
A Theoretical analysis of early learning and memorization in a linear model

In this section, we formalize and substantiate the claims of Theorem 1.

Theorem 1 has three parts, which we address in the following sections. First, in Section A.2, we show that
the classifier makes progress during the early-learning phase: over the first T iterations, the gradient is well
correlated with v and the accuracy on mislabeled examples increases. However, as noted in the main text,
this early progress halts because the gradient terms corresponding to correctly labeled examples begin to
disappear. We prove this rigorously in Section A.3, which shows that the overall magnitude of the gradient terms
corresponding to correctly labeled examples shrinks over the first T iterations. Finally, in Section A.4, we prove
the claimed asymptotic behavior: as t ! 1, gradient descent perfectly memorizes the noisy labels.

A.1 Notation and setup

We consider a softmax regression model parameterized by two weight vectors ⇥1 and ⇥2, which are the rows of
the parameter matrix ⇥ 2 R2⇥p. In the linear case this is equivalent to a logistic regression model, because the
cross-entropy loss on two classes depends only on the vector ⇥1 �⇥2. If we reparametrize the labels as

"
[i] =

(
1 if y[i]

1 = 1

�1 if y[i]
2 = 1 ,

and set ✓ := ⇥1 �⇥2, we can then write the loss as

LCE(✓) =
1
n

nX

i=1

log(1 + e
�"[i]✓>x[i]

) .

We write "
⇤ for the true cluster assignments: ("⇤)[i] = 1 if x[i] comes from the cluster with mean +v, and

("⇤)[i] = �1 otherwise. Note that, with this convention, we can always write x[i] = ("⇤)[i](v � �z[i]), where
z[i] is a standard Gaussian random vector independent of all other random variables.

In terms of ✓ and ", the gradient (2) reads

rLCE(✓) =
1
2n

nX

i=1

x[i]
⇣
tanh(✓>x[i])� "

[i]
⌘
, (10)

As noted in the main text, the coefficient tanh(✓>x[i])� "
[i] is the key quantity governing the properties of the

gradient.

Let us write C for the set of indices for which the labels are correct, and W for the set of indices for which
labels are wrong.

We assume that ✓0 is initialized randomly on the sphere with radius 2, and then optimized to minimize L via
gradient descent with fixed step size ⌘ < 1. We denote the iterates by ✓t.

We consider the asymptotic regime where � ⌧ 1 and � are constants and p, n ! 1, with p/n 2 (1��/2, 1).
We will let �� denote a constant, whose precise value may change from proposition to proposition; however,
in all cases the requirements on � will be independent of p and n. For convenience, we assume that �  1/2,
though it is straightforward to extend the analysis below to any � bounded away from 1. Note that when � = 1,
each observed label is independent of the data, so no learning is possible. We will use the phrase “with high
probability” to denote an event which happens with probability 1� o(1) as n, p ! 1, and we use oP (1) to
denote a random quantity which converges to 0 in probability. We use the symbol c to refer to an unspecified
positive constant whose value may change from line to line. We use subscripts to indicate when this constant
depends on other parameters of the problem.

We let T be the smallest positive integer such that ✓>T v � 1/10. By Lemmas 7 and 8 in Section A.5, T = ⌦(1/⌘)
with high probability.

A.2 Early-learning succeeds

We first show that, for the first T iterations, the negative gradient �rLCE(✓t)
> has constant correlation with v.

(Note that, by contrast, a random vector in Rp typically has negligible correlation with v.)

Proposition 3. There exists a constant ��, depending only on �, such that if �  �� then with high probability,

for all t < T , we have k✓t � ✓0k  1 and

�rLCE(✓t)
>v/krLCE(✓t)k � 1/6 .
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Proof. We will prove the claim by induction. We write

�rLCE(✓t) =
1
2n

nX

i=1

"
[i]x[i] � 1

2n

nX

i=1

x[i] tanh(✓>t x[i]) .

Since Ev>("[i]x[i]) = (1��), the law of large numbers implies

v>
⇣ 1
2n

nX

i=1

"
[i]x[i]

⌘
=

1
2
(1��) + oP (1) .

Moreover, by Lemma 9, there exists a positive constant c such that with high probability

���v>
⇣ 1
2n

nX

i=1

x[i] tanh(✓>t x[i])
⌘��� 

1
2

⇣ 1
n

nX

i=1

(v>x[i])2
⌘1/2

 
1
n

nX

i=1

tanh(✓>t x[i])2
!1/2

 1
2
| tanh(✓>t v)|+ c�(1 + k✓t � ✓0k) .

Thus, applying Lemma 8 yields that with high probability

�rLCE(✓t)
>
v/krLCE(✓t)k � 1

2
((1��)� | tanh(✓>t v)|)� c�(1 + k✓t � ✓0k) . (11)

When t = 0, the first term is 1
2 (1��)+oP (1) by Lemma 7, and the second term is c�. Since we have assumed

that �  1/2, as long as �  �� < c
�1
�
2
3 � �

2

�
we will have that �rLCE(✓0)

>
v/krLCE(✓0)k � 1/6

with high probability, as desired.

