
A Additional Experiment Details

A.1 Hyper-parameter settings for all baselines in benchmarks

Setup for MuJoCo tasks: Fig. 5 shows 13 methods in total, and here we describe the hyper-
parameters of each method. Since we’re interested in the sample efficiency, the batch size of every
method is set to 1. We reuse the policy and evaluation codes from ARS [57], and the URL to the
ARS implementation can be found in the bibliography. The implementations of VOO, SOO, and
DOO are from here 1; methods including CMA-ES, Differential Evolution, Dual Annealing are from
the optimize module in scipy, and Shiwa is from Nevergrad2. Please see the bibliography for the
reference implementations of BOHB and HesBO.

LA-MCTS we use 30 samples for the initialization; and the SVM uses RBF kernel for easy tasks
including swimmer, hopper, half-cheetah, and linear kernel for hard tasks including 2d-
walker, ant and humanoid to get over 3 ⇤ 104 samples. Cp is set to 10, and the splitting
threshold ✓ is set to 100. LA-MCTS uses TuRBO-1 for sampling, and the setup of TuRBO-1
is exactly the same as TuRBO described below. TuRBO-1 returns all the samples and their
evaluations to LA-MCTS once it hits the re-start criterion.

TuRBO we use 30 samples for the initialization, and CUDA is enabled. The rest hyper-parameters
use the default value in TuRBO. In MuJoCo, we used TuRBO-20 that uses 20 independent
trust regions for the best f(x).

LaNAS we use 30 samples for the initialization; the height of search tree is 8, and Cp is set to 10.
VOO default setting in the reference implementation.
DOO default setting in the reference implementation.
SOO default setting in the reference implementation.

CMA-ES the initial standard deviation is set to 0.5, and the rest parameters are default in Scipy.
Diff-Evo default settings in Scipy.

Shiwa default settings in Nevergrad.
Annealing default settings in Scipy.

BOHB default settings in the reference implementation.
HesBO The tuned embedding dimensions for swimmer, hopper, walker, half-cheetah, ant, and

humanoid are 8, 17, 50, 50, 400, and 1000, respectively.

Setup for synthetic functions, lunar landing, and trajectory optimization: similar to MuJoCo
tasks, the batch size of each method is set to 1. The settings of VOO, DOO, SOO, CMA-ES, Diff-Evo,
Dual Annealing, Shiwa, BOHB, TuRBO are the same as the settings from MuJoCo. We modify
Cp = 1 and the splitting threshold ✓ = 20 in LA-MCTS. Similarly, we also changed Cp = 1 in
LaNAS. We set the upper and lower limits of each dimension in Ackley as [-5, 10], Rosenbrock is set
within [-10, 10], Rastrigin is set within [-5.12, 5.12], Levy is set within [-10, 10].

Runtime: LaNAS, VOO, DOO, SOO, CMA-ES, Diff-Evo, Shiwa, Annealing are fairly fast, which
can collect thousands of samples in minutes. The runtime performance of LAMCTS and TuRBO are
consistent with the result in [2] (see sec.G in appendix) that collects 104 samples in an hour using 1
V100 GPU. BOHB and HesBO toke up to a day to collect 104 samples for running on CPU.

1https://github.com/beomjoonkim/voot
2https://github.com/facebookresearch/nevergrad

13

A.2 Additional experiment results

!"#$!"#$%&' ())*!%#$!"#$%&' +)*

!&#$,-.%/01-"# ' ())*!'#$,-.%/01-"# ' +)*

2345,6.71838/' +)*

!(#$9%:&' ())*

2;45,6.71838/' ())*

!)#$9%:&' +)*

Figure 9: Evaluations on synthetic functions: the best method varies w.r.t functions, while LA-
MCTS consistently improves TuRBO and being among top methods among all functions.

14

(a) Lunar landing, #params = 12 (b) Rover trajectory planning, #params = 60

Figure 10: Evaluations on Lunar landing and Trajectory Optimization: LA-MCTS consistently
outperforms baselines.

!"#$%& !"#$%' !"#$%(!"#$%)

!"#$%* !"#$%+ !"#$%, !"#$%-

!"#$%. !"#$%/ !"#$%'& !"#$%''

!"#$%'(!"#$%') !"#$%'* !"#$%'+

!"#$%', !"#$%'- !"#$%'. !"#$%'/

Figure 11: The visualization of LA-MCTS in iterations 1!20: the purple region is the selected
region ⌦selected, and the red star represents the global optimum.

15

