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Abstract

Metropolis-Hastings (MH) is a commonly-used MCMC algorithm, but it can be
intractable on large datasets due to requiring computations over the whole dataset.
In this paper, we study minibatch MH methods, which instead use subsamples to
enable scaling. We observe that most existing minibatch MH methods are inexact
(i.e. they may change the target distribution), and show that this inexactness can
cause arbitrarily large errors in inference. We propose a new exact minibatch
MH method, TunaMH, which exposes a tunable trade-off between its batch size
and its theoretically guaranteed convergence rate. We prove a lower bound on
the batch size that any minibatch MH method must use to retain exactness while
guaranteeing fast convergence—the first such bound for minibatch MH—and show
TunaMH is asymptotically optimal in terms of the batch size. Empirically, we
show TunaMH outperforms other exact minibatch MH methods on robust linear
regression, truncated Gaussian mixtures, and logistic regression.

1 Introduction

Bayesian inference is widely used for probabilistic modeling of data. Specifically, given a dataset
D = {xi}Ni=1 and a θ-parameterized model, it aims to compute the posterior distribution

π(θ) ∝ exp
(
−
∑N
i=1 Ui(θ)

)
,where Ui(θ) = − log p(xi|θ)− 1

N log p(θ).

Here p(θ) is the prior and the p(xi|θ) give the likelihood of observing xi given the parameter θ.
We assume the data are conditionally independent given θ. The Ui have a natural interpretation
as component energy functions with π acting as a Gibbs measure. In practice, computing π(θ)
is often intractable and thus requires using approximate methods, such as Markov chain Monte
Carlo (MCMC). MCMC uses sampling to estimate the posterior and is guaranteed to converge
asymptotically to the true distribution, π [9].

The Metropolis-Hastings (MH) algorithm [16, 21] is one of the most commonly used MCMC methods.
In each step, MH generates a proposal θ′ from a distribution q(·|θ), and accepts it with probability

a(θ, θ′) = min
(

1, π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

)
= min

(
1, exp

(∑N
i=1(Ui(θ)− Ui(θ′))

)
· q(θ|θ

′)
q(θ′|θ)

)
. (1)

If accepted, the chain transitions to θ′; otherwise, it remains at the current state θ. This accept/reject
step can be quite costly when N is large, since it entails computing a sum over the entire dataset.

Prior work has proposed many approaches to mitigate the cost of this decision step [5]. One popular
approach involves introducing stochasticity: instead of computing over the entire dataset, a subsample,
or minibatch, is used to compute an approximation. These minibatch MH methods can be divided into
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two classes, exact and inexact, depending on whether or not the target distribution π is necessarily
preserved. Inexact methods introduce asymptotic bias to the target distribution, trading off correctness
for speedups [6, 17, 23, 24, 26]. Exact methods either require impractically strong constraints on
the target distribution [20, 27], limiting their applicability in practice, or they negatively impact
efficiency, counteracting the speedups that minibatching aims to provide in the first place [4, 12].
Moreover, all existing exact methods operate on the belief that there is a trade-off between batch
size and convergence rate—between scalability and efficiency. Yet no prior work formally exposes
this trade-off, and most prior work gives no convergence rate guarantees. Given these various
considerations, it is not entirely clear how to evaluate which minibatch MH method to use.

In this paper we forge a path ahead to untangle this question. While inexact methods have been
prominent recently due to their efficiency, they are not reliable: we show that the stationary distribution
of any inexact method can be arbitrarily far from the target π. This means they can yield disastrously
wrong inference results in practice, and it is difficult to tell just how bad those results can be.

We therefore turn our attention to exact methods and introduce TunaMH.2 Compared to prior work,
we make milder assumptions, which enables TunaMH to apply to a wider variety of inference tasks.
More specifically, we require local rather than global bounds on the target distribution [20, 27] and do
not rely on the Bernstein-von Mises approximation [5, 7, 12]. TunaMH is guaranteed to retain sample
efficiency in the presence of minibatching: its convergence rate (measured by the spectral gap) is
within a constant factor of standard, non-minibatch MH. More importantly, TunaMH also enables us
to rigorously characterize the trade-off between scalability and efficiency. It has a hyperparameter χ,
which enables tuning the trade-off between expected batch size and convergence rate.

By exposing this trade-off, our analysis raises the natural question: is TunaMH optimal for this
trade-off? That is, could another exact algorithm use an asymptotically smaller average batch size
while having the same convergence rate guarantees? We explore this in Section 4; under the same
mild assumptions we use to derive TunaMH, we prove a lower bound on the expected batch size for
any exact minibatch MH method that can keep a reasonable convergence rate. To our knowledge,
we are the first to prove a lower bound of this nature for minibatch MH. Moreover, TunaMH is
asymptotically optimal in balancing the expected batch size and convergence rate. It remains exact
and efficient while on average using the smallest possible number of samples. In summary:

• We demonstrate that any inexact minibatch MH method can be arbitrarily inaccurate (Section 2.1).
• We introduce a new exact method, TunaMH (Section 3), with a lower bound on its convergence

rate (in terms of the spectral gap) and a tunable hyperparameter to balance the trade-off between
convergence rate and batch size.
• We prove a lower bound on the batch size for any exact minibatch MH method given a target

convergence rate—the first such lower bound in this area. This result indicates that the expected
batch size of TunaMH is asymptotically optimal in terms of the problem parameters (Section 4).
• We show empirically that TunaMH outperforms state-of-the-art exact minibatch MH methods on

robust linear regression, truncated Gaussian mixture, and logistic regression (Section 5).