We proceed with the induction. We will show that k✓t � ✓0k  1 with high probability for t < T , and use (11)
to show that this implies the desired bound on the correlation of the gradient. If we assume the claim holds up to
time t, then the definition of gradient descent implies

✓t � ✓0 = ⌘

t�1X

s=0

gs ,

where gs satisfies g>
s v/kgsk � 1/6. Since the set of vectors satisfying this requirement forms a convex cone,

we obtain that
(✓t � ✓0)

>v/k✓t � ✓0k � 1/6

From this observation, we obtain two facts about ✓t. First, since t < T , the definition of T implies that ✓>t v < .1.
Since |✓>0 v| = oP (1) by Lemma 7, we obtain that k✓t � ✓0k  1 with high probability. Second, ✓>t v � ✓

>
0 v,

and since |✓>0 v| = oP (1) we have in particular that ✓>t v > �.1. Therefore, with high probability, we also have
|✓t>v| < .1

Examining (11), we therefore see that the quantity on the right side is at least

1
2
((1��)� .1)� 2c� .

Again since we have assumed that �  1/2, as long as �  �� < (2c)�1
�
2
3 � �

2 � .1
�
, we obtain by (11)

that �rLCE(✓t)
>
v/krLCE(✓t)k � 1/6.

Given ✓t, we denote by

Â(✓t) =
1

|W |
X

i2W

1{sign(✓>t x[i]) = ("⇤)[i]}

the accuracy of ✓t on mislabeled examples. We now show that the classifier’s accuracy on the mislabeled
examples improves over the first T rounds. In fact, we show that with high probability, Â(✓0) ⇡ 1/2 whereas
Â(✓T ) ⇡ 1.

Theorem 4. There exists a �� such that if �  ��, then

Â(✓0)  .5001 (12)

and

Â(✓T ) > .9999 (13)
with high probability.
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Proof. Let us write x[i] = ("⇤)[i](v � �z[i]), where z[i] is a standard Gaussian vector. If we fix ✓0, then
sign(✓>0 x[i]) = ("⇤)[i] if and only if �✓>0 z[i] < ✓

>
0 v. In particular this yields

E[1{sign(✓>0 x[i]) = ("⇤)[i]}|✓0] = P[�✓>0 z[i] < ✓
>
0 v|✓0]  1/2 +O(|✓>0 v|/�) .

By the law of large numbers, we have that, conditioned on ✓0,

Â(✓0)  1/2 +O(|✓>0 v|/�) + oP (1) ,

and applying Lemma 7 yields Â(✓0)  1/2 + oP (1).

In the other direction, we employ a method based on [31]. The proof of Proposition 3 establishes that k✓t�✓0k 
1 for all t < T � 1 with high probability. Since ⌘ < 1 and k✓0k = 2, Lemma 8 implies that as long as � < 1/2,
k✓T k  5 with high probability. Since ✓

>
T v � .1 by assumption, we obtain that ✓>T v/k✓T k � 1/50 with high

probability.

Note that W is a random subset of [n]. For now, let us condition on this random variable. If we write � for the
Gaussian CDF, then by the same reasoning as above, for any fixed ✓ 2 Rp,

E[1{sign(✓>x[i]) = ("⇤)[i]}] = P[�✓>z[i] < ✓
>v] = �(��1

✓
>v/k✓k)

Therefore, if ✓>v/k✓k � ⌧ , then for any � > 0, we have

Â(✓) � �(��1
⌧ � �)� 1

|W |
X

i2W

�(��1
⌧ � �)� 1{✓>z[i]/k✓k < �

�1
⌧} (14)

Set

�(x) :=

8
<

:

1 if x < �
�1

⌧ � �
1
� (�

�1
⌧ � x) if x 2 [��1

⌧ � �,�
�1

⌧ ]
0 if x > �

�1
⌧ .

By construction, � is 1
� -Lipschitz and satisfies

1{x < �
�1

⌧ � �}  �(x)  1{x < �
�1

⌧}

for all x 2 R. In particular, we have

�(��1
⌧ � �)� 1{✓>z[i]/k✓k < �

�1
⌧}  E[�(✓>z[i]/k✓k)]� �(✓>z[i]/k✓k) .

Denote the set of ✓ 2 Rp satisfying ✓
>v/k✓k � ⌧ by C⌧ . Combining the last display with (14) yields

E inf
✓2C⌧

Â(✓) � �(��1
⌧ � �)� E sup

✓2C⌧

1
|W |

X

i2W

E[�(✓>z[i]/k✓k)]� �(✓>z[i]/k✓k) .

To control the last term, we employ symmetrization and contraction (see [21, Chapter 4]) to obtain

E sup
✓2C⌧

1
|W |

X

i2W

E[�(✓>z[i]/k✓k)]� �(✓>z[i]/k✓k)  E sup
✓2C⌧

1
|W |

X

i2W

✏i�(✓
>z[i]/k✓k)

 1
�
E sup

✓2C⌧

1
|W |

X

i2W

✏i✓
>z[i]/k✓k

 1
�
E sup

✓2Rp

1
|W |

X

i2W

✏i✓
>z[i]/k✓k

=
1
�
E
�����

1
|W |

X

i2W

✏iz
[i]

����� .

where ✏i are independent Rademacher random variables. The final quantity is easily seen to be at most 1
�

p
p/|W |.

