
A Additional Implementation Details

Warming-up the KL Term: Similar to the previous work, we warm-up the KL term at the beginning
of training [43]. Formally, we optimize the following objective:

Eq(zzz|xxx) [log p(xxx|zzz)]− βKL(q(zzz|xxx)||p(zzz)) ,
where β is annealed from 0 to 1 at the first 30% of training.

Balancing the KL Terms: In hierarchical VAEs, the KL term is defined by:

KL(q(zzz|xxx)||p(zzz)) =

L∑
l=1

Eq(zzz<l|xxx) [KL(q(zzzl|xxx,zzz<l)||p(zzzl|zzz<l))] ,

where each KL(q(zzzl|xxx,zzz<l)||p(zzzl|zzz<l)) can be thought as the amount of information encoded in the
lth group. In deep hierarchical VAEs, during training, some groups of latent variables can easily
become deactivated by matching the approximate posterior with the prior (i.e., posterior collapse).
One simple solution is to use KL balancing coefficients [20, 66] to ensure that an equal amount of
information is encoded in each group using:

KL(q(zzz|xxx)||p(zzz)) =

L∑
l=1

γl Eq(zzz<l|xxx) [KL(q(zzzl|xxx,zzz<l)||p(zzzl|zzz<l))] .

The balancing coefficient γl is set to a small value when the KL term is small for that group to
encourage the model to use the latent variables in that group, and it is set a large value when the
KL term is large. The KL balancing coefficients are only applied during the KL warm-up period,
and they are set to 1 afterwards to ensure that we optimize the variational bound. DVAE++ [20]
sets γl proportional to Exxx∼M

[
Eq(zzz<l|xxx) [KL(q(zzzl|xxx,zzz<l)||p(zzzl|zzz<l))]

]
in each parameter update

using the batchM. However, since we have latent variable groups in different scales (i.e., spatial
dimensions), we observe that setting γl proportional to also the size of each group performs better,
i.e., γl ∝ sl Exxx∼M

[
Eq(zzz<l|xxx) [KL(q(zzzl|xxx,zzz<l)||p(zzzl|zzz<l))]

]
Annealing λλλ: The coefficient of the smoothness loss λ is set to a fixed value in {10−2, 10−1} for
almost all the experiments. We used 10−1 only when training was unstable at 10−2. However, on
Celeb-A HQ and FFHQ, we observe that training is initially unstable unless for λ ∈ {1, 10} which
applies a very strong smoothness. For these datasets, we anneal λ with exponential decay from 10 to
a small value shown in Table. 6 in the same number of iterations that the KL coefficient is annealed.
Note that the smoothness loss is applied to both encoder and decoder. We hypothesize that a sharp
decoder may require a sharp encoder, causing more instability in training.

Weight Normalization (WN): WN cannot be used with BN as BN removes any scaling of weights
introduced by WN. However, previous works have seen improvements in using WN for VAEs. In
NVAE, we apply WN to any convolutional layer that is not followed by BN, e.g., convolutional layers
that produce the parameters of Normal distributions in encoder or decoder.

Inverse Autoregressive Flows (IAFs): We apply simple volume-preserving normalizing flows of the
form zzz′ = zzz + bbb(zzz) to the samples generated by the encoder at each level, where bbb(zzz) is produced by
an autoregressive network. In each flow operation, the autoregressive network is created using a cell
similar to Fig. 3 (a) with the masking mechanism introduced in PixelCNN [41]. In the autoregressive
cell, BN is replaced with WN, and SE is omitted, as these operations break the autoregressive
dependency. We initially examined non-volume-preserving affine transformations in the form of
zzz′ = aaa(zzz) � zzz + bbb(zzz), but we did not observe any improvements. Similar results are reported by
Kingma et al. [4] (See Table 3).

Optimization: For all the experiments, we use the AdaMax [81] optimizer for training with the
initial learning rate of 0.01 and with cosine learning rate decay. For FFHQ experiments, we reduce
the learning rate to 0.008 to further stabilize the training.

Image Decoder p(xxx|zzz) : For all the datasets but MNIST, we use the mixture of discretized Logistic
distribution [70]. In MNIST, we use a Bernoulli distribution. Note that in all the cases, our decoder is
unconditional across the spatial locations in the image.

Evaluation: For estimating log-likelihood on the test datasets in evaluation, we use importance
weighted sampling using the encoder [11]. We use 1000 importance weighted samples for evaluation.