2 Preliminaries and Drawbacks of Prior Minibatch MH Methods

We first formally define the class of methods that we study theoretically in this paper: minibatch
MH methods of the form of Algorithm 1. This class contains methods that sample a proposal from
distribution q (which we always assume results in the chain being ergodic), and choose to accept or
reject it by calling some randomized subroutine, SubsMH, which outputs 1 or 0 for “accept" or “reject,"
respectively. Algorithms in this class have several notable properties. First, SubsMH is stateless: each
acceptance decision is made independently, without carrying over local state associated with the
MH procedure between steps. Many prior methods are stateless [6, 12, 17, 26]. We do not consider
stateful methods, in which the decision depends on previous state; they are difficult to analyze due to
running on an extended state space [3, 24]. Second, SubsMH takes a function that computes energy
differences Ui(θ)− Ui(θ′) and outputs an acceptance decision. We evaluate efficiency in terms of
how many times SubsMH calls this function, which we term the batch size the method uses. Third,
SubsMH takes parameters that bound the maximum magnitude of the energy differences. Specifically,
as in Cornish et al. [12], we assume:

2TunaMH since it tunes the efficiency-scalability trade-off and uses a Poisson (French for “fish") variable.
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Algorithm 1 Stateless, Energy-Difference-Based Minibatch Metropolis-Hastings

given: state space Θ, energy functions U1, . . . , UN : Θ→ R, proposal dist. q, initial state θ ∈ Θ
given: parameters c1, . . . , cN , C, M from Assumption 1, randomized algorithm SubsMH
loop

sample θ′ ∼ q(·|θ)
define function ∆U : {1, . . . , N} → R, such that ∆U(i) = Ui(θ)− Ui(θ′)
call subroutine o← SubsMH(∆U,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))
if o = 1, update θ ← θ′

end loop

Assumption 1. For some constants c1, . . . , cN ∈ R+, with
∑
i ci = C, and symmetric function M :

Θ×Θ→ R+, for any θ, θ′ ∈ Θ, the energy difference is bounded by |Ui(θ)−Ui(θ′)| ≤ ciM(θ, θ′).

One can derive such a bound, which can be computed in O(1) time, for many common inference
problems: for example, if each energy function Ui is Li-Lipschitz continuous, then it suffices to set
ci = Li and M(θ, θ′) = ‖θ − θ′‖ (See Appendix J for examples of ci and M on common problems).
Note that the SubsMH method may choose not to use these bounds in its decision. We allow this so
the form of Algorithm 1 can include methods that do not require such bounds. Most existing methods
can be described in this form [4, 6, 12, 17, 26]. For example, standard MH can be written by setting
SubsMH to a subroutine that computes the acceptance rate a as in (1) and outputs 1 (i.e., accept) with
probability a.

Such minibatch MH methods broadly come in two flavors: inexact and exact. We next establish the
importance of being exact and demonstrate how TunaMH resolves drawbacks in prior work.

2.1 The Importance of Being Exact

Inexact methods are popular due to helping scale MH to new heights [6, 17, 24, 26]. They approximate
the MH acceptance ratio to within an error tolerance (> 0), trading off exactness for efficiency gains.
Surprisingly, the bias from inexactness can be arbitrarily large even when the error tolerance is small.
Theorem 1. Consider any minibatch MH method of the form in Algorithm 1 that is inexact (i.e. does
not necessarily have π as its stationary distribution for all π satisfying Assump. 1). For any constants
δ ∈ (0, 1) and ρ > 0, there exists a target distribution π and proposal distribution q such that if we
let π̃ denote a stationary distribution of the inexact minibatch MH method on this target, it satisfies

TV(π, π̃) ≥ δ and KL(π, π̃) ≥ ρ.
where TV is the total variation distance and KL is the Kullback–Leibler divergence.

Theorem 1 shows that when using any inexact method, there always exists a target distribution π
(factored in terms of energy functions Ui) and proposal distribution q such that it will approximate π
arbitrarily poorly. This can happen even when individual errors are small; they can still accumulate a
very large overall error. We prove Theorem 1 via a simple example—a random walk along a line, in
which the inexact method causes the chain to step towards one direction more often than the other,
even though its steps should be balanced (Appendix A). Note that it may be possible to avoid a large
error by using some specific proposal distribution, but such a proposal is hard to know in general.

We use AustereMH [17] and MHminibatch [26] to empirically validate Theorem 1. For these inexact
methods, we plot density estimates with the number of states K = 200 in Figure 1a (see Appendix
J.1 for using other K); the stationary distribution diverges from the target distribution significantly.
Moreover, the TV distance between the density estimate and the true density increases as K increases
on this random walk example (Figure 1b). By contrast, our exact method (Section 3) keeps a small
TV distance on all K and estimates the density accurately with an even smaller average batch size.
We also tested AustereMH on robust linear regression, a common task, to show that the error of
inexact methods can be large on standard problems (Appendix J.1).

2.2 Issues with Existing Exact Methods

This observation suggests that we should be using exact methods when doing minibatch MH. However,
existing approaches present additional drawbacks, which we discuss below.
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Figure 1: Existing MH method issues. (a)-(b) Inexact methods can diverge a lot from true distribution.
“dTV ” and “B” denote the TV distance and the batch size respectively. (c) SMH has low and TunaMH
with different values of hyperparameter χ has high acceptance rates.

Factorized MH and Scalable MH are stateless, exact minibatch methods. Factorized MH (FMH)
decomposes the acceptance rate into a product of factors, which allows for rejecting a proposal
based on a minibatch of data [4, 10, 11]. Truncated FMH (TFMH) is a FMH variant that maintains
geometric ergodicity; it falls back on standard MH in a step when the bound on the factors reaches a
certain threshold [12]. No matter how this threshold is set, we can construct tasks where TFMH is
either arbitrarily inefficient (rejecting arbitrarily often, slowing convergence), or degrades entirely to
standard MH.

Statement 1. For any constant p ∈ (0, 1), there exists a target distribution such that TFMH either
has an acceptance rate which is less than p times that of standard MH, or it completely degrades to
standard MH (summing over the whole dataset at each step).

