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Abstract

In this paper, we study the adaptive complexity of maximizing a monotone gross
substitutes function under a cardinality constraint. Our main result is an algo-
rithm that achieves a 1 − ε approximation in O(log n) adaptive rounds for any
constant ε > 0, which is an exponential speedup in parallel running time com-
pared to previously studied algorithms for gross substitutes functions. We show
that the algorithmic results are tight in the sense that there is no algorithm that
obtains a constant factor approximation in õ(log n) rounds. Both the upper and
lower bounds are under the assumption that queries are only on feasible sets (i.e.,
of size at most k). We also show that under a stronger model, where non-feasible
queries are allowed, there is no non-adaptive algorithm that obtains an approxima-
tion better than 1/2 + ε. Both lower bounds extend to the class of OXS functions.
Additionally, we conduct experiments on synthetic and real data sets to demon-
strate the near-optimal performance and efficiency of the algorithm in practice.

1 Introduction

In this paper, we study the problem of maximizing gross substitutes functions in the adaptive com-
plexity model. Gross substitutes are an extremely well-studied class of functions in microeconomics.
The concept of gross substitutes was first introduced in the seminal work by Arrow and Debreu as
a sufficient condition on the valuation functions of buyers to guarantee the existence of equilibria in
markets with indivisible items [1]. It was later shown to also be a necessary condition [20]. Gross
substitutes functions are also studied in the contexts of stable matchings in two-sided markets [2, 33],
combinatorial auctions [3], and trading networks [23, 25], and have been rediscovered in multiple
fields under different names. We refer the reader to [31] for a survey of the different definitions.

In theoretical computer science and optimization, gross substitutes are considered as a subclass of
submodular functions, as they satisfy the diminishing returns property. For monotone submodu-
lar functions, it is well known that a greedy algorithm that iteratively selects the element with the
maximal marginal contribution to its current solution obtains a 1 − 1/e approximation for max-
imization under a cardinality constraint [30] and that this bound is optimal for polynomial-time
algorithms [29, 19]. For gross substitutes functions, the greedy algorithm returns an optimal so-
lution [13]. Thus, from a purely algorithmic perspective, gross substitutes represent an important
subclass of submodular functions: it is the most expressive class of submodular functions that can be
optimized exactly under cardinality constraints in polynomial time. Not only is gross substitutability
a sufficient condition for the optimality of greedy, but it is also a necessary condition [31].1

1In the context of Walrasian equilibrium, gross substitutes correspond exactly to the class of functions for
which the greedy algorithm is optimal for all price vectors [31].
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A recent line of work began investigating the adaptive complexity of submodular optimization [8, 6,
15, 11, 18, 9, 5, 17, 12, 7, 10, 16, 26]. The adaptive complexity model was introduced in [8] as an
information theoretic measure for the parallel runtime of an algorithm. Informally, the adaptivity of
an algorithm is its number of sequential rounds, when each round can perform polynomially-many
function evaluations in parallel. Since the greedy algorithm adds a single element to the current
solution at every iteration, it has adaptivity that is linear in the cardinality constraint k, which, in the
worst case, is Ω(n). Until recently, there was no known constant factor approximation algorithm
whose adaptivity is sublinear in k for maximizing a submodular, or even a gross substitutes function.

The main result in [8] is an algorithm that obtains a constant factor approximation arbitrarily close
to 1/3 in O(log n) rounds, which was an exponential speedup in parallel runtime for maximizing
monotone submodular functions under a cardinality constraint. They also showed that there is no
õ(log n) adaptive algorithm that achieves a constant approximation. The algorithm in [8] uses a
technique called adaptive sampling that was first extended by [6, 15] to obtain an approximation
that is arbitrarily close to the optimal 1− 1/e, and then by other papers in this genre [18, 5, 17, 26].

Although there has been a great deal of work on submodular maximization in the adaptive com-
plexity model, this work has focused on general submodular functions and little is known about the
adaptive complexity of maximizing gross substitutes functions. On one hand, gross substitutes are
a superclass of additive and unit-demand functions. For additive and unit demand algorithms, it is
trivial to obtain an approximation arbitrarily close to optimal (i.e. 1 − ε, for any constant ε) with
only 1 round. On the other hand, gross substitutes are a subclass of submodular functions. Thus, all
the results in the adaptive complexity model for submodular functions also apply to gross substitutes
and there is aO(log n)-adaptive algorithm that obtains an approximation arbitrarily close to 1−1/e
for maximizing monotone gross substitutes under a cardinality constraint. But to obtain near optimal
results, the only algorithm known is the greedy algorithm whose adaptivity is linear in k.

How many rounds are needed to find a (near) optimal solution to the problem of
maximizing gross substitutes under a cardinality constraint?

Main results. We first show that the number of rounds needed to find a solution that is arbitrar-
ily close to optimal for maximizing monotone gross substitutes under a cardinality constraint is
O(log n). In particular, for any ε > 0, there exists an O(log(n)/ε3) adaptive algorithm that obtains
a 1−ε approximation in expectation. This near-optimal algorithm provides an exponential improve-
ment in parallel runtime compared to previous algorithms for maximizing gross substitutes. We also
provide two lower bounds. The first shows that there is no non-adaptive, i.e. 1-adaptive, algorithm
that obtains an approximation better than 1/2 + ε for maximizing monotone gross substitutes under
a cardinality constraint. This hardness result shows a sharp separation between gross substitutes and
additive and unit demand functions which can both be optimized arbitrarily well in a single round.
The second lower bound is a conditional lower bound. Assuming that the algorithm queries sets
of size O(k), there is no õ(log n) algorithm that obtains a constant approximation for maximizing
monotone gross substitutes under a cardinality constraint.

Furthermore, we conduct experiments on synthetic bipartite graphs and Twitter data. We observe
that the algorithm has near-optimal performance while running in exponentially fewer parallel
rounds. Additionally, the adaptive algorithm outperforms its benchmarks on a range of different
valuations. In practice, we observe that the true number of rounds the algorithm requires is much
lower than the theoretical bound for the approximation guarantee.

1.1 Technical Overview

The algorithm. To show low adaptivity and near-optimal approximation, we first define two
classes of algorithms called impatient greedy and stochastic greedy. Each iteration of a stochastic
greedy algorithm selects an element whose marginal contribution is in expectation a 1− ε approxi-
mation to the optimal marginal contribution at that iteration. We show that this algorithm obtains a
1− ε approximation for gross substitutes.

Most low adaptivity algorithms for submodular functions use a technique called adaptive sampling
[8, 15, 18, 17, 5, 6, 26]. Unfortunately, adaptive sampling does not guarantee that elements added to
the solution have near-optimal contribution at each iteration, which fails to give near-optimal guar-
antees for gross substitutes (see example in Appendix A.2). Instead, the algorithm leverages a recent
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adaptive sequencing technique [7] that guarantees near-optimality of the marginal contributions of
elements added. However, adaptive sequencing from [7] has O(log(n) log(k)) adaptivity.

