
A List of Notations

Table 1: Notations and their meanings
Notation Meaning

C = {C1, C2, . . . , Cp} Classification problem with p class labels, Ck; (1≤ k ≤ p and 2≤ p)
I = {I1, I2, . . . , In} Testing instance, It; (1 ≤ t ≤ n)
rt = 〈R1

t , R
2
t , . . . , R

p
t 〉 Ground truth one-hot vector for It

D = {D1, D2, . . . , DT } Stream training dataset,Di; (1 ≤ i ≤ T)Di ⊆ Dj if i < j
L = {L1, L2, . . . , LT } Trained learners of a model forD, Li; (1 ≤ i ≤ T)

Ŷ = {Ŷ1, Ŷ2, . . . , ŶT } Prediction for I by L, Ŷi; (1 ≤ i ≤ T)
ξ = {SL1, SL2, . . . , SLm} Ensemble ofm component single learners, SLj ; (1 ≤ j ≤ m and 2 ≤ m)
ξ̃ = {S̃L1, S̃L2, . . . , S̃Lm} The copy of ξ, ensemble ofm component single learners, S̃Lj ; (1 ≤ j ≤ m and 2 ≤ m)
stj = 〈S1

tj , S
2
tj , . . . , S

p
tj〉 Prediction vector for It by SLj ;

∑p
k=1 S

k
tj = 1

s̃tj = 〈S̃1
tj , S̃

2
tj , . . . , S̃

p
tj〉 Prediction vector for It by S̃Lj ;

∑p
k=1 S̃

k
tj = 1

ot = 〈O1
t , O

2
t , . . . , O

p
t 〉 Centroid-point vector for It by ξ,Ok

t ; (1 ≤ k ≤ p)
õt = 〈Õ1

t , Õ
2
t , . . . , Õ

p
t 〉 Centroid-point vector for It by ξ̃, Õk

t ; (1 ≤ k ≤ p)
w = 〈W1,W2, . . . ,Wm〉 Weight vector for ξ,Wj ; (1 ≤ j ≤ m)
w̃ = 〈W̃1, W̃2, . . . , W̃m〉 Weight vector for ξ̃, W̃j ; (1 ≤ j ≤ m)
ζ = f(w, ξ) Combination learner for ξ and w
ζ̃ = f(w̃, ξ̃) Combination learner for ξ̃ and w̃

B Proof of Theorem 1

Proof. Based on Minkowski’s inequality for sums [2] with order 2:√√√√ p∑
k=1

(

m∑
j=1

θkj)2 ≤
m∑
j=1

√√√√ p∑
k=1

(θ
k
j)2 (8)

Letting θkj = Sktj − S̃ktj and substituting in Eq. 8√√√√ p∑
k=1

(

m∑
j=1

(Sktj − S̃ktj))2 ≤
m∑
j=1

√√√√ p∑
k=1

(Sktj − S̃ktj)2 (9)

Since m > 0, we have the following√√√√ p∑
k=1

(m
1

m

m∑
j=1

(Sktj − S̃ktj))2 ≤
m∑
j=1

√√√√ p∑
k=1

(Sktj − S̃ktj)2

⇒ m

√√√√ p∑
k=1

(
1

m

m∑
j=1

(Sktj − S̃ktj))2 ≤
m∑
j=1

√√√√ p∑
k=1

(Sktj − S̃ktj)2

⇒

√√√√ p∑
k=1

(
1

m

m∑
j=1

Sktj −
1

m

m∑
j=1

S̃ktj)
2 ≤ 1

m

m∑
j=1

√√√√ p∑
k=1

(Sktj − S̃ktj)2

Using Eq. 1 and 3, Eq. 4 can be proved.

C Proof of Theorem 2

Proof. Since ot is the centroid-vector of all otl vectors, assume ξl as an individual component learner
with prediction vector of otl, Eq. 5 holds for every ξl according to Theorem 1.