We prove this statement in Appendix C using an example of a uniform distribution along a line, where
we let xi take one of two values, {−M/N,M/N} with M > 0. We show that the acceptance rate of
TFMH can be arbitrarily low by increasing M , which we also empirically verify in Figure 1c.

To improve the acceptance rate of TFMH, Scalable MH (SMH) introduces control variates, which
approximate Ui with a Taylor series around the mode [12]. However, it only works with unimodal
posteriors and high-quality Bernstein-von Mises approximations—conditions that do not hold for
many common inference tasks.

PoissonMH is a stateless minibatch MH method adapted from an algorithm designed for scaling
Gibbs sampling on factor graphs [27]. However, unlike our method, it requires strong assumptions—
specifically, a global upper bound on the energy. Such an upper bound usually does not exist and,
even if it does, can be very large, resulting in an impractically large batch size.

FlyMC is a stateful method, which means it uses auxiliary random variables to persist state across
different MH steps [20]. It requires a lower bound on the likelihood function, which is typically more
demanding than Assumption 1 and does not have theoretical performance guarantees.

Other exact methods exist based on Piecewise Deterministic Markov Processes [7, 8]. They require
regularity conditions only available for some problems, so their practical utility is limited.

3 TunaMH: Asymptotically Optimal Exact MH

In this section, we present our method, TunaMH, which evades the issues of prior exact methods
discussed in Section 2.2. Like SMH [12], our method works on distributions for which an a priori
bound on the energy differences is known (Assumption 1).

Our algorithm, presented in Algorithm 2, takes as parameters c1, . . . , cN , C, andM from Assumption
1, along with an additional hyperparameter, χ > 0. It proceeds in four steps. First, like any MH
method, it generates a proposal θ′ from given distribution q. Second, it samples a batch size B
from a Poisson distribution. This makes the expected number of energy functions Ui evaluated by
our method at each step E[B] = χC2M2(θ, θ′) + CM(θ, θ′)3. Importantly, this means the batch

3Note that E[B] is typically << N and can be decreased using small step sizes. If, however, E[B] > N ,
then we can simply use standard MH in that iteration, similar to TFMH.
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Algorithm 2 TunaMH

given: initial state θ ∈ Θ; proposal dist. q; hyperparameter χ; Asm. 1 parameters ci, C, M
loop

propose θ′ ∼ q(·|θ) and compute M(θ, θ′)

. Form minibatch I
sample B ∼ Poisson

(
χC2M2(θ, θ′) + CM(θ, θ′)

)
initialize minibatch indices I ← ∅ (an initially empty multiset)
for b ∈ {1, . . . , B} do

sample ib such that P(ib = i) = ci/C, for i = 1 . . . N

with probability χcibCM
2(θ,θ′)+ 1

2 (Uib (θ′)−Uib (θ)+cibM(θ,θ′))

χcibCM
2(θ,θ′)+cibM(θ,θ′) add ib to I

end for
. Accept/reject step based on minibatch I
compute MH ratio r ← exp

(
2
∑
i∈I artanh

(
Ui(θ)−Ui(θ′)

ciM(θ,θ′)(1+2χCM(θ,θ′))

))
· q(θ

′|θ)
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

size may vary from iteration to iteration, and the expected size depends on θ and θ′. For example,
TunaMH may tend to set B larger for larger-distance proposals with a higher M(θ, θ′). Third, it
samples (with replacement) a minibatch of size B, but for each data point it samples, it has some
probability of ejecting this point from the minibatch. Finally, it accepts the proposed θ′ with some
probability, computed using a sum over the post-ejection minibatch. Our method can be derived
by carefully replacing the auxiliary variables in PoissonMH with local Poisson variables whose
distributions change each iteration depending on the pair (θ, θ′) (Appendix D). By construction
TunaMH is exact; it preserves the target distribution π as its stationary distribution. This is because
TunaMH is reversible, meaning its transition operator T satisfies π(θ)T (θ, θ′) = π(θ′)T (θ′, θ) for
any θ, θ′ ∈ Θ. This is a common condition that guarantees that a MCMC method has π as its
stationary distribution [9, 18].

Compared to previous exact methods, a significant benefit of TunaMH is that we can prove theoretical
guarantees on its efficiency. Specifically, its convergence speed is guaranteed to be close to standard
MH and χ allows us to control how close. To show this, we lower bound the convergence rate of
TunaMH in terms of the spectral gap, which is commonly used to characterize convergence speed in
the MCMC literature [15, 18, 25, 27, 28]. The larger the spectral gap, the faster the chain converges.
Definition 1. The spectral gap of a reversible Markov chain is the distance between the largest and
second-largest eigenvalues of its transition operator. That is, if the eigenvalues of the transition
operator are 1 = λ1 > λ2 ≥ λ3 · · · , then the spectral gap is γ = 1− λ2.
Theorem 2. TunaMH (Algorithm 2) is reversible with stationary distribution π. Let γ̄ denote the
spectral gap of TunaMH, and let γ denote the spectral gap of standard MH with the same target
distribution and proposal distribution. Then,

γ̄ ≥ exp
(
− 1
χ − 2

√
log 2
χ

)
· γ.

