
A Other Related Work

[13] shows that distinct elements sketches cannot achieve good utility if they satisfy any reasonable
privacy definition. A major assumption in [13] is that the seeds to the hash functions are known to
the adversary. The private variant of FM-sketch in this paper crucially assumes that the seeds to the
hash functions are kept secret, and hence does not violate the lower bound.

In the non-private setting there is a long line of work on designing algorithms for counting distinct
elements, best surveyed in [29]. While many of these algorithms differ significantly in their design, a
vast majority of them build on the original idea of [21]. Our algorithms are also based on a derivative
of this idea. The literature makes a clear distinction between having access to ideal uniform random
hash functions (the random oracle model), and a model where the space required to store an explicit
construction of the hash functions is accounted for. Our algorithms are in the random oracle model.

There is a recent work [5] that study the distinct elements problem in the shuffled model of differential
privacy [11, 18, 22, 6]. Since [5] does not consider any space constraint, and work in a stronger
privacy model, the guarantees are incomparable to our work.

B Missing Proofs from Section 2

B.1 Proof of Theorem 2.2

Proof. Let α be any of the m i.i.d. random variables {α1, . . . , αm} in the theorem statement. We
will first prove the following two statements:

Pr

[
(1 + γ)

α ≥ F0(D)

(1 + γ)

]
≥
(

1− 1

e

)
+
γ

5
, (2)

Pr [(1 + γ)
α ≥ F0(D) · (1 + γ)] ≤

(
1− 1

e

)
+

γ

20
. (3)

It is easy to see that α is the maximum of F0(D) geometric random variable with parameter γ
1+γ ,

and thus we have Pr [α ≤ α0] =
(

1− 1
(1+γ)a0

)F0(D)

for any α0 ∈ N+ and Pr [(1 + γ)
α ≤ z] =(

1− 1
z

)F0(D)
for z = (1 + γ)

α0 for some α0 ∈ N+.

Therefore, as γ ≤ 1, we have,

Pr

[
(1 + γ)

α ≤ F0(D)

(1 + γ)

]
≤
(

1− 1 + γ

F0(D)

)F0(D)

≤ e−(1+γ) < 1

e
− γ

5
(4)

which proves (2).

Let µ = (1 + γ)blog(1+γ) ((1+γ)F0(D))c such that µ ≥ F0(D). We also have, as F0(D) ≥ 20
γ ,

Pr [(1 + γ)
α ≤ (1 + γ)F0(D)] = Pr [(1 + γ)

α ≤ µ] =

(
1− 1

µ

)F0(D)

≥
(

1− 1

F0(D)

)F0(D)

≥ 1

e
− 1

F0(D)
≥ 1

e
− γ

20
,

(5)

which proves (3).

Hence, (4) and (5) completes the proof of (2) and (3) respectively. Now, by standard Chernoff-

Hoeffding bound it follows that as long as m ≥ 100
√

ln(1/β)

γ2 , there exists at least m ·
((

1− 1
e

)
+ γ

10

)
entries in the set {α1, . . . , αm} s.t. they are at least F0(D)

(1+γ) . Similarly, there exists at most m ·((
1− 1

e

)
+ γ

15

)
entries in the set {a1, . . . , am} s.t. they are at least F0(D) · (1 + γ). Hence,

choosing α̂ as the the
(
1
e −

γ
12

)
-th quantile of {α1, . . . , αm} completes the proof.
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B.2 Proof of Corollary 2.4

Proof. Consider any probability distribution µ on the reals with a well-defined CDF F . We can
generate a random variable Ẑ with distribution µ as F−1(U), where U is uniform in [0, 1] and F−1 is
the inverse (defined by F−1(u) = inf{w : F (w) ≥ u} in general). For example, for the distribution
Geometric (p), we have F−1(u) =

⌈
log(1−p) (1− u)

⌉
.

The random variable Ŵ1 = max
(
Ẑ1, ..., Ẑk, b̂

)
in the corollary statement can be generated as

max
(
F−1(U1), ..., F−1(Uk), b

)
, where the Ui are independent and uniform in [0, 1]. Since F−1 is

nondecreasing everywhere, we have

Ŵ1 = max
(
F−1(U1), ..., F−1(Uk), b̂

)
= F−1

(
max

(
U1, ..., Uk, F (b̂)

))
,

Note that b̂ was chosen so that F (b̂) ≥ e−ε. Thus, we can view the random variable Ŵ1 as resulting
from applying F−1 to the random variable W1 (with lower bound b = F (b̂)) from Lemma 2.3.
Similarly we also have Ŵ2 = F−1(W2). Since differential privacy is preserved under postprocessing,
the closeness guarantee of Lemma 2.3 extends to Ŵ1 and Ŵ2. This completes the proof.