14

Table 6: A summary of hyperparameters used in training NVAE with additional information. D2

indicates a latent variable with the spatial dimensions of D ×D. As an example, the MNIST model
consists of 15 groups of latent variables in total, covering two different scales. In the first scale, we
have five groups of 4× 4× 20-dimensional latent variables (in the form of height×width×channel).
In the second scale, we have 10 groups of 8× 8× 20-dimensional variables.

Hyperparamter MNIST CIFAR-10 ImageNet CelebA CelebA HQ FFHQ
28×28 32×32 32×32 64×64 256×256 256×256

epochs 400 400 45 90 300 200
batch size per GPU 200 32 24 16 4 4
normalizing flows 0 2 2 2 4 4
latent variable scales 2 1 1 3 5 5

groups in each scale 5, 10 30 28 5, 10, 20
4, 4, 4, 4, 4, 4,
8, 16 8, 16

spatial dims of zzz in each scale 42, 82 162 162 82, 162, 322 82, 162, 322, 82, 162, 322,
642, 1282 642, 1282

channel in zzz 20 20 20 20 20 20
initial channels in enc. 32 128 192 64 30 30
residual cells per group 1 2 2 2 2 2
λ 0.01 0.1 0.01 0.1 0.01 0.1
GPU type 16-GB V100 16-GB V100 32-GB V100 16-GB V100 32-GB V100 32-GB V100
GPUs 2 8 24 8 24* 24*

total train time (h) 21 55 70 92 94 160
* A smaller model with 24 initial channels instead of 32, could be trained on only 8 GPUs in the same time (with the batch size of

6). The smaller models obtain only 0.01 bpd higher negative log-likelihood on these datasets.

Channel Sizes: We only set the initial number of channels in the bottom-up encoder. When we
downsample the features spatially, we double the number of channels in the encoder. The number of
channels is set in the reverse order for the top-down model.

Expansion Ratio E: The depthwise residual cell in Fig. 3a requires setting an expansion ratio E.
We use E = 6 similar to MobileNetV2 [46]. In a few cells, we set E = 3 to reduce the memory.
Please see our code for additional details.

Datasets: We examine NVAE on the dynamically binarized MNIST [72], CIFAR-10 [73], ImageNet
32 × 32 [74], CelebA 64 × 64 [75, 76], CelebA HQ [28], and FFHQ 256×256 [77]. For all the
datasets but FFHQ, we follow Glow [62] for the train and test splits. In FFHQ, we use 63K images
for training, and 7K for test. Images in FFHQ and CelebA HQ are downsampled to 256× 256 pixels,
and are quantized in 5 bits per pixel/channel to have a fair comparison with prior work [62].

Hyperparameters: Given a large number of datasets and the heavy compute requirements, we do
not exhaustively optimize the hyperparameters. In our early experiments, we observed that the larger
the model is, the better it performs. We often see improvements with wider networks, a larger number
of hierarchical groups, and more residual cells per group. However, they also come with smaller
training batch size and slower training. We set the number of hierarchical groups to around 30, and
we used two residual cells per group. We set the remaining hyperparameters such that the model
could be trained in no more than about a week. Table. 6 summarizes the hyperparameters used in our
experiments.

B Additional Experiments and Visualizations

In this section, we provide additional insights into NVAE.

B.1 Is NVAE Memorizing the Training Set?

In VAEs, since we can compute the log-likelihood on a held-out set, we can ensure that the model
is not memorizing the training set. In fact, in our experiments, as we increase the model capacity
(depth and width), we never observe any overfitting behavior especially on the datasets with large
images. In most cases, we stop making the model large because of the compute and training time

15

Samples Retrieved Images from Training Set

Figure 6: Top retrieved images from the training set are visualized for samples generated by NVAE
in each row. The generated instances do not exist in the training set (best seen when zoomed in).

considerations. However, since the images generated by NVAE are realistic, this may raise a question
on whether NVAE memorizes the training set.

In Fig. 6, we visualize a few samples generated by NVAE and the most similar images from the
training data. For measuring the similarity, we downsample the images by 4×, and we measure L2

distance using the central crop of the images. Since images are aligned, this way we can compare
images using the most distinct facial features (eyes, nose, and mouth). As we can see, the sampled
images are not present in the training set.

B.2 Changing the Temperature of the Prior in NVAE

It is common to lower the temperature of the prior when sampling from VAEs on challenging datasets.
In Fig. 7, we examine different temperatures in the prior with different settings for the batch norm
layers.