Intuitively, this theorem (proof in Appendix E) suggests the convergence rate of TunaMH is at most a
constant slower than that of standard MH, and can be increased by adjusting the hyperparameter χ.
Recall that χ also controls the batch size of TunaMH. Effectively, this means χ is a dial that allows
us to directly tune the trade-off between convergence rate and batch size. When χ is large, the batch
size B is large and the spectral gap ratio, γ̄/γ, is close to 1: the larger batch size is less scalable but
keeps a high convergence rate. Conversely, when χ is small, the batch size is small and the spectral
gap ratio is close to 0: we trade off slow-downs in convergence rate for scalability. For example, for
any 0 < κ < 1, to guarantee the spectral gap ratio γ̄/γ ≥ κ it suffices to set (Appendix F)

χ = 4
(1−κ) log(1/κ) , giving an average batch size of E[B] = 4C2M2(θ,θ′)

(1−κ) log(1/κ) + CM(θ, θ′). (2)

In practice, we usually want to minimize the wall-clock time to achieve a certain estimate error, which
requires tuning χ to optimally balance scalability and efficiency. We attempt to derive a theoretically
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optimal value of χ in Appendix G by minimizing the product of the relaxation time—a measure
of the number of steps needed—and the expected wall-clock time per step. Note that this product
may be loose in bounding the total wall-clock time (we leave tightening this bound to future work),
making the derived χ larger than necessary. In Section 5 we give a simple heuristic to tune χ, which
works well and is generally better than the derived value.

Theorem 2 only requires the mild constraints of Assumption 1 on the target distribution, so applies in
many scenarios and compares well to other exact methods. SMH further requires a Bernstein-von
Mises approximation to have guarantees on its batch size and acceptance rate. PoissonMH provides
convergence rate guarantees, but demands the strong assumption that the target distribution has a
global upper bound on the energy. FlyMC does not have any theoretical guarantees on performance.

4 Towards Optimal Exact Minibatch MH

In Theorem 2, we expose the trade-off between convergence rate and batch size in TunaMH. Here,
we take this analysis a step further to investigate the limits of how efficient an exact minibatch MH
method can be. To tackle this problem, we derive a lower bound on the batch size for any minibatch
MH method that retains exactness and fast convergence. We then show that TunaMH is asymptotically
optimal in terms of its dependence on the problem parameters C and M . In other words, it is not
possible to outperform TunaMH in this sense with a method in the class described by Algorithm 1.
Theorem 3. Consider any stateless exact minibatch MH algorithm described by Algorithm 1, any
state space Θ (with |Θ| ≥ 2), any C > 0, and any function M : Θ × Θ → R+. Suppose that the
algorithm guarantees that, for some constant κ ∈ (0, 1), for any distribution, the ratio between the
spectral gap of minibatch MH γ̂ and the spectral gap of standard MH γ is bounded by γ̂ ≥ κγ. Then
there must exist a distribution π over Θ and proposal q such that the batch size B of that algorithm,
when deciding whether to accept any transition θ → θ′, is bounded from below by

E[B] ≥ ζ · κ ·
(
C2M2(θ, θ′) + CM(θ, θ′)

)
(3)

for some constant ζ > 0 independent of algorithm and problem parameters.

To prove this theorem, we construct a random walk example over two states, then consider the
smallest batch size a method requires to distinguish between two different stationary distributions (Ap-
pendix H). The impact of Theorem 3 is three-fold:

First, it provides an upper bound on the performance of algorithms of Algorithm 1’s form: in each
iteration, the average batch size of any exact minibatch MH method of the form of Algorithm 1 must
be set as in (3) in order to maintain a reasonable convergence rate. To the best of our knowledge, this
is the first theorem that rigorously proves a ceiling for the possible performance of minibatch MH.

Second, TunaMH achieves this upper bound. In fact, Theorem 3 suggests that TunaMH is asymp-
totically optimal in terms of the problem parameters, C and M . To see this, observe that when we
ignore κ, both expressions that bound E[B] in (2) and (3) are O– (C2M2(θ, θ′) + CM(θ, θ′)). Thus
TunaMH reaches the lower bound, achieving asymptotic optimality in terms of C and M . (Of course,
this sense of “optimality” does not rule out potential constant-factor improvements over TunaMH or
improvements that depend on κ.)

Lastly, this result suggests directions for developing new exact minibatch MH algorithms: to be
significantly faster than TunaMH, we either need to introduce additional assumptions to the problem
or to develop new stateful algorithms.

In prior work, when assuming a very concentrated posterior, some methods’ batch size can scale in
O(1) [5, 7, 12] or O(1/

√
N) [12] in terms of the dataset size N while maintaining efficiency. Theo-

rem 3 is compatible with these results, further demonstrating this is essentially the best dependency on
N an exact minibatch MH method can achieve. We show this by explicitly assuming the dependency
of C and M on N , as in SMH [12], yielding the following corollary (proof in Appendix I):
Corollary 1. Suppose that C increases linearly with N (C = O– (N)) and M(θ, θ′) scales in
O– (N−(h+1)/2) for some constant h > 0. Then the lower bound in Theorem 3 becomesO– (N (1−h)/2).
In particular, it is O– (1) when h = 1, and O– (1/

√
N) when h = 2.

That is, TunaMH matches the state-of-the-art’s dependency on N , and this dependency is optimal.
Similarly, since C and M are the only problem parameters in the lower bound in Theorem 3, we can
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also get the optimal dependency on the other problem parameters by explicitly assuming the relation
of them with C and M .

5 Experiments

We compare TunaMH to MH, TFMH, SMH (i.e. TFMH with MAP control variates) and FlyMC.
We only include PoissonMH in the Gaussian mixture experiment, as it is not applicable in the other
tasks. All of these methods are unbiased, so they have the same stationary distribution. To ensure fair
wall-clock time comparisons, we coded each method in Julia; our implementations are at least as fast
as, if not faster than, prior implementations. For each trial, we use Gaussian random walk proposals.
We tune the proposal stepsize separately for each method to reach a target acceptance rate, and report
averaged results and standard error from the mean over three runs. We set χ to be roughly the largest
value that keeps χC2M2(θ, θ′) < 1 in most steps; we keep χ as high as possible while the average
batch size is around its lower bound CM(θ, θ′). We found this strategy works well in practice. We
released the code at https://github.com/ruqizhang/tunamh.