Therefore we have
E inf

✓2C⌧

Â(✓) � �(��1
⌧ � �)� 1

�

p
p/|W | ,

and a standard application of Azuma’s inequality implies that this bound also holds with high probability. Since
✓
>
T v/k✓T k � 1/50 and |W | � �n/2 with high probability, there exists a positive constant c� such that

Â(✓T ) � �((50�)�1 � �)� c�/� .

If we choose � = 10�4
/2c�, then there exists a �� for which �((50��)�1 � �) > 1� 10�4

/2. We obtain
that for any �  ��, Â(✓T )  1� 10�4, as claimed.
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A.3 Vanishing gradients

We now show that, over the first T iterations, the coefficients tanh(✓>x[i])� "
[i] associated with the correctly

labeled examples decrease, while the coefficients on mislabeled examples increase. For simplicity, we write

[i] := tanh(✓>x[i])� "

[i].
Proposition 5. There exists a constant �� such that, for any �  ��, with high probability,

1
|C|

X

i2C

([i](✓T ))
2
<

1
|C|

X

i2C

([i](✓0))
2 � .05

1
|W |

X

i2W

([i](✓T ))
2
>

1
|W |

X

i2W

([i](✓0))
2 + .05 .

That is, during the first stage, the coefficients on correct examples decrease while the coefficients on wrongly

labeled examples increase.

Proof. Let us first consider
1
|C|

X

i2C

(tanh(✓>0 x[i])� "
[i])2

For fixed initialization ✓0, the law of large numbers implies that this quantity is near

Ex,"(" tanh(✓
>
0 x)� 1)2 �

⇣
Ex,"" tanh(✓

>
0 x)� 1

⌘2
.

Let us write x = "
⇤(v��z), where z is a standard Gaussian vector. Then the fact that tanh is Lipschitz implies

Ex,"" tanh(✓
>
0 x)  Ex,"" tanh("

⇤
�✓

>
0 z) + |✓>0 v| = |✓>0 v| ,

where we have used that E[tanh("⇤�✓>0 z)|"] = 0. By Lemma 7, |✓>0 v| = oP (1). Hence

1
|C|

X

i2C

(tanh(✓>0 x[i])� "
[i])2 � 1� oP (1) .

At iteration T , we have that ✓>T v � .1, by assumption, and k✓T � ✓0k  3, by the proof of Proposition 3. We
can therefore apply Lemma 9 to obtain

 
1
|C|

X

i2C

([i])2
!1/2


 

1
|C|

X

i2C

(("⇤)[i] tanh(✓>T v)� "
[i])

!1/2

+ �(2 + 3c�) + oP (1)

= | tanh(✓>T v)� 1|++�(2 + 3c�) + oP (1)

 | tanh(.1)� 1|+ �(2 + 3c�) + oP (1) ,

where the equality uses the fact that ("⇤)[i] = "
[i] for all i 2 C. As long as �  �� < .01/(2 + 3c�)

this quantity is strictly less than .95. We therefore obtain that, for �  ��, 1
|C|
P

i2C(
[i](✓T ))

2
<

1
|C|
P

i2C(
[i](✓0))

2 � .05 with high probability. This proves the first claim.

The second claim is established by an analogous argument: for fixed initialization ✓0, we have

E tanh(✓>0 x)2  E(✓>0 x)2 = 4�2 + (✓>0 v)2 ,

so as above we can conclude that
1

|W |
X

i2W

([i](✓0))
2  1 + 4�2 + oP (1) .

We likewise have by another application of Lemma 9
 

1
|W |

X

i2W

(tanh(✓>T x[i])� "
[i])2

!1/2

� | tanh(�✓
>
T v)� 1|� �(2 + 3c�)� oP (1)

� 1 + tanh(.1)� �(2 + 3c�)� oP (1) .

where we again have used that ("⇤)[i] = �"
[i] for i 2 W . If we choose �� small enough that

1.05 + 4�2
� < (1 + tanh(.1)� ��(2 + 3c�))2 ,

then we will have for all �  �� that 1
|W |

P
i2W ([i](✓T ))

2
>

1
|W |

P
i2W ([i](✓0))

2 + .05 with high
probability. This proves the claim.
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A.4 Memorization

To show that the labels are memorized asymptotically, it suffices to show that the classes S+ := {x[i] : "[i] =
+1} and S� := {x[i] : "[i] = �1} are linearly separable. Indeed, it is well known that for linearly separable
data, gradient descent performed on the logistic loss will yield a classifier which perfectly memorizes the
labels [see, e.g. 38, Lemma 1]. It is therefore enough to establish the following theorem.
Theorem 6. If p, n ! 1 and lim infp,n!1 p/n > 1 � �/2, then the classes S+ and S� are linearly

separable with probability tending to 1.

