
PIE-NET: Parametric Inference of Point Cloud Edges

Xiaogang Wang1,2 Yuelang Xu2,5 Kai Xu3 Andrea Tagliasacchi4

Bin Zhou1 Ali Mahdavi-Amiri2 Hao Zhang2

1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
2Simon Fraser University 3National University of Defense Technology

4Google Research 5Tsinghua University

{wangxiaogang, zhoubin}@buaa.edu.cn; xull16@mails.tsinghua.edu.cn;
{kevin.kai.xu, a.mahdavi.amiri}@gmail.com;

atagliasacchi@google.com; haoz@sfu.ca

Abstract

We introduce an end-to-end learnable technique to robustly identify feature edges
in 3D point cloud data. We represent these edges as a collection of parametric
curves (i.e., lines, circles, and B-splines). Accordingly, our deep neural network,
coined PIE-NET, is trained for parametric inference of edges. The network relies
on a region proposal architecture, where a first module proposes an over-complete
collection of edge and corner points, and a second module ranks each proposal to
decide whether it should be considered. We train and evaluate our method on the
ABC dataset, the largest publicly available dataset of CAD models, via ablation
studies and compare our results to those produced by traditional (non-learning)
processing pipelines, as well as a recent deep learning-based edge detector (EC-
Net). Our results significantly improve over the state-of-the-art, both quantitatively
and qualitatively, and generalize well to novel shape categories.

1 Introduction

Edge estimation is a fundamental problem in image and shape processing. Often regarded as a
low-level vision problem, edge detection has been intensely studied and by and large “solved” at
the conceptual level – there are precise mathematical definitions of what an edge is over an image,
or over the surface of a 3D shape. In practice however, even state-of-the-art edge estimators are
sensitive to parameter settings and they often underperform near soft edges, noise, and sparse data.
This is especially true for acquired point clouds, where these data artifacts are prevalent. We argue
this is caused by the fact that edge detection is traditionally achieved by performing decisions based
on manually designed local surface features; note that this resembles the use of hand-designed
descriptors in pre-deep learning computer vision.

In this paper, we advocate for a data-driven approach to feature edge estimation from point clouds –
one where priors to make this operation robust are learned from training data. More precisely, we
develop PIE-NET, a deep neural network that is trained for Parameter Inference of feature Edges over
a 3D point cloud, where the output consists of one or more parametric curves. Our method treats edge
inference as a proposal and ranking problem – a solution that has shown to be extremely effective in
computer vision for object detection. More specifically, in a first phase, PIE-NET proposes a large
collection of potentially invalid and/or redundant parametric curves, while in a second phase invalid
proposals are suppressed, and the final output is generated. The suppression is guided by learnt
confidence scores estimated by the network, as well as by how well the predicted curves fit the data.
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Figure 1: Our deep neural network, PIE-NET, is trained for parametric inference of edges from
point cloud. It first detects edge and corner points, and then infers a collection of parametric curves
representing edge features. In comparison, the only known deep method for this task only classifies
edge points, and produces results that are inferior to ours both visually and quantitatively.

Our approach is also motivated by recent success on employing neural networks for other low-level
geometry processing tasks such as normal estimation [1], denoising [2], and upsampling [3]. We train
PIE-NET on the recently released ABC dataset by [4], which is composed of more than one million
feature-rich CAD models with parametric edge representations. The combination of large-scale
training data and a carefully designed end-to-end learnable pipeline allows PIE-NET to significantly
outperform traditional (non-learning) edge detection techniques, as well as recent learnable variants
from both a quantitative and qualitative standpoint.

2 Related work

Literature on point-based graphics [5] is quite extensive and we refer readers to a recent survey [6].
Since the seminal work of Qi et. al. [7], there has been a proliferation of research on learning deep
neural networks for 3D point cloud processing [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. We now focus on
methods that are most closely related: 1© primitive inference, 2© consolidation, and 3© edge detection.