5.1 Robust Linear Regression

We first test TunaMH on robust linear regression [12, 20]. We use a Student’s t-distribution with
degree of freedom v = 4 and set data dimension d = 100 (Appendix J). We tune each method
separately to a 0.25 target acceptance rate. To measure efficiency, we record effective sample size
(ESS) per second—a common MCMC metric for quantifying the number of effectively independent
samples a method can draw from the posterior each second [9]. Figure 2a shows TunaMH is the most
efficient for all dataset sizes N ; it has the largest ESS/second. For minibatch MH methods, Figure 2b
compares the average batch size. TunaMH’s batch size is significantly smaller than FlyMC’s—about
35x with N = 105. TFMH has the smallest batch size, but this is because it uses a very small step
size to reach the target acceptance rate (Table 2 in Appendix J.2). This leads to poor efficiency, which
we can observe in its low ESS/second.

MAP variants Since TFMH and FlyMC have variants that use the maximum a posteriori (MAP)
solution to boost performance, we also test TunaMH in this scheme. SMH uses MAP to construct
control variates for TFMH to improve low acceptance rates. We consider both first- and second-order
approximations (SMH-1 and SMH-2). FlyMC uses MAP to tighten the lower bound (FlyMC-MAP).
For our method (TunaMH-MAP) and MH (MH-MAP), we simply initialize the chain with the MAP
solution. Figure 2c shows that TunaMH performs the best even when previous methods make use of
MAP. With control variates, SMH does increase the acceptance rate of TFMH, but this comes at the
cost of a drastically increased batch size (Figure 2d) which we conjecture is due to the control variates
scaling poorly in high dimensions (d = 100).4 FlyMC-MAP tightens the bounds, entailing a decrease
in the batch size. However, as clear in the difference in ESS/second, it is still less efficient than
TunaMH due to its strong dependence between auxiliary variables and the model parameters—an
issue that previous work also documents [24].

5.2 Truncated Gaussian Mixture

Next we test on a task with a multimodal posterior, a very common problem in machine learning.
This demonstrates the advantage of TunaMH not relying on MAP, because MAP is a single solution
and therefore is unable to reflect all possible modes in multimodal distributions. As a result, methods
that rely on MAP tuning or MAP-based control variates are unable to perform well on such problems.

We consider a Gaussian mixture. To get bounds on TunaMH, TFMH, SMH, and FlyMC, we truncate
the posterior, bounding θ1, θ2 ∈ [−3, 3] similar to Zhang and De Sa [27]. We can include PoissonMH
because its required bound exists after truncation. As in Seita et al. [26], we use a tempered posterior
π(θ) ∝ exp (−β

∑
i Ui(θ)) with N = 106 and β = 10−4. Figure 3a compares performance,

showing symmetric KL versus wall-clock time. TunaMH is the fastest, converging after 1 second,
whereas the others take much longer. As expected, SMH-1 performs worse than TFMH, verifying the
control variate is unhelpful for multimodal distributions. FlyMC and FlyMC-MAP are also inefficient;
their performance is on par with standard MH, indicating negligible benefits from minibatching.

4Control variates worked well in the SMH paper [12] because all experiments had small dimension (d = 10).
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Figure 2: Robust linear regression, d = 100. (a) ESS/second without MAP. (b) Average batch size
without MAP. (c) ESS/second with MAP. (d) Average batch size with MAP.
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Figure 3: Truncated Gaussian mixture. (a) Symmetric KL comparison. (b) True distribution. (c)
Denstity estimate of TunaMH after 1 second.

TunaMH also performs significantly better in terms of batch size, especially in comparison to
PoissonMH (Table 1). This is due to TunaMH’s local bound on the energy, as opposed to PoissonMH’s
global bound. This also allows TunaMH to run on more problem types, such as robust linear (Section
5.1) and logistic (Section 5.3) regression. To illustrate the estimate quality, we also visualize the
density estimate after 1 second; TunaMH’s estimate (Figure 3c) is very close to the true distribution
(Figure 3b), while the other methods do not provide on-par estimates within the same time budget
(Appendix J.3).

5.3 Logistic Regression on MNIST

Lastly we apply TunaMH to logistic regression on the MNIST image dataset of handwritten number
digits. Mirroring the work of FlyMC [20], we aim to classify 7s and 9s using the first 50 principal
components as features. We set χ = 10−5 following our heuristic. In Figure 4a we see that TunaMH
is the fastest of all methods to converge, as measured by wall-clock time. We also compare average
batch size in Table 1. TunaMH’s average batch size is 4x smaller than FlyMC’s. TFMH again has the
smallest batch size, but sacrifices efficiency by using a small step size in order to achieve the target
acceptance rate. Thus, overall, TFMH is again inefficient in these experiments.

Effect of Hyperparameter χ To understand the effect of χ in TunaMH, we report results with
varying χ. Figure 4b plots test accuracy as a function of the number of iterations. As χ increases,
TunaMH’s convergence rate approaches standard MH. This verifies our theoretical work: χ acts like
a dial to control convergence rate and batch size trade-off—mapping to the efficiency-scalability
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Table 1: Avg. batch size ± SE from the mean on 3 runs. PoissonMH not applicable to logistic reg.
Tasks TFMH FlyMC PoissonMH TunaMH

Gaussian Mixture 13.91± 0.016 811.52± 234.16 3969.67± 327.26 86.45± 0.04
Logistic Regression 39.28± 0.12 1960.19± 150.96 — 504.07± 0.33
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Figure 4: MNIST logistic regression. (a) Test accuracy comparison. (b)-(c) TunaMH’s test accuracy
for various χ. Batch size for χ = 10−5, 10−4, 5× 10−4 is 504.07, 810.35 and 2047.91 respectively.

trade-off. Figure 4c shows TunaMH’s wall-clock time performance is not sensitive to χ, as the
performance is superior to standard MH regardless of how we set it. However, χ needs to be tuned in
order to achieve the best performance. Previous methods do not have such a dial, so they are unable
to control this trade-off to improve the sampling efficiency.