Proof. Write X = {x[1]
, . . . ,x[n]}. Since the samples x[1]

, . . . ,x[n] are drawn from a distribution absolutely
continuous with respect to the Lebesgue measure, they are in general position with probability 1. By a theorem
of Schläfli [see 8, Theorem 1], there exist

C(n, p) := 2
p�1X

k=0

 
n� 1
k

!

different subsets S ✓ X that are linearly separable from their complements. In particular, there are at most

2n � C(n, p) = 2
n�1X

k=p

 
n� 1
k

!
= 2

n�p�1X

k=0

 
n� 1
k

!

partitions of X which are not separable. Write B for the bad set of non-separable subsets S ✓ X . Conditional
on X , the probability that the classes S+ and S� are not separable is just P[S+ 2 B|X].

Let us write T+ := {x[i] : ("⇤)[i] = +1}. For each i, the example x[i] is in S+ with probability 1� (�/2) if
i 2 T+ or �/2 or if i /2 T+. We therefore have for any S ⇢ X that

P[S+ = S|X] = (�/2)|T+4S|(1� (�/2))n�|T+4S|
.

We obtain that

P[S+ 2 B|X] =
X

S2B

(�/2)|T+4S|(1� (�/2))n�|T+4S|

=
nX

k=0

|{S 2 B : |T+4S| = k}| · (�/2)k(1� (�/2))n�k
. (15)

The set {S 2 B : |T+4S| = k} has cardinality at most
�
n
k

�
. Moreover,

Pn
k=0 |{S 2 B : |T+4S| = k}| =

|B|. We can therefore bound the sum (15) by the following optimization problem:

max
x1,...xn

nX

k=0

xk · (�/2)k(1� (�/2))n�k (16)

s.t. xk 2
"
0,

 
n

k

!#
,

nX

k=0

xk = |B| .

Since �  1, the probability (�/2)k(1 � (�/2))n�k is a nonincreasing function of k. Therefore, because
|B|  2

Pn�p�1
k=0

�
n�1
k

�
 2

Pn�p
k=0

�
n
k

�
, the value of (16) is less than

2
n�pX

k=0

 
n

k

!
(�/2)k(1� (�/2))n�k = 2 · P[Bin(n,�/2)  (n� p)] .

If lim supn,p!1 1 � p/n < �/2, then this probability approaches 0 by the law of large numbers. We have
shown that if lim infn,p p/n > 1��/2, then

P[S+ 2 B|X]  2 · P[Bin(n,�/2)  (n� p)] = o(1)

holds X-almost surely, which proves the claim.

A.5 Additional lemmas

Lemma 7. Suppose that ✓0 is initialized randomly on the sphere of radius 2.

|✓>0 v| = oP (1).
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Proof. Without loss of generality, take v = e1, the first elementary basis vector. Since the coordinates of ✓0
each have the same marginal distribution and k✓0k2 = 2 almost surely, we must have E|✓>0 e1|2 = 2/p. The
claim follows.

Lemma 8.

sup
✓2Rd

krLCE(✓)k  1 + 2� + oP (1) .

Proof. Denote by ↵ the vector with entries ↵i = 1
2
p
n
[tanh(✓>x[i])�"

[i]]. Since | tanh(x)|  1 for all x 2 R,
we have k↵k  1. Therefore

rLCE(✓) =
1p
n

nX

i=1

x[i]
↵i 

����
1p
n
X

���� ,

where X 2 Rp⇥n is a matrix whose columns are given by the vectors x[i]. By Lemma 10, we have
����

1p
n
X

���� =

����
1
n
XX>

����
1/2

 1 + 2� + oP (1) .

This yields the claim.

Lemma 9. Fix an initialization ✓0 satisfying k✓0k = 2. For any ⌧ > 0 and for I = C or I = W , we have

sup
✓:k✓�✓0k⌧

 
1
|I|
X

i2I

(("⇤)[i] tanh(✓>x[i])� tanh(✓>v))2
!1/2

 �(2 + c�⌧) + oP (1) .

The same claim holds with I = [n] with c� replaced by 2.

Proof. Let us write x[i] = ("⇤)[i](v � �z[i]), where z[i] is a standard Gaussian vector. Since tanh is odd and
1-Lipschitz, we have

|("⇤)[i] tanh(✓>x[i])� tanh(✓>v)| = | tanh(✓>v � ✓
>
�z[i])� tanh(✓>v)|  �|✓>z[i]| .

We therefore obtain
⇣ 1
|I|
X

i2I

(("⇤)[i] tanh(✓>x[i])� tanh(✓>v))2
⌘1/2

 �

⇣ 1
|I|
X

i2I

(✓>z[i])2
⌘1/2

 �

⇣ 1
|I|
X

i2I

(✓>0 z[i])2
⌘1/2

+ �

⇣ 1
|I|
X

i2I

((✓ � ✓0)
>z[i])2

⌘1/2

 �

⇣ 1
|I|
X

i2I

(✓>0 z[i])2
⌘1/2

+ �k✓ � ✓0k

�����
1
|I|
X

i2I

z[i](z[i])>
����� .

Taking a supremum over all ✓ such that k✓ � ✓0k  ⌧ and applying Lemma 10 yields the claim.