To improve the adaptivity, we introduce the class of impatient greedy algorithms, which begin by
adding elements as long as their marginal contributions are above some fixed threshold, i.e., not
necessarily close to optimal. We show that with threshold OPT

εk , impatient greedy algorithms obtain
near-optimal approximation guarantees for gross substitutes. The main algorithm employs the adap-
tive sequencing technique starting with a threshold equal to OPT

εk . With this low threshold, adaptivity
is improved from O(log(n) log(k)) to O(log n) with an arbitrarily small loss in the approximation.
In this paper, we only consider maximization under cardinality constraint and leave general matroid
constraints for future work. Since the greedy algorithm does not yield the optimal solution for gross
substitutes under matroid constraints, many of these techniques cannot be immediately extended.

Lower bounds. Previous lower bound constructions in the adaptive complexity model [8, 9] are
submodular, but not gross substitutes, so novel constructions are needed. The functions we construct
to be hard to optimize are OXS functions, thus our lower bounds also hold for this subclass of gross
substitute functions. The main challenge in the analysis of õ(log n) rounds lower bound is handling
the subtle interactions between the different rounds of queries by the algorithm. Our approach is
related to the round elimination technique from communication complexity.

2 Preliminaries

We assume value oracle access to a function f : 2N → R. An algorithm is r-adaptive if it consists of
r sequential rounds where the algorithm may perform poly(n) function evaluations f(S) in parallel
at every round. A function f is submodular if it exhibits the diminishing returns property, i.e.,
fS(a) ≥ fT (a) for all S ⊆ T ⊆ N and a ∈ N \ T , where fS(T ) := f(S ∪ T ) − f(S) is the
marginal contribution of T to S. We abuse notation and write f(a), fS(a) for f({a}) and fS({a})
when clear from context. As discussed in the introduction, there exist many equivalent definitions
for gross substitutes (GS), see [31] for a detailed survey. We give the definition which we use
for the analysis. A function f is gross substitutes if it is submodular and for all S, T ⊆ N and
a ∈ S, f(S) + f(T ) ≤ maxb∈T {f(S \ a) + f(T ∪ a), f(S ∪ b \ a) + f(T ∪ a \ b)} . We show
our lower bounds for gross substitutes by constructing families of OXS functions. A function f with
N = {a1, . . . , an} is a unit-demand function if there are n positive weights w1, . . . , wn ∈ R+ s.t.
f(S) = maxai∈S wi. A function f is an assignment function (OXS) if f is the convolution of r unit-
demand functions u1, . . . , ur: f(S) =

∨
i∈[r] ui(S) := max ·∪i∈[r]Si=S

∑
i∈[r] ui(Si) where sets

S1, . . . Sr are a partition of S. These three classes are related as follows [27]: OXS ( GS ( SM.

3 O(log n) Rounds Suffice for Near Optimal Approximation

In this section we describe an algorithm for maximizing gross substitutes functions which has low
adaptivity and returns a solution whose approximation guarantee is arbitrarily close to optimal. To
prove these properties we first define two classes of algorithms – impatient greedy and stochastic
greedy algorithms. We show that impatient greedy algorithms yield low adaptivity algorithms for
gross substitutes functions and that stochastic greedy algorithms yield approximately optimal al-
gorithms. We then define our main algorithm which is both an impatient greedy algorithm and a
stochastic greedy algorithm and can, therefore, instantiate the guarantees for both to show that the
algorithm isO(log n) adaptive and achieves an approximation guarantee arbitrarily close to optimal.

3.1 IMPATIENT GREEDY Analysis

An impatient algorithm first collects items with marginal contribution to the current set above some
input threshold t. In the second stage, the algorithm adds the remaining elements using the greedy
algorithm. We show that by choosing the correct threshold t, this algorithm performs nearly opti-
mally for gross substitutes functions. This choice of the threshold is the crucial step in showing a
good approximation guarantee is achievable in few rounds. All proofs are deferred to Appendix B.

With threshold t = OPT

εk , we show that stochastic greedy performs near optimally for gross substi-
tutes. This follows from the fact that the number of elements chosen in the first loop is bounded by
εk (Lemma 3). We defer the analogous result for submodular functions to Appendix B.3.
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Algorithm 1 IMPATIENT GREEDY

1: Input f(·), k, t
2: S ← ∅, X ← N
3: while X 6= ∅ and |S| < k do
4: X ← {a : fS(a) ≥ t}
5: S ← S ∪ {ai} where ai is chosen u.a.r. from X

6: while |S| < k do
7: X ← {a : fS(a) = maxx fS(x)}
8: S ← S ∪ {ai} where ai is chosen arbitrarily from X

9: return S

Theorem 1. Given a monotone gross substitutes function f : 2N → R, IMPATIENT GREEDY with
threshold t = OPT

εk returns a set S such that f(S) ≥ (1− ε)OPT.

3.2 STOCHASTIC GREEDY Analysis

In this section, we show that the stochastic greedy algorithm can guarantee a strong approximation to
the optimal solution of gross substitutes functions. At each step i of the algorithm, noise parameters
are sampled from distributionDi and an approximate maximal element is chosen (Algorithm 2). For
submodular functions, stochastic greedy algorithms give approximations arbitrarily close to 1− 1/e
with high probability when k is sufficiently large [22]. Noisy versions of the greedy algorithm on
submodular functions are a vast area of research [32, 24, 21, 34, 22]. However, for gross substitutes
functions, this has not been studied.

We prove results for gross substitutes functions, which may be of interest even outside the context
of adaptive complexity. In particular, we show that for gross substitutes functions, an algorithm
that selects an element which is, in expectation, an α approximation to the element with the largest
marginal contribution at each iteration provides an α approximation to the optimal solution. This
idea is crucial in proving our main result in Theorem 3.

Algorithm 2 STOCHASTIC GREEDY

1: S ← ∅
2: for i ∈ [k] do
3: (ξi, ζi) ∼ Di
4: X = {a : fS(a) ≥ ξi maxx fS(x)− ζi}
5: S ← S ∪ {ai} where ai is chosen u.a.r. from X

6: return S

We first state the following lemma from [31] which will be useful for bounding the marginal contri-
bution obtained at each step of the algorithm. All proofs are deferred to Appendix C.

Lemma 1 ([31]). Let f be a gross substitutes function, then ∀S, T ⊆ [n] with |S| = |T | and
s ∈ S \ T , we have f(S) + f(T ) ≤ maxt∈T\S {f(S ∪ t \ s) + f(T ∪ s \ t)}.

We can use this to show that at any iteration, there exists an element with high marginal contribution
to the current solution (Lemma 5) and obtain the following approximation guarantee.

Theorem 2. Given a gross substitutes function f : 2N → R, let S be the set of size k selected by
STOCHASTIC GREEDY with ξ̂ = mini E[ξi] and ζ̂ =

∑
i E[ζi]. Then E[f(S)] ≥ ξ̂OPT− ζ̂.

It now follows that the stochastic variant of the greedy algorithm gives a good approximation to
the maximal value when ξ̂ ≈ 1 and ζ̂ ≈ 0. In the case where the expected noise is bounded and
E [ξi] = 1 − ε and ζi = 0 for all i, we can get a good approximation to the optimal solution in
expectation, i.e. E [f(S)] ≥ (1− ε)OPT.