6 Conclusion and Future Work

After demonstrating that inexact methods can lead to arbitrarily incorrect inference, we focus our
work in this paper on exact minibatch MH methods. We propose a new exact method, TunaMH,
which lets users trade off between batch size and guaranteed convergence rate—between scalability
and efficiency. We prove a lower bound on the batch size that any minibatch MH method must
use to maintain exactness and convergence rate, and show TunaMH is asymptotically optimal. Our
experiments validate these results, demonstrating that TunaMH outperforms state-of-the-art exact
methods, particularly on high-dimensional and multimodal distributions.

To guide our analysis, we formalized a class of stateless, energy-difference-based minibatch MH
methods, to which most prior methods belong. While TunaMH is asymptotically optimal for this
class, future work could develop new exact methods that are better by a constant factor or on some
restricted class of distributions. It would also be interesting to develop effective theoretical tools for
analyzing stateful methods, since these methods could potentially bypass our lower bound.

Broader Impact

Our work shines a light on how to scale MCMC methods responsibly. We make the case that inexact
minibatch MH methods can lead to egregious errors in inference, which suggests that—particularly for
high-impact applications [14, 22]—we should avoid their use. We provide an alternative: a minibatch
MH method that guarantees correctness, while also maintaining an optimal balance between efficiency
and scalability, enabling its safe use on large-scale applications.
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A Proof of Theorem 1

In this section, we prove Theorem 1, which asserts that any inexact stateless MH algorithm can
produce arbitrarily large bias between its target distribution (the distribution we are trying to sample
from) and its stationary distribution (the distribution that the chain actually produces samples from
asymptotically).

Proof. LetA denote the SubsMH in Algorithm 1 of the minibatch MH method in question. SinceA is
inexact, there must exist a state space Θ, proposal distribution q, and target distribution µ, satisfying
Assumption 1 with parameters c1, . . . , cN , C,M , where

µ(θ) ∝ exp

(
−

N∑
i=1

Vi(θ)

)
for some N and energy functions V1, . . . , VN , such that A run on µ with proposal distribution q does
not have stationary distribution µ.

Next, let aµ(θ, θ′) denote the acceptance probability of algorithm A on the above task for a proposed
transition from θ to θ′. Assume by way of contradiction that on this problem, it is always true that

aµ(θ, θ′)

aµ(θ′, θ)
=
µ(θ′)q(θ|θ′)
µ(θ)q(θ′|θ)

.

If this were true, then the overall transition probability of this chain, for θ 6= θ′, would be

Tµ(θ, θ′) = q(θ′|θ) · aµ(θ, θ′)

and it would hold that
µ(θ)Tµ(θ, θ′) = µ(θ′)Tµ(θ′, θ).

That is, the chain would be reversible, also known as satisfying detailed balance. But it is a standard
result that for any reversible chain, µ must be a stationary distribution of that chain. We have now
derived a contradiction, which establishes that our assumption is false. That is, there exists a θ, θ′ ∈ Θ
such that

aµ(θ, θ′)

aµ(θ′, θ)
6= µ(θ′) · q(θ|θ′)

µ(θ) · q(θ′|θ)
.

Explicitly, this means that if we define the function ∆V such that

∆V (i) = Vi(θ)− Vi(θ′),

then for this subsampling problem,

E [A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))]

E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))]
6= µ(θ′) · q(θ|θ′)

µ(θ) · q(θ′|θ)
. (4)

Without loss of generality, assume that

q(θ|θ′)/q(θ′|θ) ≤ 1.

(This is without loss of generality since we can ensure it is the case by swapping θ and θ′.) We fixed
θ and θ′ to be the pair satisfying Equation 4 throughout this section.

Constructing an example. We use this to prove the theorem by a constructive example. Let
x1, . . . , xN be defined by

xi = ∆V (i) = Vi(θ)− Vi(θ′).
Define X as the sum

X =

N∑
i=1

xi.

For some parameter K ∈ N (to be defined later), consider the state space Ω defined as

Ω = {(k, z) | k ∈ {0, . . . ,K − 1}, 0 ≤ z ≤ exp(kX)},
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using the natural measure for a finite disjoint union of measure spaces. Define a target distribution
over Ω given by the density

π(k, z) ∝ exp

(
−

N∑
i=1

k · xi

)
,

or equivalently

π(k, z) ∝ exp

(
−

N∑
i=1

Ui(k, z)

)
where Ui(k, z) = kxi.

Define a proposal distribution q̂, such that, starting from (k, z):

• With probability 1/4, we sample z′ uniformly from [0, exp(kX)] and propose a transition
to (k, z′).

• With probability 1/4, we propose a transition to (k − 1, z), if it is in Ω.

• With probability 1
4 ·

q(θ|θ′)
q(θ′|θ) , we propose a transition to (k + 1, z), if it is in Ω.

• With the remaining probability, we just propose to stay at (k, z).

This is effectively acting as a random walk over k, and our goal will be to show that while the true
target distribution π has a marginal in k that is the uniform distribution, the minibatch MH method
causes the chain’s transition to be biased to step more in one direction than another, resulting in a
highly biased stationary distribution (where we can make the bias arbitrarily large by setting K).

We use the same ci and C as before, and define a new function M̂ such that

M̂((k, z), (k + 1, z)) = M̂((k, z), (k − 1, z)) = M(θ, θ′)

and M̂(· · · ) = 0 for other proposed transitions (we can set M̂ however we want for pairs of states
that are never proposed in a transition, since this will not affect the algorithm). Clearly, this setup
satisfies Assumption 1, since the original distribution did.

Now, consider what our minibatch MH method will do when run on this task. There are three cases
to consider.

Proposed changes in z. When a proposed change in z is made, the resulting ∆U will be uniformly
0, and the probability of the reverse transition will be equal (1/4 in both directions), so the algorithm
will be passed the arguments

A(0, N, 1, c1, . . . , cN , C, 0).