Lemma 10. Assume p  n. There exists a positive constant c� depending on � such that for I = C or

I = W ,

1
|I|
X

i2I

(✓>0 z[i])2  2 + oP (1)

�����
1
|I|
X

i2I

z[i](z[i])>
�����

1/2

 c� + oP (1)

�����
1
|I|
X

i2I

x[i](x[i])>
�����

1/2

 1 + �c� + oP (1) .

Moreover, the same claims hold with I = [n], when c� can be replaced by 2.

Proof. The first claim follows immediately from the law of large numbers. For the second two claims, we first
consider the case where I = [n]. Let us write Z for the matrix whose columns are given by the vectors z[i].
Then ������

1
n

X

i2[n]

z[i](z[i])>

������

1/2

=

����
1
n
ZZ>

����
1/2

=

����
1p
n
Z

����  1 +
p

p/n+ oP (1) ,
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where the last claim is a consequences of standard bounds for the spectral norm of Gaussian random matrices [see,
e.g. 43]. Since p  n by assumption, the claimed bound follows. When I = C or W , the same argument
applies, except that we condition on the set of indices in I , which yields that, conditioned on I ,

�����
1
|I|
X

i2I

z[i](z[i])>
�����

1/2

 2
p

n/|I|+ oP (1) .

For any �, the random variable |I| concentrates around its expectation, which is c�n, for some constant c�.

Finally, to bound
��� 1

|I|
P

i2I x
[i](x[i])>

���
1/2

, we again let X be a matrix whose columns are given by x[i]. Then
we can write

X = v("⇤)> + �Z ,

where Z is a Gaussian matrix, as above. Therefore
������
1
n

X

i2[n]

x[i](x[i])>

������

1/2

=

����
1p
n
X

����  1p
n

���v("⇤)>
���+ �

����
1p
n
Z

����  1 + 2� + oP (1) .

The extension to I = C or W is as above.
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Clean labels Wrong labels

Cross Entropy

Early-learning
Regularization

Figure A.1: Results of training a two-class softmax regression model with a traditional cross entropy
loss (top row) and the proposed method (bottom row) to perform classification on 50 simulated data
drawn from a mixture of two Gaussians in R100 with � = 0.1, where 40% of the labels are flipped
at random. The plots show the fraction of examples with clean labels predicted correctly (green)
and incorrectly (red) for examples with clean labels (left column) and wrong labels (right column).
Analogously to the deep-learning model in Figure 1, the linear model trained with cross entropy
begins by learning to predict the true labels, but eventually memorizes the examples with wrong
labels. Early-learning regularization prevents memorization, allowing the model to continue learning
on the examples with clean labels to attain high accuracy on examples with clean and wrong labels.

B Early Learning and Memorization in Linear and Deep-Learning Models

In this section we provide a numerical example to illustrate the theory in Section 3, and the similarities between
the behavior of linear and deep-learning models. We train the two-class softmax linear regression model
described in Section 3 on data drawn from a mixture of two Gaussians in R100, where 40% of the labels are
flipped at random. Figure A.1 shows the training accuracy on the training set for examples with clean and false
labels. Analogously to the deep-learning model in Figure 1, the linear model trained with cross entropy begins by
learning to predict the true labels, but eventually memorizes the examples with wrong labels as predicted by our
theory. The figure also shows the results of applying our proposed early-learning regularization technique with
temporal ensembling. ELR prevents memorization, allowing the model to continue learning on the examples
with clean labels to attain high accuracy on examples with clean and wrong labels.

As explained in Section 4.2, for both linear and deep-learning models the effect of label noise on the gradient
of the cross-entropy loss for each example i is restricted to the term p[i] � y[i], where p[i] is the probability
example assigned by the model to the example and y[i] is the corresponding label. Figure B.1 plots this quantity
for the linear model described in the previous paragraph and for the deep-learning model from Figure 1. In both
cases, the label noise flips the sign of the term on the wrong labels (left column). The magnitude of this term
dominates after early learning (right column), eventually producing memorization of the wrong labels.

C Regularization Based on Kullback-Leibler Divergence

A natural alternative to our proposed regularization would be to penalize the Kullback-Leibler (KL) divergence
between the the model output and the targets. This results in the following loss function

LCE(⇥)� �

n

nX

i=1

CX

c=1

t[i]c logp[i]
c . (17)

Figure C.1 shows the result of applying this regularization to CIFAR-10 dataset with 40% symmetric noise for
different values of the regularization parameter �, using targets computed via temporal ensembling. In contrast
to ELR, which succeeds in avoiding memorization while allowing the model to learn effectively as demonstrated
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Figure B.1: The effect of label noise on the gradient of the cross-entropy loss for each example i is
restricted to the term p[i] � y[i], where p[i] is the probability example assigned by the model to the
example and y[i] is the corresponding label (see Section 4.2). The plots show this term (left column)
and its magnitude (right column) for the same linear model as in Figure A.1 (top row) and the same
ResNet-34 on CIFAR-10 as in Figure 1 (bottom row) with 40% symmetric noise. On the left, we
plot the entry of p[i] � y[i] corresponding to the true class, denoted by c⇤, for training examples with
clean (blue) and wrong (red) labels. On the right, we plot the absolute value of the entry. During
early learning, the clean labels dominate, but afterwards their effects decrease and the noisy labels
start to be dominant, eventually leading to memorization of the wrong labels. In all plots the curves
represent the mean value, and the shaded regions are within one standard deviation of the mean.

in the bottom row of Figure 1, regularization based on KL divergence fails to provide robustness. When � is
small, memorization of the wrong labels leads to overfitting as in cross-entropy minimization. Increasing �

delays memorization, but does not eliminate it. Instead, the model starts overfitting the initial estimates, whether
correct or incorrect, and then eventually memorizes the wrong labels (see the bottom right graph in Figure C.1).