This is indeed the case for the algorithm discussed in the next section. We note that for submodular
functions, while the approximation ratio of 1 − 1/e is preserved under noise, it is not always true
that the noisy output is close to the output of the greedy algorithm. See example in Appendix A.1.
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3.3 The Low Adaptivity Algorithm for Gross Substitutes

We now describe an algorithm for maximizing gross substitutes functions, GROSS SUBSTITUTES
ADAPTIVE SEQUENCING (GSAS), which has O(log n) rounds and returns a solution whose ap-
proximation guarantee is arbitrarily close to optimal. In the analysis, we show how to exploit the
guarantees of the two variants presented previously by constructing an algorithm with similar ap-
proximation guarantees using a small number of adaptive query rounds. We analyze the performance
for both submodular and gross substitutes monotone functions and show that for gross substitutes
functions a 1−O(ε) approximation is obtained2. All proofs are deferred to Appendix D.

Adaptive sequencing. In this paper we develop an algorithm that is based on the adaptive se-
quencing technique recently proposed in [7] which was developed to obtain constant factor ap-
proximation guarantees under matroid constraints. The overwhelming majority of low-adaptivity
algorithms use a different technique called adaptive sampling [8, 15, 18, 17, 5, 6, 26], which was in-
troduced in [8]. Adaptive sampling algorithms sample a large number of sets of elements at every it-
eration to estimate marginal contributions. These estimates, which rely on concentration arguments,
are then used to either add a random set R to S or discard elements with low expected contribution
to R ∪ S. Since gross substitutes functions are submodular, adaptive sampling provides a 1 − 1/e
approximation but fails to give near-optimal guarantees (see Appendix A.2 for an example).

In contrast to adaptive sampling, adaptive sequencing techniques generate at every iteration a single
random sequence (a1, . . . , a|X|) of the elements X not yet discarded. Let Al = (a1, . . . , al) be a
sequence of elements. A prefix Ai? = (a1, . . . , ai?) of the sequence is then added to the solution S,
where i? is the largest position i such that a large fraction of the elements inX has high contribution
to S ∪Ai−1. Elements with low contribution to the new solution S are then discarded from X .

Algorithm 3 GROSS SUBSTITUTES ADAPTIVE SEQUENCING (GSAS)

1: Input f(·), ε, ∆, t?

2: S ← ∅, t← t?

3: for ∆ iterations do
4: X ← N
5: while X 6= ∅ do
6: a1, ..., ak∗ ← random sampling from X of size k∗ = min(k − |S|, |X|)
7: Xi ←

{
a ∈ X : fS∪{a1,...,ai−1}(a) ≥ t

}
for all i ∈ [k∗]

8: i∗ ← min {i : |Xi| ≤ (1− ε)|X|}
9: S ← S ∪ {a1, ..., ai∗−1}

10: X ← Xi∗

11: t← (1− ε)t
12: return S

Variants of Greedy. Adaptive sequencing described in [7] can be viewed as a parallel STOCHAS-
TIC GREEDY algorithm. It starts with a high threshold t? and lowers the threshold as the algorithm
continues. The initial threshold t? is set to max f(a) so that the algorithm will not discard good ele-
ments. In the case where OPT = max f(a), the number of threshold decrements to guarantee a good
approximation isO(log(k)), which results in the total adaptive complexity ofO(log(k) log(n)). Us-
ing the abstraction of IMPATIENT GREEDY, we can set a lower initial threshold t? = OPT

εk in GSAS
to reduce complexity. We show that the number of rounds needed by the outer loop will decrease to
∆ = O(1/ε2). From Section 3.1, this threshold adjustment does not greatly effect the performance.

Note that GSAS requires the value of OPT to set the initial threshold. We can bypass this by running
several estimations for OPT in parallel, setting OPT ∈

{
(1 + ε)i max f(a)| i ∈

[
lnn
ε

]}
, where the

running time of each will be truncated by ∆ iterations. We will show that a close approximation of
OPT is sufficient. From now on, we denote the initial value of t as t? where OPT

(1+ε)εk ≤ t
? ≤ OPT

εk .

2For submodular functions this algorithm obtains a 1− 1/e−O(ε) approximation to the optimal solution.
We give the analysis in Appendix D.4
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We now show our main results that GSAS achieves a 1−O(ε) approximation inO(log n) adaptive
rounds. We start by showing logarithmic adaptivity. At a high level, low adaptivity follows from the
fact that each inner iteration makes at most log(n)/ε rounds and the outer loop runs ∆ times.

Lemma 2. Given ε > 0 and ∆ = 1/ε2, GSAS terminates after O(log(n)/ε3) rounds.

We now outline a proof sketch for gross substitutes maximization with low adaptivity. We defer the
analogous result for submodular functions and its proof to Appendix D.4.

Theorem 3. For any monotone gross substitutes function f and ε > 0, GSAS is a O(log(n)/ε3)
adaptive algorithm that returns a set S such that E[f(S)] ≥ (1−O(ε))OPT.

Proof Sketch. Since the initial threshold of GSAS is lowered, we handle the first iteration separately
and similarly to how we handle IMPATIENT GREEDY. We then show that remaining iterations
behave similarly to STOCHASTIC GREEDY. Let S1 be the set at the end of the first iteration. Then,
either S1 is optimal or is small in size w.h.p., i.e. f(S1) = OPT or |S1| < 3εk (Lemma 6).

We now consider all remaining iterations and show that GSAS approximately maximizes a surrogate
function g(A) := f(S1∪A) over cardinality constraint k−|S1|. After the first iteration, there are no
elements with marginal contribution exceeding OPT

εk and the algorithm can be reduced to the original
version in [7] on g after S1 has been selected. The approximation guarantee follows from the fact
that for each iteration, the threshold t is an approximate upper bound on the maximal marginal
contribution of an element a to the intermediate solution S, i.e. t ≥ (1− ε) maxa gS(a) (Lemma 7).
It then follows that GSAS behaves similarly to STOCHASTIC GREEDY where E [ξi] ≥ 1 − 2ε and
ζi = 0 (Lemma 8). We can then use Theorem 2 from STOCHASTIC GREEDY to show that indeed S
approximately maximizes g with constraint k − |S1|.
Combining this result with the analysis of the first iteration, we show that S combined with S1

approximately maximizes f with constraint k. Finally, we handle the possibility of early termination.
Since we miss at most k elements, we have a loss of at most tk = εOPT. Thus, we get that GSAS
gives a 1−O(ε) approximation. �

The approximation can also hold with high probability using Markov’s Inequality by running poly-
nomially many copies of the algorithm and choosing the maximal one.

4 Lower Bounds

In this section, we present lower bounds on the adaptive complexity of maximizing gross substi-
tutes. We first show that there is no 1-adaptive algorithm that obtains a 1/2 + ε approximation, for
any constant ε > 0 (constructions and proofs deferred to Appendix E). This lower bound shows a
sharp separation between gross substitutes and additive and unit demand functions, which can be
optimized to be arbitrarily close to 1 in just one round.

Theorem 4. There is no non-adaptive, i.e. 1-adaptive, algorithm that obtains, with probability
ω( 1

n ), a 1/2 + ε approximation for maximizing monotone gross substitutes functions under a cardi-
nality constraint, for any constant ε > 0.

We now show a lower bound for algorithms with multiple adaptive rounds. More precisely, we show
that there is no õ(log n) adaptive algorithm that obtains a constant approximation for maximizing
OXS functions when the queries are of size O(k). The main challenge in extending the result from
one round is handling the subtle interactions between the different rounds of queries.

