Appendix

A Proof for Proposition 1

We restate the proposition 1 and its proof here.

Proposition 2. Given the probabilistic logical operators \mathcal{I} and \mathcal{N} defined in Sec. 4.2, BETAE has the following properties:

- 1. Given Beta embedding **S**, **S** is a fixed point of $\mathcal{N} \circ \mathcal{N}$: $\mathcal{N}(\mathcal{N}(\mathbf{S})) = \mathbf{S}$.
- 2. Given Beta embedding \mathbf{S} , we have $\mathcal{I}({\mathbf{S}, \mathbf{S}, \dots, \mathbf{S}}) = \mathbf{S}$.

Proof. For the first property, the probabilistic negation operator \mathcal{N} takes the reciprocal of the parameters of the input Beta embeddings. If we apply \mathcal{N} twice, it naturally equals the input Beta embeddings. For the second property, the probabilistic intersection operator \mathcal{I} takes the weighted product of the PDFs of the input Beta embeddings, and according to Eq. 4, the parameters of the output Beta embeddings are linear interpolation of the parameters of the input Beta embeddings. Then we naturally have $\mathbf{S} = \mathcal{I}(\{\mathbf{S}, \dots, \mathbf{S}\})$.

B Computation Complexity of DM and DNF

Here we discuss the computation complexity of representing any given FOL query using the De Morgan's laws (DM) and the disjunctive normal form (DNF). Given a FOL query q, representing q with DNF may in the worst case creates exponential number of atomic formulas. For example, transforming a valid FOL query $(q_{11} \lor q_{12}) \land (q_{21} \lor q_{22}) \cdots \land (q_{n1} \lor q_{n2})$ leads to exponential explosion, resulting in a query with 2^n number of formulas in the DNF. For DM, since we could always represent a disjunction operation with three negation operation and one conjunction operation: $q_1 \lor q_2 = \neg(\neg q_1 \land \neg q_2)$, which is a constant. Hence, the DM modeling only scales linearly.

C Query Generation and Statistics

Generation of EPFO (with \exists , \lor and \land) **Queries:** Following [10], we generate the 9 EPFO query structures in a similar manner. Given the three KGs, and its training/validation/test edge splits, which is shown in Table 5, we first create \mathcal{G}_{train} , \mathcal{G}_{valid} , \mathcal{G}_{test} as discussed in Sec. 5.1. Then for each query structure, we use pre-order traversal starting from the target node/answer to assign an entity/relation to each node/edge iteratively until we instantiate every anchor nodes (the root of the query structure). After the instantiation of a query, we could perform post-order traversal to achieve the answers of this query. And for validation/test queries, we explicitly filter out ones that do not exist non-trivial answers, *i.e.*, they can be fully answered in $\mathcal{G}_{train}/\mathcal{G}_{valid}$. Different from the dataset in [10], where the maximum number of test queries may exceed 5,000, we set a bar for the number of answers one query has, and additionally filter out unrealistic queries with more than 100 answers. We list the average number of answers the new test queries have in Table 6 and the number of training/validation/test queries in Table 7.

Dataset	Entities	Relations	Training Edges	Validation Edges	Test Edges	Total Edges
FB15k	14,951	1,345	483,142	50,000	59,071	592,213
FB15k-237	14,505	237	272,115	17,526	20,438	310,079
NELL995	63,361	200	114,213	14,324	14,267	142,804

Table 5: Knowledge graph dataset statistics as well as training, validation and test edge splits.

Dataset	1p	2p	3 p	2i	3i	ip	pi	2u	up	2in	3in	inp	pin	pni
FB15k	1.7	19.6	24.4	8.0	5.2	18.3	12.5	18.9	23.8	15.9	14.6	19.8	21.6	16.9
FB15k-237	1.7	17.3	24.3	6.9	4.5	17.7	10.4	19.6	24.3	16.3	13.4	19.5	21.7	18.2
NELL995	1.6	14.9	17.5	5.7	6.0	17.4	11.9	14.9	19.0	12.9	11.1	12.9	16.0	13.0

Table 6: Average number of answers of test queries in our new dataset.

Queries	Tr	aining	Valid	ation	Test		
Dataset	1p/2p/3p/2i/3i	2in/3in/inp/pin/pni	1p	others	1p	others	
FB15k	273,710	27,371	59,097	8,000	67,016	8,000	
FB15k-237	149,689	14,968	20,101	5,000	22,812	5,000	
NELL995	107,982	10,798	16,927	4,000	17,034	4,000	

Table 7: Number of training, validation, and test queries generated for different query structures.

Generation of Queries with Negation: For the additional queries with negation, we derive 5 new query structures from the 9 EPFO structures. Specifically, as shown in Fig. 3, we only consider query structures with intersection for the derivation of queries with negation. The reason is that queries with negation are only realistic if we take negation with an intersection together. Consider the following example, where negation is not taken with intersection, "*List all the entities on KG that is not European countries.*", then both "*apple*" and "*computer*" will be the answers. However, realistic queries will be like "*List all the countries on KG that is not European countries.*", which requires an intersection operation. In this regard, We modify one edge of the intersection to further incorporate negation, thus we derive 2in from 2i, 3in from 3i, inp from ip, pin and pni from pi. Note that following the 9 EPFO structures, we also enforce that all queries with negation have at most 100 answers.