D Proof of Theorem 3 and 4

Consider the error of a prediction for a given instance t be represented as the Euclidean distance
between the prediction vector stj and ground truth vector rt, denoted as distance(stj , rt) =

1

√∑p
k=1(Sktj −Rkt)2, Bonab and Can [7] prove that

distance(ot, rt) ≤
1

m

m∑
j=1

distance(stj , rt) (10)

where a smaller distance means a smaller error. Similarly, for the prediction vector s̃tj , we have
distance(õt, rt) ≤ 1

m

∑m
j=1 distance(s̃tj , rt). Using Eq. 3, 10, and 2, we have the following

distance(ot, õt) + distance(ot, rt) + distance(õt, rt)

≤ 1

m

m∑
j=1

distance(stj , s̃tj) +
1

m

m∑
j=1

distance(stj , rt) +
1

m

m∑
j=1

distance(s̃tj , rt)

⇒ distance(ot, õt, rt) ≤
1

m

m∑
j=1

distance(stj , s̃tj , rt)

Eq. 6 can be proved. Similar to proof in C, Theorem 4 can be proved.

E Generalization of Theorem 1, 2 and Theorem 3, 4

Theorem 1, 2 and Theorem 3, 4 can be generalized to Minkowski distance with order q, q > 1. We
use Minkowski distance to represent the distance between stj and s̃tj , which is denoted as:

distance(stj , s̃tj) =

(
p∑
k=1

|Sktj − S̃ktj |q
) 1

q

(11)

where q = 2 is Euclidean distance.

Proof. By replacing order 2 with order q in B, we have p∑
k=1

| 1
m

m∑
j=1

Sktj −
1

m

m∑
j=1

S̃ktj |q
 1

q

≤ 1

m

m∑
j=1

(
p∑
k=1

|Sktj − S̃ktj |q
) 1

q

(12)

Using Eq. 11 and 3, Eq. 4 can be proved. Thus Theorem 1 still holds in this case, as well as Theorem 2
and Theorem 3, 4.

F Proof of Theorem 5

Proof. Let A and B be the subsets of I that are correctly predicted by ζ and ζ̃. Then accζ = |A|
n ,

accζ̃ = |B|
n , and ccon(ζ, ζ̃) = |A∩B|

n . Since |A| + |B| − |A ∩ B| = |A ∪ B| ≤ n, we have
|A|
n + |B|

n − 1 ≤ |A∩B|n , i.e. (accζ + accζ̃)− 1 ≤ ccon(ζ, ζ̃). And we always have 0 ≤ ccon(ζ, ζ̃).
So we prove the left inequality. Now notice that |A ∩B| ≤ |A| and |A ∩B| ≤ |B|, we also prove
the right inequality.

G Proof of Corollary 5.1

To be consistent with accuracy definition, we denote the correctness of stj for instance t as
sim(stj , rt) = (

√
2 − distance(stj , rt))/

√
2 where sim(stj , rt) is in the range [0, 1] and

distance(stj , rt) is in range [0,
√

2],
√

2 is the largest Euclidean distance in the probability
simplex. Given a test dataset I , the correctness of a learner SLj on I can be denoted as

2

corrSLj = 1
n

∑n
t=1 sim(stj , rt). Based on 10, we have the following:

1

n

n∑
t=1

1

m

m∑
j=1

sim(stj , rt) ≤
1

n

n∑
t=1

sim(ot, rt)

⇒ 1

m

m∑
j=1

(
1

n

n∑
t=1

sim(stj , rt)) ≤
1

n

n∑
t=1

sim(ot, rt)

Thus,
1

m

m∑
j=1

corrSLj ≤ corrζ (13)

where (0 ≤ corr ≤ 1) and a larger corr means a better correctness. Here, stj and ot are p-dimension
vectors which could be a one-hot vector or not.

