum_{t=1}^{T}\left\langle\theta_{t}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle-\sum_{t=1}^{T}\left\langle\theta_{t+1}-\theta_{1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \\
& =\sum_{t=1}^{T}\left\langle\theta_{t}-\theta_{t+1}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle=\eta \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\theta_{t}\right)\right\|^{2}
\end{aligned}
$$

Using Cauchy-Schwartz inequality and rearranging the above yields:

$$
\sum_{t=1}^{T}\left\langle\theta_{t}-\theta^{*}, \nabla f_{t}\left(\theta_{t}\right)\right\rangle \leq \frac{1}{2 \eta}\left\|\theta^{*}\right\|^{2}+\left\|\theta_{1}\right\| \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\theta_{t}\right)\right\|+\eta \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\theta_{t}\right)\right\|^{2}
$$

Finally, from convexity of f_{t} we get:
$\sum_{t=1}^{T}\left(f_{t}\left(\theta_{t}\right)-f_{t}\left(\theta^{*}\right)\right) \leq \sum_{t=1}^{T}\left\langle\theta_{t}-\theta^{*}, \nabla f_{t}\right\rangle \leq \frac{1}{2 \eta}\left\|\theta^{*}\right\|^{2}+\left\|\theta_{1}\right\| \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\theta_{t}\right)\right\|+\eta \sum_{t=1}^{T}\left\|\nabla f_{t}\left(\theta_{t}\right)\right\|^{2}$

Proof. of Lemma 14. W.l.o.g., assume $A=[k]$. Denote $I_{\text {even }}:=\left\{\mathbf{z} \in\left\{ \pm \frac{1}{\sqrt{n}}\right\}^{k}: \prod_{i} z_{i}>0\right\}$ and $I_{o d d}:=\left\{\mathbf{z} \in\left\{ \pm \frac{1}{\sqrt{n}}\right\}^{k}: \prod_{i} z_{i}<0\right\}$. Notice that since k is odd, we have $I_{o d d}=-I_{\text {even }}$. From the symmetric initialization we have $g^{(0)} \equiv 0$. By definition of the gradient-updates, we have:

$$
\begin{aligned}
u_{i}^{(1)} & =u_{i}^{(0)}-\eta_{1}\left(\frac{\partial}{\partial u_{i}} L_{\mathcal{D}}\left(g^{(0)}\right)+\lambda_{1} \frac{\partial}{\partial u_{i}^{(0)}} R\left(g^{(0)}\right)\right) \\
& =u_{i}^{(0)}-\mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(0)}(\mathbf{x})\right) \frac{\partial}{\partial u_{i}} g^{(0)}(\mathbf{x})\right]-\frac{1}{2} \frac{\partial}{\partial u_{i}^{(0)}} R\left(g^{(0)}\right) \\
& =-\mathbb{E}\left[f_{A}(\mathbf{x}) \sigma\left(\left\langle\mathbf{w}_{i}^{(0)}, \mathbf{x}\right\rangle+b\right)\right] \\
& =-\sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{E}\left[\sigma\left(\left\langle\mathbf{w}_{i}^{(0)}, \mathbf{x}\right\rangle+b\right) \mid \mathbf{x}_{1 \ldots k}=\mathbf{z}\right] \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right] \\
& +\sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{E}\left[\sigma\left(\left\langle\mathbf{w}_{i}^{(0)}, \mathbf{x}\right\rangle+b\right) \mid \mathbf{x}_{1 \ldots k}-\mathbf{z}\right] \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=-\mathbf{z}\right]
\end{aligned}
$$

Since by definition of the distribution \mathcal{D}_{A} we have $\mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right]=\mathbb{P}\left[\mathbf{x}_{1 \ldots k}=-\mathbf{z}\right]$, we get that:

$$
\begin{aligned}
u_{i}^{(1)} & =\sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right] \mathbb{E}\left[\sigma\left(\sum_{j=1}^{k} w_{i, j}^{(0)} z_{j}+\sum_{j=k+1}^{n} w_{i, j}^{(0)} x_{j}+b\right)\right] \\
& -\sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right] \mathbb{E}\left[\sigma\left(-\sum_{j=1}^{k} w_{i, j}^{(0)} z_{j}+\sum_{j=k+1}^{n} w_{i, j}^{(0)} x_{j}+b\right)\right]
\end{aligned}
$$