We now discuss the assumption that the queries are of size O(k). We first note that in the context
of learning or optimization from past observations and decisions, it is natural that past observations
and decisions must also be feasible according to the problem constraint, i.e., of size at most k. In
addition, we also note that most of the existing algorithms, e.g. greedy and local search, as well as
the algorithm from the previous section, only query feasible sets of size at most k.

Theorem 5. There is no ( logn
4 log(logn) − 1)-adaptive algorithm that obtains, with probability ω( 1

n ), a
1

logn approximation for maximizing monotone gross substitutes functions under a cardinality con-
straint when the queries are sets of size O(k).
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Figure 1: OXS valuation results on synthetic graphs G1, G2, G3 and G4 (Figures 1a, 1b, 1c, 1d) and
tweets with #ad, #spon, #giveaway and #win hashtags G5, G6, G7 and G8 (Figure 1e, 1f, 1g, 1h).

5 Experiments

To evaluate the performance of GSAS, we conduct experiments on synthetic and real datasets.

Experimental setup. In our first set of experiments, we construct bipartite graphs with n play-
ers, m items (nodes) and valuations (edge weights) to simulate OXS valuations using synthetic and
real data. We then compare the performance of GSAS against different benchmarks across varying
values of k. We select k = 100 elements on synthetic data and k = 150 on real data. Our second ex-
periment analyzes the spectrum of unit-demand and additivity. OXS valuations can be represented as
the sum of max of item values. In one extreme, valuations are additive so that v(A) =

∑
a∈A v(a);

in the other extreme, they are unit-demand valuations so that v(A) = maxa∈A v(a). In this ex-
periment, we explore the performance of GSAS by constructing OXS valuations that are strictly
unit-demand, additive and in the spectrum and selecting k = 32 items for each valuation. For all of
the experiments we have used ε = 0.1.

Benchmarks. We compare GSAS to the following baselines. Trimmed Greedy is the GREEDY
algorithm limited by the number of rounds used by GSAS to return a set of size smaller than k.
Without this limitation, the algorithm returns the optimal value. RANDOM samples, in one round,
n many k-tuples and returns the best sample. TOP-k selects k elements with largest marginal
contribution to empty set in a single round. Adaptive Sampling adds sets of elements in each
round by iteratively filtering out elements of low marginal contribution and selecting elements of
high value [6]. Learned Opt first learns the OXS valuation function using sampling and then uses
GREEDY to optimize the learned function [4]. We omit OPT from our plots since in our experiments
OPTand GSAS are empirically indistinguishable.

5.1 Datasets

We briefly discuss the generation of synthetic graphs and the constructed Twitter network for the
first set of experiments and OXS valuations for the second set. See Appendix F for more details.

Synthetic graphs. We generate the first graph by following the construction detailed in Appendix
A.2 (G1) and a second using the construction detailed in Appendix E.3 with n = 5000 ground set
elements (G2). We construct two additional random bipartite graphs with n = 275 ground set items
and m = 200 players with the probability of an edge fixed at 0.25 (G3) and 0.75 (G4).

Twitter graphs. We filter Twitter data for specific hashtags and extract keywords from each tweet.
For each hashtag, we use roughly 500 tweets to construct a bipartite graph with “players" represent-
ing advertisements and “items" representing keywords. The valuation of the keyword is determined
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by the length of the tweet and the popularity of the keyword. We focus on four different hashtags,
each used to construct a different graph: #ad (G5), #spon (G6), #giveaway (G7) and #win (G8).

OXS valuations. To analyze the spectrum of unit-demand and additivity, we construct the follow-
ing OXS valuations. We fix the number of n = 1024 items in the ground set. An item of type i,
aj , has value v(aj) = i. We vary the number of item types of items by parameter m, where there
are n/m items of each type and each m yields a different OXS valuation. In our construction, all
players have the same valuation. In one extreme, for m = 1, there is one item type and all 1024
items have value 1, which represents a unit-demand valuation. In the other extreme, m = 1024 so
that there is exactly one item of each type, which represents an additive function.

5.2 Experimental Results

General performance. Overall, on our synthetic graphs, GSAS (blue) performed near optimally
and outperformed the baselines of TRIMMED GREEDY, TOP K, LEARNED OPT and RANDOM (Fig-
ures 1a, 1b, 1c, 1d). It was able to obtain high value in much fewer rounds than the traditional
GREEDY, which can be seen in the gap of performance between GSAS and TRIMMED GREEDY.
We note that LEARNED OPT essentially learns a constant function and cannot distinguish between
elements, which causes it to perform similarly to RANDOM.

On the Twitter data, we attempt to select certain advertising tweets that value keywords highly to
maximize revenue for an ad placement agency. Sample keywords that were contained in selected
ads are listed in Figure 2. We found that for smaller k, GSAS needed as many rounds as GREEDY
to terminate so that the performance of both algorithms is near equivalent for k smaller than 80.
However, for larger values of k, GSAS terminated in much fewer rounds (Figures 1e, 1f, 1g, 1h).

On Twitter datasets, the oracle call to calculate the OXS valuation is computationally expensive as it
includes a maximal weight matching step. Due to computation constraints, we do not use ADAPTIVE
SAMPLING, which requires many oracle calls, as a benchmark. In Figure 2, we show the inferior
performance of ADAPTIVE SAMPLING compared to GSAS on one such Twitter graph.

#ad #spon #giveaway #win
learn spiderman win case
free learn light light
lives sign free enter
work free body find
win work time free

Figure 2: On the left, GSAS outperforms ADAPTIVE SAMPLING on a Twitter graph. Top keywords
for each hashtag are listed on the right.

Fewer number of rounds. We note that in our experimental results, the true number of rounds
needed for GSAS to terminate is much lower than the theoretical one of log(n)/ε3. First, in order
to reach value of t = εOPT/k, only log(ε−1)/ε rounds are needed. Second, in the inner loop,
the factor of log(n)/ε is an upper bound and adding more elements into the solution set results
in fewer rounds. Additionally, we found that the outer iteration terminated prematurely when the
solution set reached k elements. These empirical observations show that GSAS can be much more
computationally efficient than GREEDY. Even so, the number of rounds preformed by GSAS was
quiet low and presented an improvement in the number of needed rounds. We elaborate on it in
Appendix F.

Spectrum of UD-additivity In the two extremes where the OXS valuation is strictly additive or
unit-demand (UD), TOP-K performs optimally by selecting the elements with the highest marginal
contribution to the empty set in one round. In the general case where the objective valuation lies
in the spectrum of UD-additivity, we found that GSAS outperforms its baselines in all regimes. In
Figure 3, we normalize all values to the optimal solution as computed by GREEDY. Algorithms that
perform better have values close to 1 in the figure.
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Figure 3: Performance of algorithms on UD-additive valuations.

Broader Impact

This work focuses on the adaptivity of maximizing gross substitutes functions. While previous work
has been done on maximizing submodular functions, a superclass of gross substitutes, little is known
about the adaptivity complexity to achieve optimal results for this particular class of functions.
Our results show an exponentially faster algorithm with near-optimal approximation guarantees for
optimization of gross substitute valuations, which have numerous applications in microeconomics
and market design [2, 33, 3, 23, 25] and appear in multiple fields such as discrete mathematics [28]
and number theory [14].