According to accuracy definition in our paper, accSLj
= 1
n

∑n
t=1 11SLj ,r

(t), accζ = 1
n

∑n
t=1 11ζ,r(t)

where 11SLj ,r
(t) and 11ζ,r(t) are defined in 17. There is a discrepancy between corrζ and accζ as the

latter one converts the predicted vector ot to one-hot vector by using argmax(ot). Thus, Eq. 13 is
not equivalent to

1

m

m∑
j=1

accSLj
≤ accζ (14)

However, assuming stj is a one-hot vector, then 1
m

∑m
j=1 corrSLj

= 1
m

∑m
j=1 accSLJ

. If we can
prove that corrζ ≤ accζ is true with some conditions, then Eq. 14 is true.

Let argmax(rt) = gt, gt ∈ {1, . . . , p} denote the label of instance It, given ζ and It, the probability
P (y = gt|ζ, It) = Ogtt . For I , (i) if for ∀It ∈ I that argmax(ot) = gt is true (the probability
is
∏n
t=1O

gt
t) , then corrζ ≤ accζ = 1 is true with probability η =

∏n
t=1O

gt
t , 0 ≤ η ≤ 1;

(ii) else if for ∀It ∈ I that argmax(ot) 6= gt is true (the probability is
∏n
t=1(1 − Ogtt)) , then

0 = accζ ≤ corrζ is true with probability η̄ =
∏n
t=1(1 − Ogtt), 0 ≤ η̄ ≤ 1; (iii) otherwise, if

∃It ∈ I that argmax(ot) = gt is true (the probability is 1− η − η̄), then corrζ ≤ accζ is true with
probability ε (0 ≤ ε ≤ 1− η − η̄) which is not quantified in this work. According to (i) and (iii), we
can say that corrζ ≤ accζ is true with probability η + ε, denoted as ι.

Claim 3.1.1. Assuming stj (t ∈ {1, . . . , n}, j ∈ {1, . . . ,m}) is a one-hot vector, Eq. 14 is true with
probability ι, and at least with probability η. Note that ι can empirically be estimated as accζ .

The above proof shows that a better accuracy of an ensemble can be achieved by combining compo-
nents with accuracy that is at least equal to the average accuracy of individual components (i.e. increas-
ing the lower bound of 14). Based on this, let a = 1

m−1
∑
SLi∈ξl accSLi

, a+ = 1
m

∑m
j=1 accSLj

,
then according to Eq. 14, we have a ≤ accζl ≤ 1 and a+ ≤ accζ ≤ 1.

Claim 3.1.2. Assuming that accζl and accζ are uniformly distributed, if a ≤ accSLl
, then a ≤ a+.

Then we have accζl ≤ accζ with probability ε = a+−a
1−a + 1

2 ∗
1−a+
1−a .

Claim 3.1.1 and 3.1.2 also hold for accζ̃ and accζ̃l with probability η̃ and ε̃ calculated using corre-
sponding items. We omit the calculation for brevity.

According to Theorem 5, let b+ = max(accζ + accζ̃ − 1, 0), c+ = min(accζ , accζ̃), b =

max(accζl + accζ̃l − 1, 0), and c = min(accζl , accζ̃l), then we have

b ≤ ccon(ζl, ζ̃l) ≤ c
and

b+ ≤ ccon(ζ, ζ̃) ≤ c+

If accζl ≤ accζ , then b ≤ b+ and c ≤ c+. Assuming that ccon(ζ, ζ̃) and ccon(ζl, ζ̃l) are uniformly
distributed, we have the following:

(1) If c ≤ b+, then ccon(ζl, ζ̃l) ≤ ccon(ζ, ζ̃) with probability 1
2 ;

3

(2) Otherwise, if ccon(ζ, ζ̃) is between [b, b+] or ccon(ζl, ζ̃l) is between [c, c+], then ccon(ζl, ζ̃l) ≤
ccon(ζ, ζ̃) with probability 1

2 ∗ (b
+−b
c−b + c+−c

c+−b+); or if ccon(ζ, ζ̃) is between [b+, c] and ccon(ζl, ζ̃l)

is between [b+, c], then ccon(ζl, ζ̃l) ≤ ccon(ζ, ζ̃) with probability 1
2 ∗

1
2 ∗ (c−b

+

c−b ∗
c−b+
c+−b+).