And since σ is 1-Lipschitz we get:

$$
\left|u_{i}^{(1)}\right| \leq \sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right] 2\left|\sum_{j=1}^{k} w_{i, j}^{(0)} z_{j}\right| \leq \frac{k}{\sqrt{n}} 2 \sum_{\mathbf{z} \in I_{\text {even }}} \mathbb{P}\left[\mathbf{x}_{1 \ldots k}=\mathbf{z}\right]=\frac{k}{\sqrt{n}}
$$

Where we use the fact that σ is 1-Lipschitz.

Proof. of Lemma 15. From Lemma 14 we have that $\left|u_{i}^{(1)}\right| \leq \frac{k}{\sqrt{n}}$. For every $t>1$:

$$
\begin{aligned}
\left|u_{i}^{(t)}\right| & =\left|u_{i}^{(t-1)}-\eta \frac{\partial}{\partial u_{i}} L_{\mathcal{D}}\left(g^{(t-1)}\right)-\eta \lambda \frac{\partial}{\partial u_{i}} R\left(g^{(t-1)}\right)\right| \\
& =\left|u_{i}^{(t-1)}-\eta \mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(t-1)}(\mathbf{x})\right) f_{A}(\mathbf{x}) \sigma\left(\left\langle\mathbf{w}_{i}^{(t-1)}, \mathbf{x}\right\rangle+b_{i}^{(t-1)}\right)\right]-2 \eta \lambda u_{i}^{(t-1)}\right| \\
& \leq\left|(1-2 \eta \lambda) u_{i}^{(t-1)}-6 \eta\right| \leq\left|u_{i}^{(t-1)}\right|+6 \eta \leq \cdots \leq\left|u_{i}^{(1)}\right|+6 \eta(t-1) \leq 6 \eta t+\frac{k}{\sqrt{n}}
\end{aligned}
$$

Now, using the above we get that:

$$
\begin{aligned}
\left\|\mathbf{w}_{i}^{(t)}-\mathbf{w}_{i}^{(1)}\right\| & =\left\|\mathbf{w}_{i}^{(t)}-\eta \frac{\partial}{\partial w_{i}} L_{\mathcal{D}}\left(g^{(t-1)}\right)-\eta \lambda \frac{\partial}{\partial w_{i}} R\left(g^{(t-1)}\right)\right\| \\
& =\left\|\mathbf{w}_{i}^{(t-1)}-\mathbf{w}_{i}^{(1)}-\eta \mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(t-1)}(\mathbf{x})\right) u_{i}^{(t-1)} \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right) \mathbf{x}\right]-2 \eta \lambda \mathbf{w}_{i}^{(t-1)}\right\| \\
& \leq\left\|\mathbf{w}_{i}^{(t-1)}-\mathbf{w}_{i}^{(1)}-2 \eta \lambda \mathbf{w}_{i}^{(t-1)}\right\|+\eta\left|u_{i}^{(t-1)}\right| \\
& \leq(1-2 \eta \lambda)\left\|\mathbf{w}_{i}^{(t-1)}-\mathbf{w}_{i}^{(1)}\right\|+2 \eta \lambda\left\|\mathbf{w}_{i}^{(1)}\right\|+6 \eta^{2} t+\eta \frac{k}{\sqrt{n}} \\
& \leq\left\|\mathbf{w}_{i}^{(t-1)}-\mathbf{w}_{i}^{(1)}\right\|+2 \eta \lambda \frac{n}{k}+6 \eta^{2} t+\eta \frac{k}{\sqrt{n}} \leq \cdots \leq 2 \eta t \lambda \frac{n}{k}+6 \eta^{2} t^{2}+\eta t \frac{k}{\sqrt{n}}
\end{aligned}
$$