Parametric primitive inference. Parametric primitive fitting has been a long-standing problem in
geometry processing. The detection or fitting of parametric feature curves (such as Bezier curves) in
3D point clouds has been extensively researched, where it is typically formulated in least squares
form [18, 19, 20, 21]. Alternatively, one can use random RANSAC-type algorithms [22] to propose
the parameters of primitives fitting a given point cloud. Many types of primitive shapes (planes,
spheres, quadratic surfaces) have been considered and various applications have been explored – from
3D reconstruction and modeling [23, 24] to robotic grasping [25]. Besides predefined primitives,
recent works also studied learning data-driven geometric priors for shape fitting [26, 27]. End-to-end
models have been proposed for fitting cuboids [28], super-quadrics [29], and convexes [30, 31]. Li
et al. [11] propose a supervised method to detect a variety of primitive patches at various scales.
Similarly to our work, their network first predicts per-point properties, and later estimates primitives.

Edge-aware consolidation and reconstruction. Edge feature detection has been applied to enhance
3D reconstruction [32, 33, 34, 35]. Oztireli et al. [32] leverage MLS and robust estimators to
automatically identify sharp features and preserve them in the resulting implicit reconstruction.
Huang et al. [33] first computes normals reliably away from edges, and then progressively re-samples
the point cloud towards edges leading to edge-preserving reconstruction. Edge detection has also
been utilized to enhance RGBD reconstruction, where Liu et al. [35] propose to detect edges for
the task of wire reconstruction from RGBD sequences. Consolidation has also been adopted in
designing deep neural networks. Yu et al. [36] propose PU-Net for point cloud upsampling. It first
learns per point features and then expands them with a multi-branch convolution unit. The expanded
feature is then split to a multitude of features used to reconstruct a dense point set. EC-Net [10]
proposes a deep edge-aware point cloud consolidation framework. The network is trained to regress
and recover upsampled 3D points and point-to-edge distances. The reconstruction of surfaces with
sharp edges has also recently been tackled by learnable sparse convex decomposition [31], but this
method performs a feature-aware reconstruction as a holistic task.

Edge feature detection. Edge feature detection from point clouds relies on local geometric properties
such as normals [37], curvatures [38], and feature anisotropy [39]. For example, Fleishman et
al. [40] employ robust estimators to identify edge features, but shape analysis relies on moving least
squares (MLS) to locally model the neighborhood of a point. Daniels et al. [41] extend this method
to extract feature curves from noisy point clouds based on the reconstructed MLS surface. It is also
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Figure 2: Pipeline – Our method treats parametric edge inference as a region proposal task. Given a
point cloud, our network first detects edges and corners. Then, for each pair of corners, it performs
curve proposal generation and selection to detect feature edges as a set of parametric curves.

possible to extract edge features via point cloud segmentation of these local properties [42, 43]. The
closest work to ours is EC-Net [10], whose first phase consists of point classification and regression of
per-point distances to the edge. Edge points are then detected as the points with a zero point-to-edge
distance. To the best of our knowledge, EC-Net is the only prior work on feature edge estimation
using deep learning and PIE-NET is the first technique that estimates parametric edge curves with an
end-to-end trainable deep network.

3 Method

The processing pipeline of Parametric Inference of Edges Network is summarized in Figure 2. Our
technique treats point cloud curve inference as curve proposal process followed by selection, a
technique inspired by image-based object detection pipelines [44].

Overview. Given a point cloud, a detection module first identifies edge and corner points (Section 3.1).
Corners represent the start/end points of curves, or the locations where two curves touch. Pairs of
corners are then given to a curve proposal module (Section 3.2) to identify the corresponding “edge
points”, and finally generate a corresponding parametric open curve proposal. For closed curves, as
they do not have a well defined start/end, we take inspiration from the Similarity Group Proposal
Network [45], and regress the parameters of closed curves by first performing a clustering of the
identified edge points, followed by curve fitting. Finally, a simple curve selection scheme merges all
the curve proposals to generate the final fitting result.

Training data. We performed a statistical analysis over the ABC dataset [46], a large-scale CAD
mechanical part dataset containing ground-truth annotations for edges and corner points. We found
that the edges of the mechanical parts largely belong to three types, i.e., lines, circles, and B-spline
curves, which account for more than 95% of the edges. We ignored the “ellipse” and “other” types
due to their statistical insignificance. Therefore, we only focus on these three curve types in this paper,
and filter out other types in the ground truth. For each ABC model, we sample it into a point cloud
containing 8,096 points, via uniform point sampling. We then transfer the ground-truth annotations
of the CAD models to the point clouds by nearest neighbor assignment.