Claim 3.1.3. If accζl ≤ accζ , then ccon(ζl, ζ̃l) < ccon(ζ, ζ̃) with probability υ = 1
2 + 1

2 ∗ (b
+−b
c−b +

c+−c
c+−b+) + 1

2 ∗
1
2 ∗ (c−b

+

c−b ∗
c−b+
c+−b+).

According to Claim 3.1.1 and 3.1.2 and 3.1.3, we prove Corollary 5.1 at least with the probability
ρ = ηη̃εε̃υ. Note that ρ provides a lower bound of the probability that Corollary 5.1 is true.

H Metrics

In this section, we define multiple metrics for consistency, accuracy, and correct-consistency in
detail. Consider two learners A and B, the prediction vectors of A,B for a data point It are denoted
as yAt and yBt . Here A,B could be any single learner or ensemble learner, and yAt , yBt could be a
single prediction or a combined prediction for It with true label rt. We define indicator functions
1A,B,r(·),1kA,B(·), and 1kA,r(·) as:

1A,B,r(t)=

1, if argmax(yAt) = argmax(yBt) = argmax(rt)

0, otherwise
(15)

where argmax(·) returns the index of max value in a list, which indicates the class label.

1kA,B(t)=

1, if ∃ 0 ≤ i, j ≤ k that argmaxi(yAt) = argmaxj(y
B
t)

0, otherwise
(16)

1kA,r(t)=

1, if ∃ 0 ≤ i ≤ k that argmaxi(yAt) = argmax(rt)

0, otherwise
(17)

where argmaxi(·) returns the index of the i-th max value in a list.

Based on the above definitions, for a testing data set I , the metrics used to evaluate consistency,
accuracy, correct-consistency are computed as:

• Consistency (CON):
1

n

n∑
t=1

11A,B(t) (18)

• Accuracy (ACC):
1

n

n∑
t=1

11A,r(t) (19)

• Correct-Consistency (ACC-CON):

1

n

n∑
t=1

1A,B,r(t) (20)

• Coarse-consistency (CCON-K), also called TopK-consistency:

1

n

n∑
t=1

1kA,B(t) (21)

• Coarse-accuracy (CACC-K), also called TopK-accuracy:

1

n

n∑
t=1

1kA,r(t) (22)

4

• Pearson’s r coefficient (Pearson). Computing the similarity between two vectors.

1

n

n∑
t=1

∑
(yAt − ȳAt)(yBt − ȳBt)√∑

(yAt − ȳAt)2
√∑

(yBt − ȳBt)2
(23)

where ȳAt is the average value of all elements in yAt .
• Cosine similarity (Cosine). Computing the cosine similarity between two vectors.

1

n

n∑
t=1

∑
yAt y

B
t√∑

(yAt)2
√∑

(yBt)2
(24)

where
∑
yAt y

B
t denotes the summation of the element-wise products.

I Experiment design

Fig. 2 shows the metrics computation in our experiments. The accuracy (ACC) reported in this
paper is the average of three individual accuracy on D1, D2, D3, while the consistency (CON) and
correct-consistency (ACC-CON) are the average of three values computed from any two of D1, D2,
D3. We have created a git repository for this work and will be posted upon the acceptance and
publication of this work.

Figure 1: Metrics computation in the experiments.

J Dataset Design

To simulate the online training environment, given a dataset we generate three class imbalanced
training datasets D1, D2, D3, where D1 ⊆ D2 ⊆ D3. The testing set I is independent of training
data and covers the minimum number of classes in any of the three training sets. The validation set is
sampled from Di and has the same sample size and class distribution as I . Each class imbalanced
training dataset is generated by randomly varying the number of samples for each class. For each
class, a percentage is manually specified to create the imbalanced class distribution. Take CIFAR10
as an example, we specify a percentage value for each class, i.e. P = {1, 0.9, 0.8, 0.95, 0.45, 0.3,
0.4, 0.1, 0.85, 0.75}. The original training dataset is used to generate three sub-datasets - T1, T2, T3,
where T1 has 9 classes (horse excluded in our experiments) and 6000 ∗ Pi ∗ 0.8 images per class, T2
has 9 classes and 6000 ∗ Pi ∗ 1.0 images per class, T3 has 10 classes and 6000 ∗ Pi ∗ 1.0 images per
class. It should be noted that the validation and testing datasets are from the original testing dataset
before extraction of the above-mentioned training data sub-sets. The validation and testing datasets
have 9 classes and 500 images per class. Training dataset T1 and validation dataset together constitute
D1. During model training procedure, we sample validation dataset from D1 without changing the
class distribution. Similar processes for D2 and D3 are followed. All the scripts to reproduce the
imbalanced datasets and the proposed method in our experiments will be posted upon the acceptance
and publication of this work.