Where we use the fact that:

$$
\left\|\mathbf{w}_{i}^{(1)}\right\|=\left\|\mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(0)}(\mathbf{x})\right) u_{i}^{(0)} \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right) \mathbf{x}\right]\right\| \leq\left|u_{i}^{(0)}\right| \leq \frac{n}{k}
$$

Finally, for the bias we get:

$$
\begin{aligned}
\left|b_{i}^{(t)}-b_{i}^{(1)}\right| & =\left|b_{i}^{(t)}-\eta \frac{\partial}{\partial b_{i}} L_{\mathcal{D}}\left(g^{(t-1)}\right)\right| \\
& =\left|b_{i}^{(t-1)}-b_{i}^{(1)}-\eta \mathbb{E}\left[\ell^{\prime}\left(f_{A}(\mathbf{x}), g^{(t-1)}(\mathbf{x})\right) u_{i}^{(t-1)} \sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)\right]\right| \\
& \leq\left|b_{i}^{(t-1)}-b_{i}^{(1)}\right|+\eta\left|u_{i}^{(t-1)}\right| \\
& \leq\left|b_{i}^{(t-1)}-b_{i}^{(1)}\right|+6 \eta^{2} t+\eta \frac{k}{\sqrt{n}} \leq \cdots \leq 6 \eta^{2} t^{2}+\eta t \frac{k}{\sqrt{n}}
\end{aligned}
$$

Proof. of Lemma 16. Denote the support of u^{*} by $I:=\left\{i \in[2 q]: u_{i}^{*} \neq 0\right\}$. Then we have:

$$
\begin{aligned}
\left|\ell\left(g_{\mathbf{u}^{*}}^{(t)}(\mathbf{x}), y\right)-\ell\left(g_{\mathbf{u}^{*}}^{(1)}(\mathbf{x}), y\right)\right| & \leq\left|g_{\mathbf{u}^{*}}^{(t)}(\mathbf{x})-g_{\mathbf{u}^{*}}^{(1)}(\mathbf{x})\right| \\
& =\left|\sum_{i \in I} u_{i}^{*}\left(\sigma\left(\left\langle\mathbf{w}_{i}^{(t)}, \mathbf{x}\right\rangle+b_{i}^{(t)}\right)-\sigma\left(\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}\right)\right)\right| \\
& \leq\left\|\mathbf{u}^{*}\right\|_{2} \sqrt{|I|}\left|\sigma\left(\left\langle\mathbf{w}_{i}^{(t)}, \mathbf{x}\right\rangle+b_{i}^{(t)}\right)-\sigma\left(\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle+b_{i}^{(1)}\right)\right| \\
& \leq\left\|\mathbf{u}^{*}\right\|_{2} \sqrt{|I|}\left(\left|\left\langle\mathbf{w}_{i}^{(t)}, \mathbf{x}\right\rangle-\left\langle\mathbf{w}_{i}^{(1)}, \mathbf{x}\right\rangle\right|+\left|b_{i}^{(t)}-b_{i}^{(1)}\right|\right) \\
& \leq\left\|\mathbf{u}^{*}\right\|_{2} \sqrt{|I|}\left(\left\|\mathbf{w}_{i}^{(t)}-\mathbf{w}_{i}^{(1)}\right\|+\left|b_{i}^{(t)}-b_{i}^{(1)}\right|\right)
\end{aligned}
$$

Using Lemma 15 we get:

$$
\left|\ell\left(g_{\mathbf{u}^{*}}^{(t)}(\mathbf{x}), y\right)-\ell\left(g_{\mathbf{u}^{*}}^{(1)}(\mathbf{x}), y\right)\right| \leq\left\|\mathbf{u}^{*}\right\|_{2} \sqrt{|I|}\left(12 \eta^{2} t^{2}+2 \eta t \frac{k}{\sqrt{n}}+2 \eta t \lambda \frac{n}{k}\right)
$$

