
A Supplementary Material

A.1 Proof

Theorem 1. Assuming a family G of functions g : X ×T 7→ R, l(X,T) = L(f(X,T),y(X,T)) ∈
G and overlap assumption is satisfied, formally, p(T|X) > 0,∀T ∈ T ,X ∈ X , we have:

Ecf ≤ Ewf + IPMG(WT (X,T)p(X,T), p(X)p(T)). (1)

More specifically, IPMG = 0 and Ecf = Ewf , when WT (X,T) = p(T)/p(T|X).

Proof. The inequality is equivalent to

Ecf − Ewf =

∫
X

∫
T

(p(X)p(T)−WT (X,T)p(X,T))L(f(X,T),y(X,T))dXdT

≤
∣∣∣∣∫

X

∫
T

(p(X)p(T)−WT (X,T)p(X,T))L(f(X,T),y(X,T))dXdT

∣∣∣∣
≤ sup

g∈G

∣∣∣∣∫
X

∫
T

(p(X)p(T)−WT (X,T)p(X,T))g(X,T)dXdT

∣∣∣∣
= IPMG(WT (X,T)p(X,T), p(X)p(T)).

When WT (X,T) = p(T)/p(T|X),

IPMG(WT (X,T)p(X,T), p(X)p(T))

= sup
g∈G

∣∣∣∣∫
X

∫
T

(
p(T)

p(T|X)
p(X,T)− p(X)p(T)

)
g(X,T)dXdT

∣∣∣∣
= sup
g∈G

∣∣∣∣∫
X

∫
T

(
p(T)p(X)

p(X,T)
p(X,T)− p(X)p(T)

)
g(X,T)dXdT

∣∣∣∣
= 0

Ewf =

∫
X

∫
T

p(T)

p(T|X)
p(X,T)L(f(X,T),y(X,T))dXdT

=

∫
X

∫
T

p(T)p(X)

p(X,T)
p(X,T)L(f(X,T),y(X,T))dXdT

=

∫
X

∫
T

p(T)p(X)L(f(X,T),y(X,T))dXdT

= Ecf

Theorem 2. Defining θ̂wp = arg minθp
1
n

∑n
i=1 wi · L(fθp(xi, ti), yi), counterfactual prediction

error for model parameters θp as Ecf (θp) = EX∼p(X)[ET∼p(T)[L(fθp(X,T),y(X,T))]] and as-
suming the error function L(fθp(X,T),y) is twice-differentiable and strictly convex on θp, then

Ecf (θ̂w
d

p ) = inf
w
Ecf (θ̂wp ), (2)

where wd = {p(ti)/p(ti|xi)}ni=1. This means wd is one of the optimal sample weights that induce
lowest counterfactual prediction error by minimizing prediction error on the re-weighted dataset.

Proof. We define Ecf (θ̂w
∗

p ) = infw Ecf (θ̂wp ), L(X,T, θp) = L(fθp(X,T),Y(X,T)) and θ̂εjp =

arg minθp
1
n

∑n
i=1 w

∗
i · L(xi, ti, θp) + εj · L(xj , tj , θp). It is obviously that

∂Ecf (θ̂
εj
p )

∂εj

∣∣∣
εj=0

= 0, 1 ≤ j ≤ n (3)
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Synthetic experiments Real world experiments
Hidden units of layer for confounders 10 4
Hidden units of layer for treatments 5 5
Number of hidden layers in MLP 1 1

Hidden units of MLP 10 10
Initial learning rate of prediction networks 0.01 0.01
Learning rate decay of prediction networks 0.98 0.95
Epoch interval for each learning rate decay 5 10

Epochs for training prediction networks 500 100
Number of hidden layers in classifer 2 2

Hidden units of classifer 10 10
Learning rate of classifer 0.01 0.01

Epochs for training classifer 200 200

Table 1: The hyper-parameters in experiments.