Parameterization. Our method deals with three types of curves: lines, circles (open arcs plus full
closed circles), and B-splines. We now describe the differentiable parameterization of the two latter
curve types, where we note that a line segment can be formed by simply connecting two corner
points. We parameterize circles as β=(p1, p2, p3), where p1, p2, p3 are any three points on the circle
that are not collinear. We first transform β=(p1, p2, p3) as (n, c, r), where n is the normal of the
circle, and c and r are its center and radius. We then randomly sample points on the circle, and
express them as a function of β. To achieve this, we draw α ∈ [0, 2π], and generate random samples
p(α|β)=c+ r(ucos(α) + vsin(α)), where u=p1 − c and v=u× n. We parameterize B-Spline curves
with four control points β={pi}3i=0. Given Bi,K(·) representing the i-th basis function of a K-th
order B-spline, and α sampled uniformly in the [0, 1] range, we draw a uniform random sample as
p(α|β)=ΣipiBi,K(α). Note that to ensure that p(0|β)=c1 and p(1|β)=c2, we employ quasi-uniform
B-splines. We predict residuals as the displacement of the two intermediate control points {pi}i=1,2.

3.1 Point classification

To classify points in the input point cloud into edge and corners (plus the null class), we use a
PointNet++ like architecture [47]. In particular, we devise two separate classification networks
outputting edge vs. null and corner vs. null, respectively. The network predicts the probability of
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Figure 3: Point classification – We determine whether each point belongs to an edge or to a corner.
We show the results of our method before and after NMS, as well as the corresponding ground truth.

a point being on an edge Te, or a corner Tc, or null otherwise, as well as the 3D offset vector De
that projects the point onto an edge, and the offset Dc that projects the point onto a corner – these
predictions are supervised by the ground truth labels T̂e and T̂c, as well as the ground truth offsets D̂e
and D̂c. We then threshold the probabilities Te>τe and Tc>τc to obtain a corresponding set of edge
points E={ei}Mi=1 and corner points C={ci}Ni=1. We set the parameters τe=0.7 and τc=0.9 throughout
our experiments. We optimize the multi-task loss Ldetection=Ledge+Lcorner:

Ledge = Lcls(Te, T̂e) + T̂e · λeLreg(De, D̂e), (1)

Lcorner = Lcls(Tc, T̂c) + T̂c · λcLreg(Dc, D̂c), (2)

where for Lcls, rather than traditional binary cross-entropy, we employ a focal loss [48] to deal with
the pathological class imbalance in our dataset (the number of edge points is very small relative to
the number of non-edge points). For Lreg, we use the smooth L1 loss as in [49, 44].

Non-maximal suppression. At test time, we first classify corner points and regress the corresponding
offset vectors. However, due to noise, several points may be mislabelled as corners in the proximity
of a ground-truth corner, hence necessitating post-processing. To this end, we adopt a point-level
Non-Maximal Suppression (NMS). After applying the offset to the detected corner points, we
perform agglomerative clustering with a maximum intra-class distance threshold δ; we use δ=0.05`,
with ` being the diagonal length of object bounding box. We then perform NMS within each cluster
by selecting the corner with the highest classification probability; see Figure 3.

3.2 Open Curve proposal

PIE-NET performs a curve proposal for open curves and another for closed curves. Our open
curve proposal generation leverages the fact that open curves connect two corner points, and
makes the assumption that a corner pair can support at most one curve. Hence, given the set C
with N corner points, we start by generating all O(N2) corner point combinations and create corner
pairs {Pi={ci1, ci2} | ci1, ci2 ∈ C}. Each corner pair will correspond to a curve proposed by the
curve proposal generation; see Figure 4. Given a pair Pi, we need to identify points that should be
associated to the corresponding curve. We first localize the search via a heuristic that only considers
points in E that lie within a sphere with center (ci1 + ci2)/2, and radius R=‖ci1 − ci2‖/2. Within
this sphere, we then uniformly sample a subset Eoi that has a cardinality compatible with the input
dimension of our multi-headed PointNet networks and feed Eoi to them; see Figure 4.