Since this does not depend at all on z or k, this means that the acceptance probability of these
transitions will be the same regardless of the state. Call this probability α0.

A proposal to decrease k. When a proposal is made to decrease k, the probability of the forward
and reverse transitions will be

q̂((k − 1, z)|(k, z)) =
1

4
and q̂((k, z)|(k − 1, z)) =

1

4
· q(θ|θ

′)

q(θ′|θ)
.

It follows that
q̂((k, z)|(k − 1, z))

q̂((k − 1, z)|(k, z))
=
q(θ|θ′)
q(θ′|θ)

.

The energy function difference for this proposal will be
∆U(i) = Ui((k, z))− Ui((k − 1, z)) = kxi − (k − 1)xi = xi,

so in particular ∆U = ∆V . And, of course for this transition M̂ will take on the value M(θ, θ′). So,
the minibatch MH algorithm will be passed the arguments

A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′)),

and so it will accept with probability
E [A(∆V,N, q(θ|θ′)/q(θ′|θ), c1, . . . , cN , C,M(θ, θ′))] .

Call this probability α−.
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A proposal to increase k. When a proposal is made to increase k, the probability of the forward
and reverse transitions will be

q̂((k + 1, z)|(k, z)) =
1

4
· q(θ|θ

′)

q(θ′|θ)
. and q̂((k, z)|(k + 1, z)) =

1

4
.

It follows that
q̂((k, z)|(k + 1, z))

q̂((k + 1, z)|(k, z))
=
q(θ′|θ)
q(θ|θ′)

.

The energy function difference for this proposal will be

∆U(i) = Ui((k, z))− Ui((k + 1, z)) = kxi − (k + 1)xi = −xi,

so in particular ∆U = −∆V . And, as before for this transition M̂ will take on the value M(θ, θ′).
So, the minibatch MH algorithm will be passed the arguments

A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′)),

and so it will accept with probability

E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))] .

Define the probability α+ as

α+ = E [A(−∆V,N, q(θ′|θ)/q(θ|θ′), c1, . . . , cN , C,M(θ, θ′))] · q(θ|θ
′)

q(θ′|θ)
.

The resulting Markov chain. From the above analysis, we can conclude that the Markov chain
that results from subsampling algorithm A applied to this method is as follows. Starting from (k, z),
if we let T̂ denote the transition operator of this Markov chain,

• With probability 1
4 · α0, we sample z′ uniformly from [0, exp(kX)] and transition to (k, z′).

• With probability 1
4 · α−, we transition to (k − 1, z), if it is in Ω.

• With probability 1
4 · α+, we transition to (k + 1, z), if it is in Ω.

• With the remaining probability, we just stay at (k, z).

Consider the distribution

ν(k, z) ∝
(
α+

α−

)k
.

It is easy to see that this Markov chain satisfies detailed balance with ν as its stationary distribution.
In particular,

ν(k, z) · T ((k − 1, z)|(k, z)) =

(
α+

α−

)k
· 1

4
· α−

=

(
α+

α−

)k−1

· 1

4
· α+

= ν(k − 1, z) · T ((k, z)|(k − 1, z)).

So ν will be a stationary distribution of the minibatch MH chain T̂ .

Observe that the marginal distribution of k in π is

π(k) =

∫ exp(kX)

0

π(k, z) dz ∝ exp

(
−

N∑
i=1

k · xi

)
· exp(kX) = 1,

so the marginal distribution of k in the target distribution is actually the uniform distribution. On the
other hand, using the same derivation, the marginal distribution of k in ν is

ν(k) ∝
(
α+

α−

)k
· exp(kX) =

(
α+

α−
· exp(X)

)k
.
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We know immediately by substituting our definitions of α+ and α− into (4) that

α−
α+
6= µ(θ′)

µ(θ)
= exp

(
N∑
i=1

(Vi(θ)− Vi(θ′)

)
= exp

(
N∑
i=1

xi

)
= exp(X).

As a consequence, we know that
α+

α−
· exp(X) 6= 1.

Call this constant
A =

α+

α−
· exp(X),

and observe that A 6= 1 and that A is independent of our choice of K (which still remains unset).
This gives

ν(k) ∝ Ak.
Explicitly, this distribution will be

ν(k) =
1∑K−1

k=0 Ak
·Ak =

1−A
1−AK

·Ak.

Since the total variation distance between two probability measures is lower bounded by the TV-
distance between their marginal distributions in any one variable, and similarly the KL divergence
is also lower bounded by the KL divergence between its marginal distributions in any one variable
(both these facts follow directly from the monotonicity property of the f -divergence, of which the
KL-divergence and TV-distance are both instances), to prove this theorem it suffices to show both
TV-distance and KL-divergence bounds on the marginal distributions in k. We do this now.

Bounding the total variation distance. Now, we compute the total variation distance between π
and ν. For this bit of the proof, we will just consider the marginal distribution in k, as this provides a
lower bound on the TV distance between the joint distribution. For simplicity, for the rest of the proof,
we let π̃ denote this marginal distribution of k in ν, and also let π denote the marginal distribution of
k in π. By the definition of total variation distance,

TV(π, π̃) =
1

2

K−1∑
k=0

|π̃(k)− π(k)|

=
1

2

K−1∑
k=0

∣∣∣∣ 1−A
1−AK

·Ak − 1

K

∣∣∣∣ .
If A < 1,

TV(π, π̃) =

K0∑
k=0

(
1−A

1−AK
·Ak − 1

K

)
=

1−AK0

1−AK
− K0

K
(5)

where K0 is the largest k such that
1−A

1−AK
·Ak > 1

K
.

By solving the above equation, we have

K0 =

⌊
log(1−AK)− log(1−A)− log(K)

log(A)

⌋
.