According to results in [6, 7], we have

∂Ecf (θ̂
εj
p )

∂εj

∣∣∣
εj=0

= −EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )]H−1
θ̂w∗p
∇θpL(xj , tj , θ̂

w∗

p ) = 0, 1 ≤ j ≤ n

(4)
where Hθ̂w∗p

= 1
n

∑n
i=1∇2

θp
L(xi, ti, θ̂

w∗

p ) is the Hessian matrix and positive definite (PD) when the
risk is twice-differentiable and strictly convex on θp. Therefore,

0 = −EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )]H−1
θ̂w∗p

n∑
j=1

wdj∇θpL(xj , tj , θ̂
w∗

p )

≈ −EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )]H−1
θ̂w∗p

EX,T∼p(X,T)[
p(T)

p(T|X)
∇θpL(X,T, θ̂w

∗

p )]

= −EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )]H−1
θ̂w∗p

EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )]

Since H−1
θ̂w∗p

is positive definite, EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
∗

p )] = 0. Because L(X,T, θp) is

strictly convex on θp and EX∼p(X),T∼p(T)[∇θpL(X,T, θ̂w
d

p )] ≈
∑n
j=1 w

d
j∇θpL(xj , tj , θ̂

wd

p ) = 0,

it is proved that θ̂w
d

p = θ̂w
∗

p .

A.2 Experiment details

The pseudo-code of VSR algorithm can be found in Algorithm 1.

The classifier for density ratio estimation is based on deep neural networks. Since excessively large
neural networks may overfit the data points and produce extreme sample weights, we searched the
number of hidden layers among 1 and 2, and the hidden units of each layer among 5 and 10 by grid
searching.

Our algorithm and baselines are based on the identical outcome prediction network architecture. For
fair comparasion, we ensure that the network complexity and the training process is identical for
each method in the same experiment. Specifically, in the prediction networks, the treatments and
confounders are firstly fed into two separate hidden layers. Then the output of the two hidden layers
are concatenated and fed into a multi-layer perceptron (MLP) to predict the outcome. The model is
trained using Adam [5], and we use the ELU [3] activation function. The hyper-parameters of the
networks and training process are shown in Table 1.

In sythetic experiments, the matrices A and B are generated from independent gaussian distribution,
that is ai,j ∼ N (0, 1/9), bi,j ∼ N (0, 1). The matrix D = (3A/4 + E) ·B. E is generated from
another gaussian distribution, that is ei,j ∼ N (0, 0.252). In real-world dataset, the topic of each
document is generated from uniform multinomial distribution.
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Algorithm 1 Variational sample re-weighting (VSR)
Require: Observational data {(xi, ti, yi)}1≤i≤n, learning rate λd.
Ensure: Variational sample weights wd = {wdi }ni=1

1: Train VAE of treatment variables T, including encoder qφ(Z|T) and decoder pϕ(T|Z).
2: Initialize the parameters θd of classifer pθd(L|X,Z).
3: for Batch B = {(xi, ti, yi)}|B|i=1 in each iteration do
4: Infer latent representations for each sample zposi ∼ qφ(z|ti) and znegi ∼ N (0, I).
5: Compute loss LBd = − 1

|B|
∑|B|
i=1 [log pθd(L = 1|xi, zposi ) + log pθd(L = 0|xi, znegi )]

6: Update θd = θd − λd ∂L
B
d

∂θd
7: end for
8: Define density ratio function wZ(X,Z) =

pθd (L=0|X,Z)

pθd (L=1|X,Z)

9: Set wdi = 1
Ez∼qφ(z|ti)[1/wZ(xi,z)]

for each sample.

10: return wd = {wdi }ni=1

A.3 Deep Neural Networks with Independent Representation

We also bring the idea from domain adaptation [2, 4] to remove confounding bias. Considering
the network architecture we employed, the prediction networks can be formed as fθp(X,T) =
h(ΦX(X),ΦT(T)), where ΦX(X) and ΦT(T) is the output of hidden layers for confounders and
treatments, and can be viewed as representations of confounders and treatments. This method removes
confounding bias by constraining ΦX(X) and ΦT(T) are decorrelated. Therefore, the loss function
consisting of prediction loss and correlation loss are defined as:

Ltotal = Lpre − αLcor

Lpre =
1

n

n∑
i=1

L(fθp(xi, ti), yi),

where α is a hyper-parameter controlling the trade-off between outcome fitting and decorrelation
constraint. Specifically, we set an exponentially increasing schedule α = 2/(1 + e−10β) − 1, as
previous literature did [1, 4]. β is the training progress linearly increasing from 0 to 1. In real world
experiment, α is scaled down by 1000 times.