Losses. The network heads perform three different tasks, and are trained by three different losses.
The first network head performs segmentation, determining whether a particular point belongs to the
candidate curve. The second head performs classification, determining whether we need to generate
a line, circle, or B-spline. The third head performs regression, identifying the parameters of the
proposed curve. Note that the network outputs the parameters for all curve types and only those
corresponding to the type output by the type classifier are regarded as the valid output. More formally:

Lproposal = wmLmask(Mp, M̂p) + wcLcls(Tp, T̂p) + wpLpara(β), (3)

where Mp and M̂p are the predicted / ground-truth classifications, Tp and T̂p are predicted / ground-
truth curve types, and β represents the predicted curve parameters. We set wm=1, wc=1, and wp=10
throughout our experiments. Softmax cross-entropy is employed for both Lmask(�) and Lcls(�), while
for regression:

Lpara = T̂circle · Lcircle(β) + T̂line · Lline(β) + T̂spline · Lspline(β), (4)
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Figure 4: Open curve proposal – Given the collection of corners, we generate all possible corner
pairs and propose an open curve connecting the pair of corners. In doing so, we predict the curve
type, the parameters, and the subset of points corresponding to the proposed curve.

where T̂∗ encodes the ground truth one-hot labels for the corresponding curve type, while L* are
Chamfer Distance losses measuring the expectation of Euclidean distance deviation between the
curve having parameters β and the ground truth. In order to compute expectations, we need to draw
random samples from each curve type which are parametric in the degrees of freedom β.

3.3 Closed curve proposal

Our closed curve proposal module is inspired by [45]. In particular, we first identify the subset of
points belonging to closed curves via feature clustering, and then fit a closed curve to each proposed
cluster, while simultaneously estimating the confidence of the fit; see Figure 5. Here we use the
edge/corner classification described in Section 3.1 of the main paper. Note our method currently only
handles curves with a circular profile, but it can be easily extended to other types of closed curves.

Clustering. We train an equivariant PointNet++ network to produce a point-wise feature F (·) for each
of the M input edge points. Based on such features, we then create a similarity matrix S∈RM×M ,
where Sij=‖F (pi) − F (pj)‖2. We can then interpret each of the M rows of S as a proposal, and
consider the set Cm={j s.t. Sm,j<S̄} as the edge points of the m-th proposal. S̄ is a threshold to
filter out the points attaining very different feature scores (i.e., they probably do not belong to the
same curve). Potentially redundant proposals are dealt with in the selection phase of our pipeline, as
described in Section 3.4.

Fitting. We take each proposal Cm, and regress the parameters β of the corresponding
curve, as well as its confidence γ. We parameterize each circle proposal via three points
β={pa+∆a, pb+∆b, pc+∆c}. We obtain {pa, pb, pc} by furthest point sampling in Cm initialized
with pa=pm. We then train a PointNet architecture with two fully-connected heads. The first head
regresses the offsets {∆a,∆b,∆c}, while the second head predicts γ.

Losses. We train our network to predict similarity matrices S given ground truth Ŝ, confidences
Γ={γn} given ground truth Γ̂, and a collection of points sampling the ground truth curve:

Lclosed = Lsim(S, Ŝ) + Lscore(Γ, Γ̂) + Lpara(β). (5)

Given that Ŝij=0 if points pi and pj belong to the same ground truth curve and Ŝij=1 otherwise, we
supervise for similarity via:

Lsim =
∑
ij

Sij , (6)

where

Sij =

{
‖F (pi)− F (pj)‖2, Ŝij = 1

max{0,K − ‖F (pi)− F (pj)‖2}, Ŝij = 0

where F is point-wise feature computed with PointNet++. K controls the dissimilarity between
elements in different parts, which is set to K=100 in our experiments. For Lscore(·) we employ L2

loss, where Γ̂ is the segmentation confidence. Positive training examples come from seed points
belonging to ground truth closed curves, and their IoU with ground truth segmentations is larger than
0.5. Negative training examples are those with IoU smaller than 0.5. For parameter regression, we
minimize

Lpara = T̂circle · Lcircle(β), (7)
where T̂circle is the ground truth one-hot labels, and Lcircle(·) is the Chamfer distance between the
curve represented by β and the ground truth. In particular, we first compute the circle according to
the estimated β, and then sample it by points. We then compute the Chamfer distance between the
estimated circle and its corresponding point-sampled ground-truth.
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Figure 5: Closed curve proposal – We first identify the subset of points belonging to closed curves
via feature-based clustering and then fit a closed curve to each cluster. The network outputs both
curve parameters and confidence scores.

