
Supplementary Material of LAPAR

Wenbo Li1∗ Kun Zhou2∗ Lu Qi1 Nianjuan Jiang2 Jiangbo Lu2 Jiaya Jia1,2

1The Chinese University of Hong Kong 2Smartmore Technology
{wenboli,luqi,leojia}@cse.cuhk.edu.hk

{kun.zhou,nianjuan.jiang,jiangbo}@smartmore.com

A. Additional Examples and Results of Image Super-Resolution

Here we show more visual examples on the Urban100 dataset in Figure 1. For the first example, it
is clear that our LAPAR recovers more accurate structures while other methods [1, 2, 3, 4, 5] fail.
For the second one, although other methods produce building transoms and mullions, our results are
obviously sharper and straighter.

HR

DRRN

Bicubic SRCNN LapSRN

CARN-M SRFBN-S Ours

DRRN CARN-M SRFBN-S Ours

HR Bicubic SRCNN LapSRN

Figure 1: Image super-resolution examples on ×2 (top part) and ×4 (bottom part) scale of Urban100.

Method Scale Params MultiAdds Set5 Set14 B100 Urban100 Manga109

LAPAR-A
×2 0.548M 171G 37.95/38.01 33.58/33.62 32.17/32.19 32.01/32.10 38.41/38.67
×3 0.594M 114G 34.31/34.36 30.30/30.34 29.06/29.11 28.10/28.15 33.31/33.51
×4 0.659M 94G 32.10/32.15 28.53/28.61 27.56/27.61 26.01/26.14 30.22/30.42

Table 1: PSNR(dB) results of LAPAR-A. Red/blue: trained on DIV2K/DIV2K+Flickr2K.
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As shown in Table 1, we also show the results of our LAPAR trained only on DIV2K. LAPAR-A still
achieves SOTA performance among lightweight SISR methods. Besides, we compare the results of
RAISR [6] and LAPAR-A in Table 2, it is clear that our method outperforms RAISR [6] by a large
margin.

Method Scale Set5 Set14

RAISR [6]
×2 36.15/0.951 32.13/0.902
×3 32.21/0.901 28.86/0.812
×4 29.84/0.848 27.00/0.738

LAPAR-A
×2 38.01/0.961 33.62/0.918
×3 34.36/0.927 30.34/0.842
×4 32.15/0.894 28.61/0.782

Table 2: Comparison of RAISR [6] and LAPAR-A. The values represent PSNR(dB)/SSIM.

B. Additional Examples of Image Denoising

As shown in Figure 2, more denoised examples of Set14 dataset are visualized. Compared with other
methods [7, 8], for the first example, our LAPAR restores the original white background color nicely.
At the same time, the details of all the pictures are better preserved in our results.
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Figure 2: Image denoising examples of Set14. The values beneath images represent the PSNR(dB)
and SSIM. The standard deviation of noise is set to 35.
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C. Additional Examples of Image Deblocking

As the testing cases illustrated in Figure 3, our LAPAR successfully removes the JPEG compression
artifacts and achieves superior results compared with DnCNN [8].
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Figure 3: Image deblocking examples of Set14. The values beneath images represent the PSNR(dB)
and SSIM. The JPEG quality is set to 20.
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