B.3 Additional Generated Samples

In Fig. 8 and Fig. 9, we visualize additional generated samples by NVAE, trained on CelebA HQ.
In these figures, we use higher temperatures (t ∈ {0.6, 0.7, 0.8, 0.9}), but we manually select the
samples.

B.4 More on the Impact of Residual Normal Distributions

Fig. 10 visualizes the total number of active channels in all latent variables during training. Here, we
compare the residual Normal distributions against the model that predicts the absolute parameters of
the Normal distributions in the approximate posterior. This figure corresponds to the experiment that
we reported in Table. 4. As we can see, in the initial stage of training, the model without residual
distributions turns off more latent variables.

16

t = 0.1

t = 0.3

t = 0.5

t = 0.6

t = 0.7

t = 0.8

t = 0.9

t = 1.0

Batch Norm Statistics From Training Batch Norm Statistics Readjusted

Figure 7: Randomly sampled images from NVAE with different temperatures in the prior for the
CelebA HQ dataset (best seen when zoomed in). In the batch normalization layers during sampling,
we examine two settings: i) the default mode that uses the running averages from training (on the
left), and ii) readjusted mode in which the running averages are re-tuned by sampling from the model
500 times with the given temperature (on the right). Readjusted BN statistics improve the diversity
and quality of the images, especially for small temperatures.

17

Figure 8: Additional 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28]. In
this figure, we use higher temperatures (t ∈ {0.6, 0.7, 0.8, 0.9}), but we manually select the samples.

18

Figure 9: Additional 256×256-pixel samples generated by NVAE, trained on CelebA HQ [28]. In
this figure, we use higher temperatures (t ∈ {0.6, 0.7, 0.8, 0.9}), but we manually select the samples.

19

0 5000 10000 15000 20000 25000
Training iterations

100

200

300

400

500

600

700

800

#
 A

ct
iv

e
ch

an
ne

ls
 in

 z

w/ residual dist.
w/o residual dist.

Figure 10: The total number of active channels in zzz is reported for two models with and without
residual distributions. The model with residual distribution keeps more latent variables active in the
KL warm-up phase (up to 8K iterations), and it achieves a better KL value at the end of the training
(see Table. 4)

B.5 Stabilizing the Training with Spectral Regularization

In our experiments, we came across many cases whose training was unstable due to the KL term, and
it was stabilized by spectral regularization. Initially, instead of spectral regularization, we examined
common approaches such as gradient clipping or limiting the parameters of the Normal distributions
to a small range. But, none could stabilize the training without negatively affecting the performance.
Fig. 11 shows an experiment on the FFHQ dataset. The training is stabilized by increasing the spectral
regularization coefficient (λ) from 0.1 to 1.0.

0 5000 10000 15000 20000 25000 30000 35000 40000

Training iterations

105

106

107

108

109

K
L

(n
at

s)

λ = 1.0

λ = 0.1

Figure 11: An example experiment on the FFHQ dataset. All the hyper-parameters are identical
between the two runs. However, training is unstable due to the KL term in the objective. We stabilize
the training by increasing the spectral regularization coefficient λ.

B.6 Long-Range Correlations

NVAE’s hierarchical structure is composed of many latent variable groups operating at different
scales. For example, on CelebA HQ 256× 256, the generative model consists of five scales. It starts
from a spatially arranged latent variable group of the size 8× 8 at the top, and it samples from the
hierarchy group-by-group while gradually doubling the spatial dimensions up to 128× 128.

A natural question to ask is what information is captured at different scales. In Fig. 12, we visualize
how the generator’s output changes as we fix the samples at different scales. As we can see, the

20

global long-range correlations are captured mostly at the top of the hierarchy, and the local variations
are recorded at the lower groups.

No Fixed Scale

Top Scale Fixed

Top 2 Scales Fixed

Top 3 Scales Fixed

Top 4 Scales Fixed

Figure 12: Where does our hierarchical model capture long-range correlations? NVAE on CelebA HQ
consists of latent variable groups that are operating at five scales (starting from 8×8 up to 128×128).
In each row, we fix the samples at a number of top scales and we sample from the rest of the hierarchy.
As we can see, the long-range global structure is mostly recorded at the top of the hierarchy in the
8× 8 dimensional groups. The second scale does apply some global modifications such as changing
eyes, hair color, skin tone, and the shape of the face. The bottom groups capture mostly low-level
variations. However, the lowest scale can still make some subtle long-range modifications. For
example, the hair color is slightly modified when we are only sampling from the lowest scale in the
last row. This is potentially enabled because of the large receptive field in our depthwise separable
residual cell.

21