To measure the correlation between ΦX(X) and ΦT(T), we use a classifier pηd(L|ΦX(X),ΦT(T))
to distinguish the dataset {(ΦX(xi),ΦT(ti))}1≤i≤n and {(ΦX(xi),ΦT(tvi))}1≤i≤n where v =
{vi}1≤i≤n is a random permutation of sample index. Larger classification loss means the distributions
from which the two datasets are generated is closer and ΦX(X) is less correlated with ΦT(T).
Therefore, Lcor is defined as

Lcor = min
ηd
− 1

n

n∑
i=1

[log pηd(L = 1|ΦX(xi),ΦT(ti)) + log pηd(L = 0|ΦX(xi),ΦT(tvi))].

The prediction networks and classifier are simultaneously trained in adversarial using gradient reversal
layer (GRL) [4].

We conduct the same experiments on synthetic datasets and real world datasets to evaluate the
effectiveness of this methods. Figure 2 shows the degree of correlation before and after representation
mapping. The degree of correlation is measured as the classification loss between the original
pairs and shuffled pairs of confounders (representations) and treatments (representations). We can
observe that the confounding bias is significantly reduced after representation mapping. As shown in
the evaluation results of different experiments, the performance of this methods is worse than our
proposed VSR method.
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Setting 1:Fix sample size n = 10000, varying dimension of treatments p
p p = 10 p = 20 p = 30 p = 50

Methods Mean STD Mean STD Mean STD Mean STD
DNN&IR 0.624 0.059 1.059 0.118 1.377 0.164 1.930 0.302

Setting 2:Fix dimension of treatments p = 10, varying sample size n
n n = 5000 n = 10000 n = 15000 n = 20000

Methods Mean STD Mean STD Mean STD Mean STD
DNN&IR 0.667 0.119 0.624 0.059 0.639 0.096 0.435 0.068

Table 2: The experiment results on synthetic datasets of DNN&IR. Mean and STD refer to the
average value and standard deviation of the RMSE results in independent experiments. The lower of
these metrics, the better.
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Figure 1: The testing RMSE of DNN&IR when
varying the variance of noise εL in generating
treatments.
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Figure 2: The degree of confounding bias (clas-
sification loss) with/without independence con-
straints

RMSE of click rate prediction (×10−2)
Document number p p = 10 p = 20 p = 30 p = 50

Methods Mean STD Mean STD Mean STD Mean STD
DNN&IR 3.032 0.766 3.954 0.803 4.663 0.697 4.600 0.620

Table 3: Experiment results on real world datasets of DNN&IR. Mean and STD refer to the average
value and standard deviation of RMSE. Lower is better.

A.4 Results of synthetic experiments for non-constant s

To demonstrate that our method still works well when the number of one-value bits in treatment is
not fixed, we repeat the synthetic experiments. In this experiments, T are generated as following:

tj =

{
1 fj > g
0 fj ≤ g (5)

where g = p
10 − 1. The results are reported in Table 4.

A.5 Results of synthetic experiments under misspecification of the dimension of latent space

The dimension of latent factors is hardly known in many scenarios. We repeat the synthetic exper-
iments varying the dimension of latent space of VAE while the fixing sample size n = 10000 and
variance of εL is 1.0. As shown in Figure. 3, our method is not affected much by the misspecification
of the dimension of latent space.
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Fix sample size n = 10000, varying dimension of treatments p, non-constant s
p p = 10 p = 20 p = 30 p = 50

Methods Mean STD Mean STD Mean STD Mean STD
DNN 0.884 0.121 1.126 0.097 1.828 0.130 3.244 0.447

DNN&Wraw 0.778 0.081 1.100 0.078 1.712 0.117 3.143 0.288
DNN&WAE 0.775 0.084 1.125 0.064 1.618 0.121 3.108 0.271
DNN&WVSR 0.657 0.068 0.975 0.086 1.418 0.125 2.898 0.211

DNN&IR 0.893 0.107 1.131 0.136 1.819 0.145 3.200 0.273

Table 4: Experiment results for non-constant s on synthetic datasets. Mean and STD refer to the
average value and standard deviation of the RMSE results. The lower of these metrics, the better.
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(c) p = 30
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Figure 3: The testing RMSE of DNN&WVSR when varying the dimension of latent space of VAE k′.
The true dimension of latent space k = 3.
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