Analyzing the gradient of the cost function sheds some light on the reason for the failure of this type of
regularization. The gradient with respect to the model parameters ⇥ equals

1
n

nX

i=1

rNx[i](⇥)
⇣⇣

p[i] � y[i]
⌘
+ �

⇣
p[i] � t[i]

⌘⌘
. (18)

A key difference between this gradient and the gradient of ELR is the dependence of the sign of the regularization
component on the targets. In ELR, the sign of the cth entry for the ith is determined by the difference between
t[i]c and the rest of the entries of t[i] (see Lemma 2). In contrast, for KL divergence it depends on the difference
between t[i]c and p[i]

c . This results in overfitting the target probabilities. To illustrate this, recall that for examples
with clean labels, the cross-entropy term p[i] � y[i] tends to vanish after the early-learning stage because p[i] is
very close to y[i], allowing examples with wrong labels to dominate the gradient. Let c⇤ denote the true class.
When p[i]

c⇤ (correctly) approaches one, t[i]c⇤ will generally tend to be smaller, because t[i] is obtained by a moving
average and therefore tends to be smoother than p[i]. Consequently, the regularization term tends to decrease
p[i]
c⇤ . This is exactly the opposite effect than desired. In contrast, ELR tends to keep p[i]

c⇤ large, as explained in
Section 4.2, which allows the model to continue learning on the clean examples.

D The Need for Early Learning Regularization

Our proposed framework consists of two components: target estimation and the early-learning regularization
term. Figure D.1 shows that the regularization term is critical to avoid memorization. If we just perform target
estimation via temporal ensembling while training with a cross-entropy loss, eventually the targets overfit the
noisy labels, resulting in decreased accuracy.
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Figure C.1: Results of training a ResNet-34 neural network with a traditional cross entropy loss
regularized by KL divergence using different coefficients � (showed in different rows) to perform
classification on the CIFAR-10 dataset where 40% of the labels are flipped at random. The left
column shows the fraction of examples with clean labels that are predicted correctly (green) and
incorrectly (blue). The right column shows the fraction of examples with wrong labels that are
predicted correctly (green), memorized (the prediction equals the wrong label, shown in red), and
incorrectly predicted as neither the true nor the labeled class (blue). When � = 1, it is analogous
to the model trained without any regularization (top row in Figure 1), while when � increases, the
fraction of correctly predicted examples decreases, indicating worse performance.

E Proof of Lemma 2

To ease notation, we ignore the i superscript, setting p := p[i] and t := t[i]. We denote the instance-level ELR
by

R(⇥) := log (1� hp, ti) . (19)

The gradient of R is

rR(⇥) =
1

1� hp, tir (1� hp, ti) . (20)

We express the probability estimate in terms of the softmax function and the deep-learning mapping Nx(⇥),
p := eNx(⇥)

PC
c=1 e(Nx(⇥))c

, where e
Nx(⇥) denotes a vector whose entries equal the exponential of the entries of
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Figure D.1: Validation accuracy achieved by targets estimated via temporal ensembling using the
cross entropy loss and our proposed cost function. The model is a ResNet-34 trained on CIFAR-10
with 40% symmetric noise. The temporal ensembling momentum � is set to 0.7. Without the
regularization term, the targets eventually overfit the noisy labels.

Nx(⇥). Plugging this into Eq. (20) yields

rR(⇥) =
nX

i=1

1
1� hp, tir

 
1� heNx(⇥)

, ti
PC

c=1 e
(Nx(⇥))c

!
(21)

=
nX

i=1

�1
1� hp, ti

rheNx(⇥)
, ti ·

PC
c=1 e

(Nx(⇥))c � heNx(⇥)
, ti ·r

PC
c=1 e

(Nx(⇥))c

⇣PC
c=1 e

(Nx(⇥))c

⌘2 (22)

=
nX

i=1

�rNx(⇥)
1� hp, ti

e
Nx(⇥) � t ·

PC
c=1 e

(Nx(⇥))c � heNx(⇥)
, ti · eNx(⇥)

⇣PC
c=1 e

(Nx(⇥))c

⌘2 (23)

=
nX

i=1

�rNx(⇥)
1� hp, ti

 
e
Nx(⇥) � t

PC
c=1 e

(Nx(⇥))c
� heNx(⇥)

, ti
PC

c=1 e
(Nx(⇥))c

· e
Nx(⇥)

PC
c=1 e

(Nx(⇥))c

!
. (24)

The formula can be simplified to

rR(⇥) =
�rNx(⇥)
1� hp, ti (p� t� hp, ti · p) (25)

=
rNx(⇥)
1� hp, ti

2

64
p1 · (hp, ti � t1)