The algorithm presented in this work is particularly relevant to applications on large datasets where
sequential algorithms such as GREEDY become impractical and computationally infeasible. By us-
ing a low-adaptivity algorithm such as GSAS, we are able to take advantage of parallelization and
dramatically speed up computation on large datasets. In Section 5, we show an application of this
algorithm on large constructed Twitter networks to efficiently match keywords in advertisements
to bidders or advertisers. In our experimental results, we show both the effective performance and
computational efficiency of using GSAS on different networks. This shows that the limited adap-
tivity of GSAS can be effectively leveraged to analyze trends on other large-scale social networks
and applications.
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A Constructions

A.1 The Greedy Algorithm is Not Robust to Noise for Submodular Functions

For general submodular functions, it is not always true that the greedy algorithm is robust to noise.
Consider the following example from [34]:

f(∅) = 0
f({a}) = 1, f({b}) = 1, f({c}) = 1− ε

f({a, b}) = 2, f({a, c}) = 1.5− ε
2 , f({b, c}) = 1.5− ε

2
f({a, b, c}) = 2

For k = 2, the gap ratio between the noisy and clean versions is 3
4 . In general, it can be as small as

1− 1
e .

A.2 ADAPTIVE SAMPLING Fails to Maximize Gross Substitutes Functions

In [6], Balkanski et. al. presented an adaptive algorithm for submodular maximization. Similar
to the greedy algorithm, this algorithm guarantees a 1 − 1

e approximation to the optimal value.
However, unlike the greedy algorithm, this algorithm does not guarantee an optimal solution for
gross substitutes functions.

In this section, we show an example of an OXS function which is difficult for ADAPTIVE SAMPLING
when k, the number of elements we wish to select, is small compared to the size of the ground set
n.

The construction. We consider the family of partitions P where the n elements are partitioned
into four disjoint sets: A,B,C and D. Formally:

P :=

{
P = (A,B,C,D) : |A| = k

3
, |B| = |C| = |D| = (n− k

3
)/3

}
.

We construct OXS functions fP which depend on a partition P ∈ P , so the hard family of OXS
functions is

F1 = {fP : P ∈ P}.

Given a partition P = (A,B,C,D), we define 4k
3 unit-demand functions. Those are ai, bi, ci and

di for i ∈ [k3 ] where

ai(S) = 12 · 1|S∩A|>0 bi(S) = 9 · 1|S∩B|>0 ci(S) = 6 · 1|S∩C|>0 di(S) = 4 · 1|S∩D|>0.

The function fP is then defined to be the OXS function over these unit-demand functions.

Given cardinality constraint k, OPT = 9k simply by taking k/3 elements from A,B and C.

For the ADAPTIVE SAMPLING algorithm, assume the number of rounds r = k (which gives the
algorithm the highest value). At each round, the algorithm looks for a random set T of size k/r = 1
such that

fS(T ) = (OPT− f(S))/k

where S is the current solution set. In the first round, S = ∅ and randomly sampled sets should
have a marginal contribution of at least OPT

k = 9. Since there are very few elements from set A
compared to the elements in set B which also have acceptable value, almost none of A will be
selected at this step. After k

3 elements from set B are added to the solution set, the threshold
is now OPT−f(S)

k = (9k − 9 · k3 )/k. For the same reason as before, the algorithm will now add
elements from set C to the solution set. After adding another k

3 elements, the threshold is now
OPT−f(S)

k = (9k − 9 · k3 − 6 · k3 )/k = 4. In the last round, k3 elements from set D are have good
marginal contribution and with high probability the total value obtained at the end of ADAPTIVE
SAMPLING is 19k

3 .
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B Missing Proofs for IMPATIENT GREEDY (Section 3.1)

B.1 The First Stage of IMPATIENT GREEDY Selects Few Elements

Lemma 3. Let f : 2N → R be a submodular function, t = OPT

εk and S be the set maintained at the
end of the first while loop of IMPATIENT GREEDY. Then, |S| ≤ εk.

Proof. Denote by (a1, ...a|S|) the elements of S in some order. Since t = OPT

εk , there are at most εk
elements such that f{a1,...,ai−1}(ai) ≥ t otherwise we have exceeded OPT by selecting this set.

B.2 Proof of Theorem 1

Proof. Let set S1 be the set of size m ≤ εk selected in the first while loop and S2 = S \ S1.
Let g(A) = fS1

(A) and O be the optimal solution for maximizing f with cardinality constraint of
k −m. Since g is a gross substitutes function, S2 is known to be optimal for maximization. Thus,

f(S) = f(S1) + g(S2) ≥ f(S1) + g(O) = f(S1 ∪O).

By monotonicity, f(S1 ∪O) ≥ f(O) and since f(O) is a k−m
k approximation to OPT we get:

f(S) ≥ k −m
k

OPT ≥ k − εk
k

OPT = (1− ε)OPT.

B.3 IMPATIENT GREEDY for Submodular Functions

Theorem 6. Given a monotone submodular f : 2N → R, IMPATIENT GREEDY with threshold
t = OPT

εk returns a set S such that f(S) ≥ (1− 1/e− ε)OPT.

Proof. As before, let set S1 be the set of sizem ≤ εk selected in the first while loop and S2 = S\S1.
Let g(A) = fS1(A) and O be the optimal solution of size k − m for f . Since g is a monotone
submodular function, S2 is known to guarantee a 1− 1

e approximation for its maximization problem.
Thus,

f(S) = f(S1 ∪ S2) = f(S1) + g(S2) ≥ f(S1) + (1− e−1)g(O) = (1− e−1)(f(S1) + fS1
(O)).

By the monotonicity assumption, fO(S1) ≥ 0 and since f(O) is a k−m
k approximation to OPT we

get that
f(S1) + fS1

(O) = f(O) + fO(S1) ≥ f(O) ≥ (1− ε)OPT.
Combining the above results, f(S) ≥ (1− e−1 − ε)OPT.

C Missing Proofs for STOCHASTIC GREEDY (Section 3.2)

C.1 Proof of Lemmas for Theorem 2

We first prove the following lemma to compare the solution S to the optimal solution.
Lemma 4. Given a gross substitutes function f : 2N → R and two sets S, T s.t. |S| < |T |, then
f(S) + f(T ) ≤ maxt∈T\S {f(S ∪ t) + f(T \ t)} .

Proof. We define another function f ′ on n+ |T | − |S| items by adding a set D of size |T | − |S| of
dummy items: f ′(A∪R) = f(A) for allR ⊆ D, where addingR does not affect the function value.
It is straightforward to verify that f ′ is a gross substitutes function. Let S′ = S ∪D so |S′| = |T |.
By Lemma 1 over f ′, S′, T and s ∈ D ⊆ S′, we get

f(S)+f(T ) = f ′(S′)+f ′(T ) ≤ max
t∈T\S′

{f ′(S′ ∪ t \ s) + f ′(T ∪ s \ t)} = max
t∈T\S

{f(S ∪ t) + f(T \ t)} .