Figure 6: Proposal selection – The curves generated by open/closed proposals, and the ones that
were accepted by our selection process.

Figure 7: Results on edge and corner detection and parametric curve inference by PIE-NET.

3.4 Curve proposal selection

Similar to proposal-based object detection for images [44], the final stage of our algorithm is a
non-differentiable process for redundant/invalid proposal filtering; see Figure 6. We adopt slightly
different solutions for open and closed curves.

Open curve selection. Given the segmentations, i.e., a set of points associated with a curve (see
Figure 5 in the main paper) corresponding with two proposals, we first measure overlap viaO(A,B) =
max{I(A,B)/A, I(A,B)/B}, where I(A,B) is the cardinality of the intersection between the sets.
We then merge the two candidates, if O(A,B)>τo and retain the curve with larger cardinality, where
we use τo=0.8 as determined by hyper-parameter tuning.

Closed curve selection. The similarity matrix produces a closed-curve proposal for each of its N
rows. Even after discarding proposals with confidence score γn<τγ , many are non-closed curves, or
represent the same closed curve; see Figure 6. We perform agglomerative clustering for proposals
when IoU(A,B)>τiou, and retain the proposal in the cluster with the highest confidence. We use
τγ=0.6 and τiou=0.6 for all our experiments. Finally, for each closed segment, we select the best
matching closed curve. Specifically, we use the Chamfer Distance to measure the matching score.

4 Results and evaluation

In Figure 7, we show randomly selected qualitative results produced by PIE-NET, and generalization
to object categories that are not part of our training dataset in Figure 10. We evaluate our network
via ablation studies (Section 4.1), comparisons to both traditional and learned pipelines for edge
detection (Section 4.2), and stress tests with respect to noise and sampling density (Section 4.3). To
evaluate edge classification, we measure precision/recall and the IoU between predictions, while
to evaluate the geometric accuracy of the reconstructed edges, we employ the Edge Chamfer Dis-
tance (ECD) introduced by [31]. Note that, differently from Chen et al. [31], we do not need to
process the dataset to identify ground-truth edges, as these are provided by the dataset.
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1© 2© 3© 4©
Metric R′ = 1.5R R′ = 3R τc = 0.8 τc = 0.95 τe = 0.6 τe = 0.8 w/o De,Dc PIE-NET

ECD ↓ 0.0326 0.0824 0.0150 0.0144 0.0163 0.0149 0.0186 0.0136
IOU ↑ 0.4386 0.2950 0.4875 0.5110 0.4356 0.4964 0.5017 0.5330
Precision ↑ 0.5149 0.3244 0.5700 0.6032 0.5180 0.5975 0.5824 0.6219
Recall ↑ 0.8570 0.8910 0.8415 0.8230 0.8340 0.8035 0.7849 0.8165

Figure 8: Ablation studies – We evaluate the qualitative (top) and quantitative (bottom) performance
of our method across a number of metrics as we tweak: 1© the radius R controlling the sampling
heuristic, 2© the corner segmentation threshold τc, 3© the edge segmentation threshold τe, and 4© the
edge and corner offsets De and Dc. Recall for PIE-NET: R′=R, τc=.9, τe=.7, and we use De, Dc.

VCM EAR EC-Net PIE-NET PIE-NET
τ=0.12 τ=0.17 τ=0.22 τ=0.03 τ=0.035 τ=0.04 RS

ECD ↓ 0.0321 0.0430 0.0569 0.0679 0.0696 0.0864 0.0360 0.0137 0.0088
IOU ↑ 0.2841 0.2854 0.2855 0.3404 0.3250 0.2844 0.3561 0.5976 0.6223
Precision ↑ 0.3063 0.3244 0.3456 0.5560 0.4149 0.6523 0.4872 0.6816 0.6918
Recall ↑ 0.8385 0.7644 0.6937 0.4820 0.5910 0.3578 0.5736 0.8319 0.8584

Figure 9: Comparisons to state-of-the-art methods – Qualitative (top) and quantitative (bot-
tom) comparisons against point cloud with random sampling (RS) and edge detection techniques –
VCM [50], EAR [51], and EC-Net [10].