B.3 Proof of Theorem 2.6

Proof. The main algorithm runsm copies of the single-sketch algorithmADP-FM (Algorithm 2). That
algorithm may be viewed as adding kp = 1

eε′−1 new “phantom” elements to the data stream D, and
then running the non-private Flajolet-Martin (FM) sketch (AFM) subject to imposing a lower bound
of αmin. When we run m copies and take the

(
1
e −

γ
12

)
-th quantile, we are therefore executing the

nonprivate approximation algorithm of Theorem 2.2 on a stream with F0(D) + kp elements, again
subject to a lower bound of αmin on all the sketch values.

We would like to apply the utility guarantee for the nonprivate algorithm (Theorem 2.2) directly.
To do so, we first need to show that the lower bound of αmin does not interfere with estimation
based on the

(
1
e −

γ
12

)
-th quantile. Since by assumption γ ≤ 1, it suffices to ensure that αmin lies

below the
(
1
e −

1
12

)
-quantile of the distribution of any particular sketch value. This latter distribution

is the maximum of F0(D) + kp geometric r.v.’s. Let Fk denote the CDF of the maximum of k

Geometric
(

γ
1+γ

)
r.v.’s. Recall that αmin was chosen so that F1(αmin) = eε

′
(see Algorithm 2).

Therefore, Fk(αmin) = (F1(αmin))
k

= e−ε
′k. Thus, αmin lies below the

(
1
e −

γ
12

)
-th quantile of the

sketch distribution when F0(D) + kp >
1
ε′ + γ

3ε′ >
1
ε′ ·
(
− ln

(
1
e −

1
12

))
for γ ∈ (0, 1]. Recalling

that kp = d 1
eε′−1e, we get that the lower bound will not significantly affect estimation as long as

F0(D) >
(

1
ε′ −

1
eε′−1

)
+ γ

3ε′ >
1
2 + γ

3ε′ . Our objective is to have an additive error bound of O
(
γ
ε′

)
. Hence, even when F0(D) < 1

2 + γ
3ε′ , the positive bias due to αmin will not affect the bound.

We can therefore apply the utility guarantee (Theorem 2.2) for the nonprivate sketch as if it were
run a stream with F0(D) + kp distinct elements. With probability at least 1 − β, (1 + γ)α̂priv ∈
(F0(D) + kp)(1± γ) . The algorithm corrects this estimate to reduce the bias by subtracting off kp to
obtain kpriv. We therefore have

kpriv = (1 + γ)α̂priv − kp ∈ (F0(D) + kp)(1± γ)− kp = F0(D)(1± γ)± γkp.

That is, the algorithm’s multiplicative guarantee remains the same as that of its non-private counterpart

(Theorem 2.2), but it acquires an additive error of ±γkp. Now kp = Θ
(

1
ε′

)
= Θ

(√
m log(1/δ)

ε

)
.

Since we set m = Θ

(√
log(1/β)

γ2

)
, we get that kp = Θ

(
log1/2(1/δ) log1/4(1/β)

εγ

)
. The final additive

error is therefore O
(

log1/2(1/δ) log1/4(1/β)
ε

)
, as desired.
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C Empirical Debiasing

It is well-known that FM-sketch can have bias especially for small cardinality. Following [25], we
conduct debiasing using a nearest neighbor regressor that predicts the bias (the difference between
the true cardinality and the raw estimation) from the raw estimation. We choose a grid from 211 to
221, with 7 equally-spaced points in between each pair of consecutive powers of two. We pre-run our
algorithm for 100 times for each point in the grid, and build a nearest neighbor regressor with k = 6
using the averaged raw estimations and biases.

To avoid unfair evaluation when the true cardinality matching exactly the grid, we consider data sets
with true cardinalities 2i + 2i−4 for i ranging from 12 to 20.

D More Simulation Results for Our Algorithm

We present more simulation results in this section. Figure 3 and 4 show the MRE of our algorithm
with γ = 1.0 and 0.01 respectively. For each γ, we consider ε ∈ {∞, 1.0, 0.1}, δ = 10−9 and
m = 1024, 4096 and 32768.

For Geometric with γ 6= 1, the debiasing factor used is
(

Γ
(
− 1
m

) (1+γ)−1/m−1
log(1+γ)

)−m
where Γ(·)

is the gamma function; for Harmonic, the debiasing factor is
(
m
∞∫
0

(
log(1+γ)

u+1+γ
u+1

)m
du

)−1
.

These are generalizations of the debiasing constants used in [14] and [20], respectively.

The performance of Geometric and Harmonic are roughly the same under the two different γ, yet
Quantile yields quite different results. As has been explained in Section 3, this is because Quantile
always returns a power of (1 + γ), and thus the discretization can largely affect the estimation. The
estimation can become particularly inaccurate when ε is small and F0(D) is small. Notice that since
our actual F0(D) are powers of two, when ε or F0(D) is large, Quantile with γ = 1 can be pretty
accurate with a smaller variance compared to the other estimators. In the non-private case, Quantile
achieves zero error with zero variance for the m values presented here. We note that with smaller m,
there is variance for this estimator.