...
pC · (hp, ti � tC)

3

75 (26)

=
rNx(⇥)
1� hp, ti

2

64
p1 ·

PC
k=1 (tk � t1)pk

...
pC ·

PC
k=1 (tk � tC)pk

3

75 . (27)

F Algorithms

Algorithm 1 and Algorithm 2 provide detailed pseudocode for ELR combined with temporal ensembling
(denoted simply by ELR) and ELR combined with temporal ensembling, weight averaging, two networks, and
mixup data augmentation (denoted by ELR+) respectively. For CIFAR-10 and CIFAR-100, we use the sigmoid
shaped function e

�5(1�i/40000)2 (i is current training step, following [41]) to ramp-up the weight averaging
momentum � to the value we set as a hyper-parameter. For the other datasets, we fixed �. For CIFAR-100, we
also use previously mentioned sigmoid shaped function to ramp up the coefficient � to the value we set as a
hyper-parameter. Moreover, each entry of the labels y will also be updated by the targets t using yctcPC

c=1 yctc
in

CIFAR-100.
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Algorithm 1: Pseudocode for ELR with temporal ensembling.

Require: {x[i],y[i]}, 1  i  n = training data (with noisy labels)
Require: � = temporal ensembling momentum, 0  � < 1
Require: � = regularization parameter
Require: Nx(⇥) = neural network with trainable parameters ⇥
t 0[n⇥C] . initialize ensemble predictions
for t in [1,num_epochs] do

for each minibatch B do

for i in B do

p[i]  S (Nxi(⇥)) . evaluate network outputs
t[i]  �t[i] + (1� �)p[i] . temporal ensembling

end for

loss � 1
|B|

P|B|
i=1

PC
c=1 y

[i]
c logS (Nxi(⇥))c . cross entropy loss component

+ �
|B|

P
i2B log

�
1� hS (Nxi(⇥)) , t[i]i

�
. proposed regularization component

update ⇥ using stochastic gradient descent . update network parameters
end for

end for

return ⇥

Algorithm 2: Pseudocode for ELR+.
Require: {x[i],y[i]}, 1  i  n = training data (with noisy labels)
Require: � = temporal ensembling momentum, 0  � < 1
Require: � = weight averaging momentum, 0  � < 1
Require: � = regularization parameter
Require: ↵ = mixup hyperparameter
Require: Nx(⇥1) = neural network 1 with trainable parameters ⇥1

Require: Nx(⇥2) = neural network 2 with trainable parameters ⇥2

t1, t2  0[n⇥C], 0[n⇥C] . initialize averaged predictions
⇥̄1, ⇥̄2  0, 0 . initialize averaged weights (untrainable)
for t in [1,num_epochs] do

for k in [1, 2] do . for each network
for each minibatch B do

B̃  mixup(B,↵) . mixup augmentation on the mini-batch
⇥̄k = �⇥̄k + (1� �)⇥k . weight averaging
for i in B do

p[i]  S
�
Nxi(⇥̄{1,2}\k)

�
. network evaluation with weight averaging

t[i]k  �t[i]k + (1� �)p[i] . temporal ensembling
end for

loss � 1
|B|

P|B|
i=1

PC
c=1 y

[i]
c logS (Nx̃i(⇥k))c . cross entropy loss component

+ �
|B|

P
i2B log

�
1� hS

�
Nx̃i(⇥k), t̃[i]i

��
. proposed regularization component

update ⇥k using SGD . update network parameters
end for

end for

end for

return ⇥1, ⇥2

To apply mixup data augmentation, when processing the ith example in a mini-batch (x[i]
,y[i]

, t[i]), we randomly
sample another example (x[j]

,y[j]
, t[j]), and compute the ith mixed data (x̃[i]

, ỹ[i]
, t̃[i]) as follows:

` ⇠ Beta(↵,↵),

`
0 = max(`, 1� `),

x̃[i] = `
0x[i] + (1� `

0)x[j]
,

ỹ[i] = `
0y[i] + (1� `

0)y[j]
,

t̃[i] = `
0t[i] + (1� `

0)t[j],
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Data set Train Val Test Image size # classes

Datasets with Clean Annotation

CIFAR-10 45K 5k 10K 32⇥ 32 10
CIFAR-100 45K 5k 10K 32⇥ 32 100

Datasets with Real World Noisy Annotation

Clothing-1M 1M 14K 10K 224⇥ 224 14
Webvision1.0 66K - 2.5K 256⇥ 256 50

Table G.1: Description of the datasets used in our computational experiments, including the training,
validation and test splits.

where ↵ is a fixed hyperparameter used to choose the symmetric beta distribution from which we sample the
ratio of the convex combination between data points.

G Description of the Computational Experiments

Source code for the experiments is available at https://github.com/shengliu66/ELR.

G.1 Dataset Information

In our experiments we apply ELR and ELR+ to perform image classification on four benchmark datasets:
CIFAR-10, CIFAR-100, Clothing-1M, and a subset of WebVision. Because CIFAR-10, CIFAR-100 do not have
predefined validation sets, we retain 10% of the training sets to perform validation. Table G.1 provides a detailed
description of each dataset.