4.1 Ablation studies

Sphere radius – R. We validate the spherical sub-sampling heuristic introduced in Section 3.2.
Note that we only consider values of R′ strictly larger than the default setting, as otherwise we are
guaranteed to miss edge features. Specifically, we set R′ at ×1.5 and ×3 of the default R – in the
limit (R′=∞) we would consider the entire point cloud for each candidate corner-pair. Our analysis
shows that as the sampled point cloud becomes larger and larger, it becomes more and more difficult
to identify the right subset of points. This is because our sphere sampling heuristic also provides a
hint of which curve needs to be sampled – the one whose corner points are touching the sphere.

Classification thresholds – τc, τe. We also study curve generation performance as we vary how
many corner points are accepted. Overall, the performance of the network is stable as we vary τc,
delivering the expected precision vs. recall trade-off. We find that curve generation quality slightly
improves when we increase τc, but as the threshold gets too large, the quality begins to decline as
several corner points are filtered out, resulting in the absence of some feature curves. Analogous
trade-offs are observed as we adjust the values of edge classification threshold τe.

4.2 Comparisons to the state-of-the-art

Two of the most classical, pre-deep learning, methods for point cloud edge detection are: 1©Merigot
et al. [50], where edges are detected by thresholding the Voronoi Covariance Measure (VCM), and 2©
Huang et al. [51], where edges are identified as part of an Edge-Aware Resampling (EAR) routine.
We consider these two methods as representative of the state of the art, as both have been adopted in
the point-set processing routines of the well known CGAL library [52]. As reported in Figure 9, our
end-to-end method completely outperforms these classical baselines.
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Figure 10: Generalization to novel object categories – While PIE-NET is trained on CAD models
of mechanical assemblies from the ABC dataset [46], our edge detector is immediately applicable to
3D point clouds of general 3D objects and consistently outperforms VCM, EAR, and EC-Net.

Voronoi Covariance Measure (VCM) [50]. We compute VCM for each point VCM(pi), where we
set offset radius to 0.5 and convolution radius to 0.25. These parameters were found by a parameter
sweep evaluated over the test set of ABC [4]. We then consider a point to belong to an edge
if VCM(pi)>τ , and select three pareto-optimal thresholds τ={0.12, 0.17, 0.22} for evaluation.

Edge Aware Resampling (EAR) [51]. This method first re-samples away from edges via anisotropic
locally optimal projection (LOP), an operation that leaves gaps near sharp edges. We classify points
as edges by detecting whether they fall within these gaps. This is achieved by computing the average
distanceD10(pi) to the ten nearest neighbors – we consider a point to belong to an edge ifD10(pi) > τ .
We report the results for τ = {0.03, 0.035, 0.04} – the best performing thresholds as selected by a
dense sweep in the [0.01 . . . 0.05] range as suggested in the paper. As illustrated in Figure 9, our
end-to-end method performs significantly better, as immediately quantified by the fact that ECD is an
order of magnitude larger than the one reported for PIE-NET.

Edge-Aware Consolidation Network (EC-Net) [10]. We train EC-Net on our dataset, not the
author’s dataset [10] as it only contained 24 CAD models with manually annotated edges, while ABC
contains more than a million models. The comparison results demonstrate how PIE-NET achieves
significantly better performance; see Figure 9. In particular, our qualitative analysis revealed how
EC-Net struggles in capturing areas with weak-curvature, as well as short edges.

In Figure 10, we show additional qualitative comparison results on novel object categories such as
tables, chairs, and vases, etc., which are not part of the ABC training set. These results were obtained
using the same methods and trained networks as those that produced Figure 9. The point cloud inputs
were obtained by uniform sampling on the original mesh shapes, which are shown in Figure 10 to
reveal the edge features; there were no GT edges associated with these shapes.