We can also observe that Quantile (with γ = 0.01) is less affected by ε compared to the other
estimators, especially when F0(D) is small. In Figure 4, we can see that under ε = 0.1, the average
MRE of Quantile is less than 7% when F0(D) is only 4096.
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(a) Non-private.
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(b) Non-private. With debiasing
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(c) ε = 1.0.
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(d) ε = 1.0. With debiasing
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(e) ε = 0.1.
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(f) ε = 0.1. With debiasing

Figure 3: MRE for our algorithm (approximate DP version) under different m. γ = 1.0. Estimators
are Quantile, Geometric, Harmonic from left to right.

16



212 213 214 215 216 217 218 219 220

F0

0.00

0.02

0.04

0.06

m
e
a
n

re
la

ti
v
e

e
rr

o
r

212 213 214 215 216 217 218 219 220

F0

0.00

0.02

0.04

0.06

212 213 214 215 216 217 218 219 220

F0

0.00

0.02

0.04

0.06
m=1024 m=4096 m=32768

(a) Non-private.
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(b) Non-private. With debiasing
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(c) ε = 1.0.
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(d) ε = 1.0. With debiasing
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(e) ε = 0.1.
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(f) ε = 0.1. With debiasing

Figure 4: MRE for our algorithm (approximate DP version) under different m. γ = 0.01. Estimators
are Quantile, Geometric, Harmonic from left to right.
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E Comparison with Related Algorithms

E.1 Pure differentially private version of our algorithm

Since all of [12, 36, 32] guarantees pure differential privacy instead of approximate differential
privacy, we also run our algorithm with pure differential privacy guarantee as a comparison. Figure 5
shows the pure differential privacy version of our algorithm.

E.2 Simulation results for [12]

The algorithm presented in [12] guarantees privacy only for large cardinality. To provide a fair
comparison, we modified the algorithm by adding phantom element kp and enforcing the lower bound
αmin in a similar way as in Algorithm 2. The difference between our proposed algorithm and the
modified version of [12] is thus whether the data is split into m streams, or sent to all of the streams.

The main difference between our algorithm and the algorithm proposed in [12] is that [12] splits
samples into m streams, while we send every sample to all of the m streams. The privacy analysis
of [12] is thus straight-forward as one sample changes only one stream. However, without “phantom”
elements, [12] guarantees privacy conditionally, i.e., it fails to provide any privacy guarantee when
the true cardinality is small. In our experimental evaluation, we thus add “phantom” elements in each
of the streams in order to achieve rigorous differential privacy guarantee for [12].

Similar as in our proposed algorithm, we also consider different γ’s and apply different estimators
including Quantile, Geometric, Harmonic.

E.3 Simulation results for [36]

Figure 7 shows the simulation of [36] for non-private, ε = 1.0 and 0.1. Notice that this is a pure
differentially private algorithm, i.e., δ = 0. We set u, the size of the domain, to be 16 ·F0(D). We use
a maximum likelihood estimator (provided by the authors of [36]) instead of the estimation method
described in the paper (which is less stable and less accurate).

E.4 Simulation results for [32]

As noted in the work itself, the algorithm in [32] requires a computationally expensive noise sampling
step. We therefore only conduct empirical evaluation of their non-private correspondence [10,
Algorithm 13], and aim to demonstrate that it does not perform better than our algorithm with
reasonable privacy guarantee. Figure 8 shows the results.
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(a) ε = 1.0.
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(b) ε = 1.0. With debiasing
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(c) ε = 0.1.
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(d) ε = 0.1. With debiasing

Figure 5: MRE for our algorithm (pure DP version) under different m. Estimators are Quantile
(γ = 0.01), Geometric (γ = 1.0), Harmonic (γ = 1.0) from left to right.
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(a) Non-private.
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(b) Non-private. With debiasing.
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(c) ε = 1.0.
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(d) ε = 1.0. With debiasing.
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(e) ε = 0.1.
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(f) ε = 0.1. With debiasing.

Figure 6: MRE for [12] with phantom elements under pure differential privacy. Estimator is Quantile,
Geometric, Harmonic from left to right. All with γ = 0.01, as the results for γ = 1.0 is not as stable.
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(b) ε = 1.0.
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(c) ε = 0.1.
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(d) Non-private. With debiasing.
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(e) ε = 1.0. With debiasing.
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(f) ε = 0.1. With debiasing.

Figure 7: MRE for [36] with MLE estimator, under pure differential privacy.
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(b) Non-private. With debias.

Figure 8: MRE for non-private variant of [32].
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