G.2 Data preprocessing

We apply normalization and simple data augmentation techniques (random crop and horizontal flip) on the
training sets of all datasets. The size of the random crop is set to be consistent with previous works [56, 17]: 32
for the CIFAR datasets, 224⇥ 224 for Clothing1M (after resizing to 256⇥ 256), and 227⇥ 227 for WebVision.

G.3 Training Procedure

Below we describe the training procedure for ELR (i.e. the proposed approach with temporal ensembling) for
the different datasets. The information for ELR+ is shown in Table G.4. In ELR+ we ensemble the outputs of
two networks during inference, as is customary for methods that train two networks simultaneously [22, 14].

CIFAR-10/CIFAR-100: We use a ResNet-34 [15] and train it using SGD with a momentum of 0.9, a weight
decay of 0.001, and a batch size of 128. The network is trained for 120 epochs for CIFAR-10 and 150 epochs
for CIFAR-100. We set the initial learning rate as 0.02, and reduce it by a factor of 100 after 40 and 80 epochs
for CIFAR-10 and after 80 and 120 epochs for CIFAR-100. We also experiment with cosine annealing learning
rate [26] where the maximum number of epoch for each period is set to 10, the maximum and minimum learning
rate is set to 0.02 and 0.001 respectively, total epoch is set to 150.

Clothing-1M: We use a ResNet-50 pretrained on ImageNet same as Refs. [45, 47]. The model is trained with
batch size 64 and initial learning rate 0.001, which is reduced by 1/100 after 5 epochs (10 epochs in total). The
optimization is done using SGD with a momentum 0.9, and weight decay 0.001. For each epoch, we sample
2000 mini-batches from the training data ensuring that the classes of the noisy labels are balanced.

WebVision: Following Refs. [17, 22], we use an InceptionResNetV2 as the backbone architecture. All other
optimization details are the same as for CIFAR-10, except for the weight decay (0.0005) and the batch size (32).

G.4 Hyperparameters selection

We perform hyperparameter tuning on the CIFAR datasets via grid search: the temporal ensembling parameter
� is chosen from {0.5, 0.7, 0.9, 0.99} and the regularization coefficient � is chosen from {1, 3, 5, 7, 10} using
the validation set. The selected values are � = 0.7 and � = 3 for symmetric noise, � = 0.9 and � = 1 for
assymetric noise on CIFAR-10, and � = 0.9 and � = 7 CIFAR-100. For Clothing1M and WebVision we use
the same values as for CIFAR-10. As shown in Section H, the performance of the proposed method seems to be
robust to changes in the hyperparameters. For ELR+, we use the same values for � and �. The mixup ↵ is set to
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CIFAR-10 CIFAR-100 Clothing-1M Webvision

batch size 128 128 64 32
architecture PreActResNet-18 PreActResNet-18 ResNet-50 (pretrained) InceptionResNetV2

training epochs 200 250 15 100
learning rate (lr) 0.02 0.02 0.002 0.02

lr scheduler divide 10 at 150th epoch divide 10 at 200th epoch divide 10 at 7th epoch divide 10 at 50th epoch
weight decay 5e-4 5e-4 1e-3 5e-4

Table G.2: Training hyperparameters for ELR+ on CIFAR-10, Clothing-1M and Webvision.

Temporal ensembling momentum � Regularization coefficient � mixup parameter ↵

Figure H.1: Test accuracy on CIFAR-10 with symmetric noise level 60%. The mean accuracy over
four runs is reported, along with bars representing one standard deviation from the mean. In each
experiment, the rest of hyperparameters are fixed to the values reported in Section G.4.

1 (chosen from {0.1, 2, 5} via grid search on the validation set) and the value of the weight averaging parameter
� is set to 0.997 (which is the default value in the public code of Ref. [41]) except Clothing1M, which is set to
0.9999.

H Sensitivity to Hyperparameters

The main hyperparameters of ELR are the temporal ensembling parameter � and regularization coefficient �. As
shown in the left image of Figure H.1, performance is robust to the value of �, although it is worth noting that
this is only as long as the momentum of the moving average is large. The performance degrades to 38% when
the model outputs are used to estimate the target without averaging (i.e. � = 0). The regularization parameter �
needs to be large enough to neutralize the gradients of the falsely labeled examples but also cannot be too large,
to avoid neglecting the cross entropy term in the loss. As shown in the center image of Figure H.1, the sensitivity
to � is also quite mild. Finally, the right image of Figure H.1 shows results for ELR combined with mixup
data augmentation for different values of the mixup parameter ↵. Performance is again quite robust, unless the
parameter becomes very large, resulting in a peaked distribution that produces too much mixing.

I Training Time Analysis

In Table I.1 we compare the training times of ELR and ELR+ with two state-of-the-art methods, using a single
Nvidia v100 GPU. ELR+ is twice as slow as ELR. DivideMix takes more than 2 times longer than ELR+ to
train. Co-teaching+ is about twice as slow as ELR+.

Co-teaching+[52] DivideMix[22] ELR ELR+

4.4h 5.4h 1.1h 2.3h

Table I.1: Comparison of total training time in hours on CIFAR-10 with 40% symmetric label noise.
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