4.3 Stress tests

Random Sampling (RS). We sampled 100K points uniformly over each CAD shape, and then
sub-sampled 8, 096 points non-uniformly via random sampling. We re-trained and re-tested PIE-NET
on the new point clouds, keeping all other settings unchanged. The performance is reported in
Figure Figure 9. As we can see, while there is a slight performance degradation, they are quite
comparable to original and still outperform all performance statistics obtained by VCM, EAR, and
EC-Net, except for one case, VCM with τ = 0.12, which yielded a recall of 0.8385, but it is paired
with a very low precision of only 0.3063.

Point cloud noise. We stress test PIE-NET by increasing the level of noise. Specifically, we randomly
apply different perturbations to the point samples along the surface normal direction with a scale
factor in the [1.0−X, 1.0 +X] range, where we tested four values of X={0, 0.01, 0.02, 0.05}. In each
case, the network was trained with the noise-added data. Figure 11 shows some visual results and
quantitative measures. As we can observe, our network, even when trained with noisy data, can still
out-perform VCM, EAR, and EC-Net when they are tested on or trained on clean data.
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Metric X = 0.05 X = 0.02 X = 0.01 X = 0.00 P=1,024 P=2,048 P=4,096 P=8,096

ECD ↓ 0.0924 0.0261 0.0159 0.0088 0.0473 0.0251 0.0185 0.0159
IOU ↑ 0.5037 0.5905 0.6049 0.6223 0.4187 0.4972 0.5843 0.6049
Precision ↑ 0.5973 0.6364 0.6672 0.6918 0.4985 0.5673 0.6549 0.6672
Recall ↑ 0.7781 0.8385 0.8691 0.8584 0.7936 0.8445 0.8344 0.8691

Figure 11: Network behavior with respect to noise and sampling density – We show the quali-
tative (top) and quantitative (bottom) performance of PIE-NET on input point clouds degraded by
noise of different magnitudes: X={0.05, 0.02, 0.01, 0} or sampled at a reduced density: with P going
from 8,096 down to 1,024. All the numbers in boldface outperform VCM, EAR, and EC-Net without
added noise or reduced point density; see the table in Figure 9 for reference.

Point density. We also train PIE-NET on point clouds at a reduced density. Specifically, for each
CAD shape, we sampled a different number (P ) of points to verify whether our network could handle
the sparser point clouds, where P={8,096, 4,096, 2,048, 1,024}. Results in Figure 11 reveal a similar
trend as from the previous stress test. Namely, our network, when trained on sparser point clouds,
can still outperform VCM, EAR, and EC-Net when they are tested on or trained on data at full
resolution (8,096 points).

4.4 Timing

For all the results shown in the paper, the average running time is about 0.5 second for point
classification and 3 seconds for curve generation, per point cloud. In comparison, the average running
times for point classification by VCM, EAR, and EC-Net are 5.5, 4.0, and 0.8 seconds, respectively –
they are all slower than PIE-NET. Training times for point classification,the open and closed curve
proposal networks were about 23, 12, and 8 hours, respectively, for 100 epochs, on an NVIDIA
TITIAN X GPU.

5 Conclusion

The detection of edge features in images has been shown to play a fundamental role in low-level
computer vision — for example, the first layers in deep CNNs have been shown to be nothing but
edge detectors. Notwithstanding, limited work to detect features of visual importance exists in
3D computer vision. With this objective, we present PIE-NET, a deep neural network which is
trained to extract parametric curves from a point cloud that compactly describe its edge features. We
demonstrate that a region proposal network architecture can already significantly outperform the
state-of-the-art, which includes both traditional (non-learning) methods, and a recently developed
deep model [10], the only other learning-based edge-point classifier, to the best of our knowledge.

Our contribution does not lie in merely surpassing the state-of-the-art from traditional graphics and
geometry processing techniques. More importantly, we are introducing a new learning problem to
the machine learning community, as well as defining the corresponding challenge for the recently
published ABC dataset [4]. We also show that, yet again, networks can perform excellently even
without resorting to excessive amounts of domain-specific (i.e., differential geometry) knowledge, as
the only domain knowledge we assume is a simple curve parameterization.
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