Lemma 5. Let Oi = {o1, . . . , oi} be the current solution of the greedy algorithm at iteration i
(recall that greedy is optimal for gross substitutes) and Si = {a1, . . . , ai} be any set of size i. Then,
for all i < k, there exists o ∈ Oi+1 s.t. fOi(oi+1) ≤ fSi(o).
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Proof. By Lemma 4 there exists o ∈ Oi+1 such that f(Si) + f(Oi+1) ≤ f(Si ∪ o) + f(Oi+1 \ o).
Rearranging yields the result:

fOi(oi+1) = f(Oi+1)− f(Oi) ≤ f(Oi+1)− f(Oi+1 \ o) ≤ f(Si ∪ o)− f(Si) = fSi(o)

where the first inequality is due to the optimality ofOi and the second from the above inequality.

C.2 Proof of Theorem 2

Proof. Observe that

E[f(S)] = E[
∑
i≤k

fSi−1
(si)] ≥ E[

∑
i≤k

ξifOi−1
(oi)− ζi] =

∑
i≤k

(E[ξi]fOi−1
(oi)− E[ζi])

≥
∑
i≤k

ξ̂fOi−1
(oi)− ζ̂ = ξ̂OPT− ζ̂

where the first inequality follows from Lemma 5 and the second from the definitions of ξ̂ and ζ̂.

D Missing Proofs for GSAS (Section 3.3)

D.1 Proof for Lemma 2

Proof. The outer loop runs ∆ times. Each inner iteration makes at most log(n)/ε rounds since at
each round, |X| decreases by at least a factor of 1− ε. Finding i∗ can be done in a single round.

D.2 Lemmas for the Proof of Theorem 3

Lemma 6. Given a submodular function f : 2N → R, let S be the set at the end of the first while
loop of GSAS. Then, either f(S) = OPT or |S| < 3εk with probability 1− o(eεk/8).

Proof. Denote by (a1, ...a|S|) the elements of S in some order. Since t? is a downward dis-
cretization of OPT

εk , we have that t? ≥ OPT

(1+ε)εk and there are at most (1 + ε)εk elements such that
f{a1,...,ai−1}(ai) ≥ t? (otherwise we have exceeded OPT by selecting this set). However, we still
need to show that the randomization of the algorithm does not choose too many items with marginals
contributions below threshold t. Let a1, ..., al be the elements chosen in the process. In order to es-
timate the number of selected elements such that f{a1,...,ai−1}(ai) < t?, we first note that at most
k elements are chosen in total. By definition of i∗, for all i < i∗, each item ai has a probability
of at least 1 − ε to maintain f{a1,...,ai−1}(ai) ≥ t?. Since each element in the sequence is drawn
independently of previous selections, using the Chernoff bound, with probability at least 1− e− εk8 ,
no more than 1.5εk such elements violate this condition. Thus, at the end of the first iteration, at
most ((1 + ε) + 1.5)ε elements were chosen and |S| < 3εk.

In the following executions of the outer loop, there are no elements with marginal contribution
exceeding OPT

εk and the algorithm can be reduced to the original version in [7] on f where S is
chosen in the first iteration. Below, we show analogous properties but with slight adjustments.

Lemma 7. Let f : 2N → R be a submodular function. At the end of any inner iteration, t ≥
(1− ε) maxa fS(a).

Proof. At the end of the first iteration, X = ∅. So, for all a ∈ N , a was discarded from X
at some previous inner iteration with current solution S′ such that fS′∪{a1,...,ai∗}(a) < t and
S′ ∪ {a1, ..., ai∗} ⊆ S. Thus, by submodularity, fS(a) < t. That is, t ≥ (1 − ε) maxa fS(a)
and the property holds at this point.

We now show that this property is maintained through the algorithm when either S or t is updated:
First, since we only add elements to S, the property is unaffected by submodularity. Second, assume
we update t′ = (1− ε)t. By the same claim as in the first iteration, t ≥ (1− ε) maxa fS(a). Since
t′ = (1− ε)t, we get the desired result.

14



Lastly, we show that after the first iteration, each element added to the solution by the algorithm is a
stochastic greedy step.

Lemma 8. Let a1, ..., ak∗ be a random sequence during any iteration of the outer-loop except the
first. Then, for all i < i∗,

Eai [fS∪{a1,...,ai−1}(ai)] ≥ (1− ε)2 max
a

fS∪{a1,...,ai−1}(a)

Proof. Observe that

Eai [fS∪{a1,...,ai−1}(ai)] ≥ Pr
(
fS∪{a1,...,ai−1}(ai) ≥ t

)
·t =

|Xi−1|
|X|

·t ≥ (1−ε)2 max
a

fS∪{a1,...,ai−1}(a)

where the first inequality is by definition of expectation, and the second since i ≤ i? and by Lemma
7.

D.3 Proof of Theorem 3

Proof. By Lemma 8, GSAS behaves similarly to the STOCHASTIC GREEDY with noise distribution
Di where ζi = 0 and E [ξi] ≥ (1 − ε)2. The key differences of GSAS are (1) the initial threshold
may be too low and (2) the termination of the algorithm before k elements are selected.

We start by handling the first issue. Let S1 be the set of size m selected by GSAS in the first round,
and g(A) = f(S1 ∪ A) be the conditioned function, O be an optimal solution of the maximization
of g under cardinality constraint k −m and G be the solution returned by STOCHASTIC GREEDY
for g (under cardinality constraint k −m) with E[ξi] ≥ 1− 2ε and ζi = 0 for all i.

By Lemma 8 we have that E[g(S)] ≥ (1 − 2ε)g(G) and by Theorem 2, we have E[g(G)] ≥ (1 −
ε)g(O). Together, we get that

E[g(S)] ≥ (1− 3ε)g(O).

Since the greedy algorithm is optimal for gross substitutes functions and g is gross substitutes, we
have that g(O) is no less than value of any set of that size. In particular, this is true for the set
returned by the greedy algorithm on f with k −m cardinality constraint. That is, g(O) ≥ OPTk−m
where OPTk−m is the optimal value of f with cardinality constraint k −m. Combining the above
properties yield

E[g(S)] ≥ (1− 3ε)g(O) ≥ (1− 3ε)OPTk−m ≥ (1− 3ε)
k −m
k

OPT.

By Lemma 6, we have that m = 3εk and we get that S is a 1− 6ε approximation.

Next we handle the possibility that GSAS terminates with fewer than k items. Since GSAS termi-
nates after ∆ iterations with t < εOPT

k , we may not obtain k elements. However, we miss at most k
elements where each element contributes at most t to the solution set. Hence, there is a loss of at
most tk = εOPT of the total value. Thus, we get that GSAS gives a 1− 7ε approximation.

D.4 GSAS Obtains a 1− 1/e−O(ε) Approximation for Submodular Functions

Theorem 7. Given a monotone submodular function f : 2N → R and for any ε > 0, GSAS returns
a set S such that E[f(S)] ≥ (1− 1/e−O(ε))OPT approximation ratio usingO(log(n)/ε3) rounds.

Proof. Let set S1 be the set of size m selected by GSAS in the first round. Let g(A) = f(S1 ∪ A)
be a submodular function, A be the solution of size k −m for g returned by the greedy algorithm
and G be the solution of size k −m for g returned by STOCHASTIC GREEDY with E[ξi] ≥ 1 − 2ε
and ζi = 0 for all i. Let S be the result of GSAS.