5

K Additional metric results

In this section, we present additional results for metrics defined in H in Table 4, i.e. CCON-2, Pearson,
Cosine, CACC-2. Only AVG and WAVG are evaluated because MV and WMV are one-hot encoding
predicted vectors. From the results we can derive the same conclusion as described in Section 6.

Table 2: Additional consistency and accuracy results.
CIFAR10 CIFAR100 YAHOO!Answers
ResNet20 ResNet56 fastText

CCON-2(%) AVG WAVG AVG WAVG AVG WAVG
SingleBase 98.55 98.55 88.30 88.30 99.45 99.45
ExtBagging 99.68 99.68 98.11 98.11 99.80 99.80
MCDropout 98.52 98.52 87.72 87.72 98.94 98.94
Snapshot 99.31 99.33 93.93 93.88 99.81 99.81
DynSnap-cyc 99.81 99.81 97.92 97.93 99.83 99.83
DynSnap-step 99.71 99.71 96.63 96.63 99.83 99.83
Pearson AVG WAVG AVG WAVG AVG WAVG
SingleBase 0.89 0.89 0.75 0.75 0.96 0.96
ExtBagging 0.97 0.97 0.94 0.94 0.99 0.99
MCDropout 0.89 0.89 0.77 0.77 0.94 0.94
Snapshot 0.94 0.94 0.86 0.86 0.97 0.97
DynSnap-cyc 0.97 0.97 0.94 0.94 0.97 0.97
DynSnap-step 0.96 0.96 0.91 0.91 0.98 0.98
Cosine AVG WAVG AVG WAVG AVG WAVG
SingleBase 0.89 0.89 0.75 0.75 0.96 0.96
ExtBagging 0.97 0.97 0.94 0.94 0.99 0.99
MCDropout 0.89 0.89 0.77 0.77 0.94 0.94
Snapshot 0.94 0.94 0.86 0.86 0.97 0.97
DynSnap-cyc 0.97 0.97 0.94 0.94 0.97 0.97
DynSnap-step 0.97 0.97 0.92 0.92 0.98 0.98
CACC-2(%) AVG WAVG AVG WAVG AVG WAVG
SingleBase 94.62 94.62 79.61 79.61 75.89 75.89
ExtBagging 96.59 96.59 85.74 85.74 78.16 78.16
MCDropout 94.48 94.48 78.96 78.96 76.69 76.69
Snapshot 95.53 95.53 83.45 83.47 76.93 76.93
DynSnap-cyc 96.30 96.31 85.61 85.60 77.44 77.44
DynSnap-step 96.23 96.23 84.94 84.94 77.37 77.37

L Additional results

Although the metrics introduced above consider the percentage of agreement in predictions and
correct predictions between two models, they do not reflect upon the accuracy and percentage of
correct to incorrect and incorrect to correct predictions. In general, we want more incorrect to correct
(ItoC) and correct to correct (CtoC) but less correct to incorrect (CtoI) scenarios, hence we compute
Com=CtoC+ItoC-CtoI as an additional metric. We show these additional results in Table 5. The
observations are consistent with findings in the main paper.