D Experimental Details

We implement our code using Pytorch. We use the implementation of the two baselines GQE [9] and Q2B [10] in https://github.com/hyren/query2box. We finetune the hyperparameters for the three methods including number of embedding dimensions from $\{200, 400, 800\}$ and the learning rate from $\{1e^{-4}, 5e^{-3}, 1e^{-3}\}$, batch size from $\{128, 256, 512\}$, and the negative sample size from $\{32, 64, 128\}$, the margin γ from $\{20, 30, 40, 50, 60, 70\}$. We list the hyperparameters of each model in the Table 8. Additionally, for our BETAE, we finetune the structure of the probabilistic projection operator MLP_r and the attention module MLP_{Att}. For both modules, we implement a three-layer MLP with 512 latent dimension and ReLU activation.

	embedding dim	learning rate	batch size	negative sample size	margin
GQE	800	0.0005	512	128	30
Q2B	400	0.0005	512	128	30
BETAE	400	0.0005	512	128	60

	Table 8:	Hyperparameters	used for	each method.
--	----------	-----------------	----------	--------------

Each single experiment is run on a single NVIDIA GeForce RTX 2080 TI GPU, and we run each method for 300k iterations.

E Additional Experimental Results

Here we list some additional experimental results.

We show in Table 1 the MRR results of the three methods on answering EPFO queries. Our methods show a significant improvement over the two baselines in all three datasets.

We show in Table 10 the MRR results of the three methods on answering EPFO queries in the dataset proposed in [10], where the queries may have more than 5,000 answers. Our method is still better than the two baselines.

We show in Table 11 the Pearson correlation coefficient between the learned embedding and the number of answers of queries. Our method is better than the baseline Q2B in measuring the uncertainty of the queries.

Dataset	Model	1n	2n	3р	2i	3i	ni	in	21	u	up		avg
Dataset	WIGuei	1p	2р	Sp	21	51	pi	ip	DNF	DM	DNF	DM	avg
	BetaE	52.0	17.0	16.9	43.5	55.3	32.3	19.3	28.1	17.0	16.9	17.4	31.3
FB15k	Q2B	52.0	12.7	7.8	40.5	53.4	26.7	16.7	22.0	-	9.4	-	26.8
	GQE	34.2	8.3	5.0	23.8	34.9	15.5	11.2	11.5	-	5.6	-	16.6
	BetaE	28.9	5.5	4.9	18.3	31.7	14.0	6.7	6.3	6.1	4.6	4.8	13.4
FB15k-237	Q2B	28.3	4.1	3.0	17.5	29.5	12.3	7.1	5.2	-	3.3	-	12.3
	GQE	22.4	2.8	2.1	11.7	20.9	8.4	5.7	3.3	-	2.1	-	8.8
	BetaE	43.5	8.1	7.0	27.2	36.5	17.4	9.3	6.9	6.0	4.7	4.7	17.8
NELL995	Q2B	23.8	8.7	6.9	20.3	31.5	14.3	10.7	5.0	-	6.0	-	14.1
	GQE	15.4	6.7	5.0	14.3	20.4	10.6	9.0	2.9	-	5.0	-	9.9

Table 9: H@1 results (%) of BETAE, Q2B and GQE on answering EPFO (\exists, \land, \lor) queries.

Dataset	Model	1p	2p	3 p	2i	3i	pi	ip	2u	up	avg
	BetaE	65.0	42.1	37.8	52.9	64.0	41.5	22.9	48.8	26.9	44.6
FB15k	Q2B	67.1	38.0	27.5	49.2	62.8	36.2	19.2	49.0	28.9	42.0
	GQE	54.6	30.5	22.2	37.7	48.4	24.8	14.7	33.8	24.7	32.4
	BetaE	39.1	24.2	20.4	28.1	39.2	19.4	10.6	22.0	17.0	24.4
FB15k-237	Q2в	40.3	22.8	17.5	27.5	37.9	18.5	10.5	20.5	17.4	23.6
	GQE	35.0	19.0	14.4	22.0	31.2	14.6	8.8	15.0	14.6	19.4
	BetaE	53.0	27.5	28.1	32.9	45.1	21.8	10.4	38.6	19.6	30.7
NELL995	Q2в	41.8	22.9	20.8	28.6	41.2	19.9	12.3	26.9	15.5	25.5
	GQE	32.8	19.3	17.9	23.1	31.9	16.2	10.3	17.3	13.1	20.2

Table 10: MRR results (%) on queries from [10], where we show that we are also able to achieve higher performance than baselines Q2B and GQE on all three KGs.

Dataset	Model	1p	2p	3р	2i	3i	pi	ip	2in	3in	inp	pin	pni
FB15k	Q2B	0.075	0.217	0.258	0.285	0.226	0.245	0.133	-	-	-	-	-
FBISK	BetaE	0.216	0.357	0.383	0.386	0.299	0.311	0.312	0.438	0.413	0.343	0.360	0.442
FB15k-237	Q2B	0.017	0.194	0.261	0.366	0.488	0.335	0.197	-	-	-	-	-
FB13K-237	BetaE	0.225	0.365	0.450	0.362	0.307	0.319	0.332	0.464	0.409	0.390	0.361	0.484
NELL995	Q2B	0.068	0.211	0.306	0.362	0.287	0.240	0.338	-	-	-	-	-
INELL993	BetaE	0.236	0.403	0.433	0.404	0.385	0.403	0.403	0.515	0.514	0.255	0.354	0.455

Table 11: Pearson correlation coefficient between learned embedding (differential entropy for BETAE, box size for Q2B) and the number of answers of queries (grouped by different query type). Ours achieve higher correlation coefficient.