By Theorem 8 we know that g(S) ≥ (1−2ε)g(G). By Theorem 2, we have E[g(G)] ≥ (1−ε)g(A).
Combining these together, we get E[g(S)] ≥ (1−O(ε))g(A).

By [22], we know that the greedy algorithm returns a 1−e−(1−ε) approximation to the optimal value
of g. By submodularity, we know that the returned value is at least as good as the greedy algorithm
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on f with k−m cardinality constraint by monotonicity of f . That is g(A) ≥ (1− e−(1−ε))OPTk−m
where OPTk−m is the optimal value of f with cardinality constraint k −m. Together,

E[g(S)] ≥ (1− 3ε)g(A) ≥ (1− 3ε)(1− e−(1−ε))OPTk−m ≥ (1− 3ε)(1− e−(1−ε))k −m
k

OPT

Setting m = 3εk as Lemma 6 suggests, we get a 1− 1/e−O(ε) approximation.

Finally, since GSAS terminates after ∆ iterations with t = OPT

εk , we may not reach a set of size k.
However, we miss at most k elements which contribute value at most tk. Thus, we get a 1− 1/e−
O(ε) approximation.

E Missing Proofs from Section 4

E.1 Warm-up: Hardness of Optimization in One Round

Before showing the two main lower bounds, we show that there is no 1-adaptive algorithm that
obtains a constant approximation for maximizing OXS functions when the queries are of sizeO(k).
At a high level, we construct a family of functions F where each function fP ∈ F is defined by
a partition P of the ground set of elements N . The central argument for the analysis is that an
algorithm cannot learn the partition P from one round of poly-many queries fP (S) and that the
algorithm needs to know P to find a solution S with high value fP (S).

The construction. We consider the family of partitions P where the n elements are partitioned
into three disjoint sets: the set G of good elements of size k = |G| = n

1
3 , the set B of bad elements

of size n
2
3 , and the set M of masking elements of size n− |G| − |B|. Formally:

P :=
{
P = (G,B,M) : |G| = n

1
3 , |B| = n

2
3 , |M | = n− |G| − |B|

}
.

We construct OXS functions fP which depend on a partition P ∈ P , so the hard family of OXS
functions isF1 = {fP : P ∈ P}.Given a partition P = (G,B,M), we define n

1
3 + nε

2 unit-demand
functions. Those are gi for i ∈ [n

1
3 ] and bi for i ∈ [n

ε

2 ] where
gi(S) = 1|S∩G|>0 and bi(S) = 1|S∩B|>0.

The function fP is then defined to be the OXS function over unit-demand functions gi, bi. Note that
fP (G) = n1/3, fP (B) = nε/2, and fP (M) = 0. We obtain the following lower bound for the
family of OXS functions F1.

Theorem 8. There is no 1-adaptive algorithm that obtains, with probability ω( 1
n ), an n−

1
3+ε ap-

proximation for maximizing OXS functions under a cardinality constraint when the queries are sets
of size O(k), for any constant ε > 0.

Proof. First, we show that for any constant c > 0, good and bad elements are separable with expo-
nentially small probability when using sample sizes smaller than ck. Since we take a sample of size
t ≤ ck, the probability for seeing more than d elements from either G or B is small:

Pr(|(G ∪B) ∩ S| > d) <

(
t

d

)(
|G ∪B|

n

)d
<

(
ck

d

)(
2n

2
3

n

)d
≤

(
2ecn

1
3n

2
3

nd

)d
=

(
2ec

d

)d
where the last inequality follows from

(
a
b

)
≤
(
ae
b

)b
where e is Euler’s number. By taking d = nε

2 ,
we get an exponentially small probability of |(G ∪ B) ∩ S| > d. Thus, the marginal value of good
or bad elements equals 1 based on the constructed OXS function.

At the end of the sampling stage, we can assume that gi and bi are indistinguishable with high
probability. Under this assumption, we can bound the probability for selecting more than d objects
from G Since the algorithm chooses up to k elements from G ∪B at random:

P (|G ∩ S| > d) <

(
k

d

)(
|G|
|G ∪B|

)d
<

(
n

1
3

d

)(
n

1
3

n
2
3

)d
< d−d
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By taking d = nε

2 for large enough n, we get an exponentially small probability for selecting more
than d elements fromG. So any algorithm selects w.h.p. at most n

ε

2 elements fromG and the rest are
from B and M which contribute at most n

ε

2 . Thus, we get that w.h.p. f(S) < nε. Since OPT = n
1
3

the claim holds.

E.2 Analysis for Hardness of Non-Adaptive Algorithms

The construction. We consider the family of partitions P that consists of all partitions P where
the n elements are partitioned into three disjoint sets as follows: set G of good elements of size
log3 n, set B of bad elements of size log6 n, and set M of masking elements of size n− |G| − |B|.
We construct OXS functions fP which depend on a partition P ∈ P , so the hard family of OXS
functions is F = {fP : P ∈ P}. Given a partition P , we define unit-demand functions function ui
for i ∈ [|G|+ |B|], vi for i ∈ [log n], and wi for i ∈ [log3 n], where

ui(S) = 1|S∩(G∪B)|>0, vi(S) = 2|S∩(G∪B)|>0, wi(S) = max
(
2|S∩G|>0,1|S∩M |>0

)
.

The function fP is then defined to be the OXS functions over unit-demand functions ui, vi, wi.

The analysis. We consider a uniformly random function fP ∈ F . The main lemma is that ele-
ments inG andB are indistinguishable from one round of queries over any (potentially non-feasible)
sets. The main observation to obtain the indistinguishability of G and B over large sets is that if set
S contains sufficiently many masking elementsM , then the marginal contribution of a good element
to S is 1 due to wi, which is equal to the marginal contribution of a bad element when S contains
sufficiently many elements form G ∪ B. If a set S contains no masking elements and at least log n
elements from G ∪ B, then good and bad elements have marginal contributions that are 2 and 1
respectively, which leads to the following.
Lemma 9. Consider any algorithm A and a uniformly random function fP ∈ Fr. For any set S,
fP (S) is independent of the partition of G ∪B into G and B with probability 1− n−ω(1).

Proof. We split the analysis into two parts.

For small sample sizes: If we take a sample of size t ≤ log3(n) the probability of seeing more
than log(n) elements from either G or B is super-polynomially small:

Pr(|(G ∪B) ∩ S| > log(n)) <

(
t

log(n)

)(
|G ∪B|

n

)log(n)

<

(
log3(n)

log(n)

)(
2 log6(n)

n

)log(n)

<

(
2 log9(n)

n

)log(n)

< n− log(log(n))

So w.h.p., the marginal contribution of good or bad elements is 2.