Table 3: (WAVG) Percentage of CtoI, ItoC and Com predictions for D1 → D2, D2 → D3 and D1 → D3.
D1 → D2 D2 → D3 D1 → D3

ItoC CtoI Com ItoC CtoI Com ItoC CtoI Com
CIFAR10+ResNet20

SingleBase 6.60 5.38 80.79 7.08 6.83 79.59 5.74 4.27 82.15
ExtBagging 3.11 2.13 87.13 4.40 3.80 86.07 3.13 1.56 88.31
MCDropout 6.69 5.20 80.67 7.29 7.16 78.84 5.78 4.16 81.84
Snapshot 4.89 3.11 84.98 5.89 5.38 83.22 3.91 1.62 86.98
DynSnap-cyc 2.84 2.11 86.36 4.47 3.71 85.51 2.78 1.29 87.93
DynSnap-step 3.09 2.47 86.38 4.36 3.64 85.91 3.47 2.13 87.42

CIFAR100+ResNet56
SingleBase 11.18 8.80 59.56 9.36 9.26 59.19 11.32 8.86 59.60
ExtBagging 6.57 4.42 70.65 4.87 4.71 70.53 6.81 4.51 70.73
MCDropout 10.02 9.35 58.08 10.00 9.21 59.01 10.69 9.23 58.99
Snapshot 8.46 5.92 67.66 6.32 5.64 68.63 8.91 5.68 68.59
DynSnap-cyc 5.74 3.35 73.19 3.58 3.90 72.32 5.60 3.54 72.69
DynSnap-step 6.44 5.92 68.14 5.62 4.93 69.82 5.98 4.77 69.98

YAHOO!Answers+fastText
SingleBase 2.32 2.15 60.83 5.07 2.75 62.56 5.14 2.65 62.65
ExtBagging 1.72 1.82 61.54 4.43 2.29 63.21 4.65 2.61 62.88
MCDropout 2.84 1.65 62.00 7.88 5.25 61.04 7.70 3.88 62.41
Snapshot 2.05 1.78 62.07 3.35 1.56 64.07 4.48 2.42 63.21
DynSnap-cyc 1.38 1.05 63.47 3.46 1.67 64.63 4.08 1.97 64.34
DynSnap-step 1.77 1.28 63.23 3.52 1.71 64.62 4.29 1.99 64.34

6

M Sensitivity analysis settings

Ensemble size m. We set m as [1, 5, 10 20, 40, 80] with β = β∗, N = 10, T/N = 20. Prune
factor β. The prune factor β varies from 0.0 to 1.0 with m = 20, N = 10, T/N = 20. Number of
snapshots N . We vary snapshot number N as [1, 5, 10, 20, 40] while set m = N, β = 1, T/N = 20.
We keep the window size as 20, and expand the training epochs to get more snapshot trained learners.
Snapshot window size T/N . We set N = 10,m = 20, β = 1 but vary snapshot window size T/N
by varying epoch number T .

N Ablation study

We conduct ablation study on the effect of (1) learning rate schedule and (2) random shuffle of training
datasets and model parameter initialization. Figure 3 show the performance on CIFAR100+ResNet56
with AVG combination. The no-lrschedule method is without learning rate schedule and considers
top-N snapshot with rest of the model settings same as DynSnap-step. For no-random method, we set
m = 20, N = 40, T/N = 20, and use top-N snapshot. From the results we observe that random
shuffle of training and validation datasets has great impact on model performance. The method with
random shuffle has better performance than no-random on three metrics. The results also show that
cyclic cosine schedule is beneficial for model performance across the three metrics.

(a) ACC (b) CON (c) ACC-CON

Figure 2: Ablation study on the effect of (1) learning rate schedule and (2) random shuffle of training
datasets and model parameter initialization using CIFAR100+ResNet56 with AVG combination.

7

	Introduction
	Related work
	Problem definition
	Why ensemble?
	Dynamic snapshot ensemble method
	Experimental results and analysis
	Conclusion and future work
	List of Notations
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3 and 4
	Generalization of Theorem 1, 2 and Theorem 3, 4
	Proof of Theorem 5
	Proof of Corollary 5.1
	Metrics
	Experiment design
	Dataset Design
	Additional metric results
	Additional results
	Sensitivity analysis settings
	Ablation study