For large sample sizes: If we take a sample of size t ≥ log3(n), then the probability of seeing
less than log2(n) masking elements from set M is super-polynomially small:

Pr(|M ∩ S| < log2(n)) <

(
t

t− log2(n)

)(
|G ∪B|

n

)t−log2(n)

<

(
n

log2(n)

)(
log7(n)

n

) log3(n)
2

< nlog
2(n)

(
log7(n)

n

) log3(n)
2

= n−log
3(n)/2+log2(n)+7 log2(n) log(log(n))/2 < n− log(n).

where the first inequality follows from bounding the probability that at least t−log2(n) elements are
in G ∪ B and the last inequality holds for large n. When the number of masking elements exceeds
log2(n), gi and bi are indistinguishable.
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E.2.1 Proof of Theorem 4

Proof. From Lemma 9, we may assume that w.h.p. gi and bi are indistinguishable. Since the
algorithm may choose at most k elements from G ∪B at random, we can bound the probability for
selecting more than log(n) elements from G:

P (|G ∩ S| > log(n)) <

(
k

log(n)

)(
|G|
|G ∪B|

)log(n)

<

(
log2(n)

log(n)

)(
log3(n)

log6(n) + log3(n)

)log(n)

<

(
log5(n)

log6(n)

)log(n)

= log(n)− log(n) = n− log(log(n))

So, for any δ > 0 and large enough n, we get that with high probability f(S) ≤ log2(n) + 2 log(n)
and (2− δ)f(S) < OPT.

E.3 Analysis for Hardness of õ(log n) Rounds of Adaptivity

The construction. We consider the family of partitions P that consists of all partitions P such
that the n elements are partitioned into r+ 2 disjoint sets, where r = logn

4 log(logn) − 1, as follows: the

set G of good elements of size k = log4 n, sets Bi of bad elements of size log4(i+1) n for i ∈ [r],
and the remaining elements are dummy elements comprising set M .

We construct OXS functions fP which depend on a partition P ∈ P , so the hard family of OXS
functions is Fr = {fP : P ∈ P}. Given a partition P , we define log4 n + r log2 n unit-demand
functions function gi, for i ∈ [log4 n], and bi,j , for i ∈ [r] and j ∈ [log2 n], where

gi(S) = 1|S∩G|>0 and bj(S) = 1|S∩Bi|>0.

The function fP is then defined to be the OXS function over unit-demand functions gi, bi,j . Similar
to the previous construction, we note that the set G has high value fP (G) = log4 n while the sets
Bi have low value fP (Bi) = log2 n for all i ∈ [r]. We also note that for all i, |Bi| = log4 n|Bi−1|.

The analysis. We consider a uniformly random function fP ∈ Fr. The main lemma for this
construction is, informally, that the algorithm can learn at most one part Bi of the partition P per
round. More precisely, let Bi =

⋃
i′≤r−iBi′ . If the queries of the algorithms at round i are

chosen independently of the partition of Bi ∪G into B1, . . . , Br−i, G, then the algorithm may learn
Br−i, but cannot learn any information about the partition of Bi+1 ∪ G into B1, . . . , Br−(i+1), G.
Additionally, if the algorithm cannot distinguish elements in B1 and G, then, with high probability,
the algorithm returns a solution that is at best a 1/ log n approximation to fP (G).
Lemma 10. Consider a uniformly random function fP ∈ Fr. Let Bi =

⋃
i′≤r−iBi′ . For any col-

lection of poly(n) queries {Sj}j , each of size O(k), that are chosen independently of the partition
of Bi ∪ G into B1, . . . , Br−i, G, then, with probability smaller than 2− log2 n, for all Sj , the value
fP (Sj) is independent of the partition of Bi+1 ∪G into B1, . . . , Br−(i+1), G.

Proof. We show the claim by induction. Before the first round, we have no information. Assume we
cannot distinguish between any element inBi−1 andG. Any algorithm samples at most ck elements
from Bi ∪G at random. The number of elements chosen from Bi ∪G is bounded w.h.p.:

Pr
(
|(G ∪Bi) ∩ S| > log2(n)

)
<

(
t

log2(n)

)(
|G ∪Bi|
|G ∪Bi−1|

)log2(n)

<

(
ck

log2(n)

)(
1

log3(n)

)log2(n)

≤
(
c log4(n)

log5(n)

)log2(n)

< 2− log2(n)

Thus, w.h.p. the marginal contribution ofBi andG is equal to 1 so the sets are indistinguishable.

Lemma 11. Consider any algorithmA and a uniformly random function fP ∈ Fr. If for all queries
S byA, fP (S) is independent of the partition of B1 ∪G into B1 and G, the probability of returning
a set S such that fP (S) > fP (G)

logn is smaller than 2− log2 n.
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Proof. Since the algorithm may choose up to k elements fromG∪B at random and with probability
at least 1 − 2− log2(n), G and B are indistinguishable, we can bound the probability for selecting
more than d elements from G:

P (|G ∩ S| > d) <

(
k

d

)(
|G|
|G ∪B|

)d
<

(
log4(n)

d

)(
1

log3(n)

)d
<

(
log(n)

d

)−d
Setting d = log2(n), we get that at most log2(n) elements from G were selected. The contribution
of all the other elements is bounded by r log2(n) and thus, f(S) < log3(n). Since OPT = log4(n),
the claim holds.

The proof of Theorem 5 follows from combining both Lemma 10 and Lemma 11.

F Experimental Constructions

In this section, we discuss in detail the construction of synthetic graphs G3 and G4 and Twitter
graphs.

Synthetic bipartite graphs. We generate randomized bipartite graphs with m = 200 players and
n = 200 items, where the probability that an edge exists between a certain player and node is 0.25
for G3 and 0.75 for G4. This probability affects the number of neighbors the graph contains and the
overall graph density. We select 75% of players and items to be “bad” nodes and the remaining node
to be “good”. We then insert an additional 50 item nodes into the graph as “masking” nodes and
construct edges between these 50 nodes and 10 randomly chosen players and assign an edge weight
of 1 to these edges. For the remaining edges, we assign low weights (generated uniformly from 0
and 0.1) to edges that contain any “bad” node and high weights (generated uniformly from 0.9 and
1) to edges that connect two “good” nodes. The edge weights were generated so that 60% of nodes
had low weights and 40% of nodes had high weights.

Twitter graphs. For a particular hashtag, we first filter for 500 tweets that contain that particular
hashtag. We then use the NLP library RAKE to extract keywords from each tweet. We discard all
tweets with one or less keyword, to ensure the graph is of a certain density. For each keyword, we
then calculate the frequency of that word in the English corpus on the Zipf scale, where the frequency
is the base-10 logarithm of the number of times it appears per billion words. Scores generally fall
between 0 and 8. To assign weights to each edge, we multiply the number of keywords of a tweet
by the Zipf score of the keyword.

Number of rounds. For G1-G4 (k = 10 : 100 with leaps of 10) the number of rounds were: G1
Rounds = [18, 16, 14, 19, 17, 15, 20, 17, 15, 20] G2 Rounds = [3,3,4,5,6,7,8,9,16,16] G3 Rounds
= [4, 6, 7, 8, 9, 10, 11, 13, 14, 16] G4 Rounds = [4, 6, 7, 8, 9, 10, 11, 13, 14, 16]. For G5 − 8 the
number of rounds is approximately k with ε = 0.1 as seen in the plots by the quality of TRIMMED
GREEDY. Using ε = 0.3 reduces the number of rounds dramatically without harming the results, and
the plots are essentially identical up to Trimmed Greedy which now have the lowest performances.
For example, on data set G7 with k = 150 and ε = 0.1, GSAS uses 138 rounds while 42 rounds are
sufficient for ε = 0.3 with the same returned value.
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