We can lower bound K0 by

K0 ≥
log(1−AK)− log(1−A)− log(K)

log(A)
− 1

≥ − log(1−A)− log(K)

log(A)
− 1.
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It follows that the first term in (5) becomes

1−AK0

1−AK
≥

1− 1
KA(1−A)

1−AK
≥ 1− 1

KA(1−A)
.

We can also upper bound K0 and then the second term can be bounded as the following

K0

K
≤ log(1−AK)− log(K)

K log(A)
.

When K ≥ log(1−exp(− 1
2 ))

log(A) , we have log(1−AK) ≥ − 1
2 . Since log(K) ≤ K 1

2 and K−1 ≤ K− 1
2 ,

we have

K0

K
≤
− 1

2K
−1 −K− 1

2

log(A)
≤ −

(
3

2 log(A)

)
K−

1
2 .

Therefore, the TV distance is bounded by

TV(π, π̃) ≥ 1− 1

KA(1−A)
+

(
3

2 log(A)

)
K−

1
2

≥ 1 +

(
3

2 log(A)
− 1

A(1−A)

)
K−

1
2 .

To make TV(π, π̃) ≥ δ, we just need to set

K ≥

(
3

2 log(A) −
1

A(1−A)

)2

(1− δ)2
.

Similarly, if A > 1,

TV(π, π̃) =

K−1∑
k=K0

(
1−A

1−AK
·Ak − 1

K

)

=
AK −AK0

AK − 1
− K −K0

K

=
K0

K
− AK0 − 1

AK − 1

where

K0 =

⌈
log(AK − 1)− log(A− 1)− log(K)

log(A)

⌉
which is the smallest k such that

1−A
1−AK

·Ak > 1

K
.

We can get an upper bound of K0 by

K0 ≤
log(AK − 1)− log(A− 1)− log(K)

log(A)
+ 1

= logA

(
AK − 1

K(A− 1)

)
+ 1.

Therefore,

AK0 − 1

AK − 1
≤
A ·
(

AK−1
K(A−1)

)
− 1

AK − 1

=
A

K(A− 1)
− 1

AK − 1
.
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We can lower bound K0 by

K0 ≥ logA
(
AK − 1

)
− logA(A− 1)− logA(K).

When K ≥ 1− logA(A− 1), AK − 1 ≥ AK−1. Then we have

K0 ≥ logA
(
AK−1

)
− logA(A− 1)− logA(K)

= K − 1− logA(A− 1)− logA(K).

It follows that
K0

K
≥ 1− 1

K
− logA(A− 1)

K
− logA(K)

K
.

Since log(K) ≤ K 1
2 and K−1 ≤ K− 1

2 , the TV distance can be bounded by

TV(π, π̃) ≥ 1− 1

K
− logA(A− 1)

K
− logA(K)

K
− A

K(A− 1)
+

1

AK − 1

≥ 1−
(

1 + logA(A− 1) +
1

log(A)
+

A

A− 1

)
K−

1
2 .

To make TV(π, π̃) ≥ δ, we just need

K ≥

(
1 + logA(A− 1) + 1

log(A) + A
A−1

1− δ

)2

.

Since we could set K arbitrarily, it is clear that we can do this.

Bounding the KL divergence. We can compute KL divergence between π and π̃ as follows

KL(π, π̃) =

K−1∑
k=0

1

K
· log

(
1

K
· 1−AK

(1−A)Ak

)

=
1

K
·
K−1∑
k=0

[
log

(
1

K
· 1−AK

(1−A)

)
− k log(A)

]

= log

(
1−AK

K(1−A)

)
− log (A)

K

K−1∑
k=0

k

= log

(
1−AK

K(1−A)

)
− (K − 1) log (A)

2

If A < 1, we have

KL(π, π̃) = log
(
1−AK

)
− log((1−A)K)− K log (A)

2
+

log (A)

2

≥ log
(
1−AK

)
−
(

1−A+ log (A)

2

)
K +

log (A)

2
.

The last equation is because log(x) ≤ x
2 .

To further simplify the above equation, we first note that 1 − A + log (A) < 0 when A 6= 1. And
then when K ≥ logA

(
1−A 1

2

)
, we have 1−AK ≥ A 1

2 . It follows that we can simplify it to be

KL(π, π̃) ≥ log (A)−
(

1−A+ log (A)

2

)
K.

To make KL(π, π̃) ≥ ρ, it is clear that we just need to set

K ≥ 2(ρ− log(A))

A− 1− log(A)
.

17



Consider when A > 1,

KL(π, π̃) = log

(
AK − 1

K(A− 1)

)
− (K − 1) log (A)

2
.

If K ≥ log(2)
log(A) , we have that AK − 1 ≥ AK

2 . It follows that

KL(π, π̃) ≥ K log(A)− log(K)− log(2A− 2)− K log (A)

2

=
K log (A)

2
− log(K)− log(2A− 2).

To make KL(π, π̃) ≥ ρ, we need

K log (A)

2
− log(K) ≥ ρ+ log(2A− 2).

Let K = exp(y). By Taylor series, we know exp(y) ≥ y2

2 . Then it follows that

y2 log (A)

4
− y ≥ ρ+ log(2A− 2).

Solve the above inequality, we can get

y ≥
1 + 2 · log(A)

4 ·
(
ρ+ log(2A− 2)

)
2 · log(A)

4

=

2 + log(A)

(
ρ+ log(2A− 2)

)
log(A)

.

It follows that it suffices to set

K ≥ exp

2 + log(A)

(
ρ+ log(2A− 2)

)
log(A)

 .

Concluding the proof. The theorem now follows from choosing a K large enough that both the
TV distance inequality we derived and the KL divergence inequality we derived are satisfied.

B Connection between Theorem 1 and TV Bound of Inexact MH Methods

Some inexact methods such as MHSubLhd [6] have bounded TV distance between the target distribu-
tion and the approximate distribution (see Proposition 3.2 in Bardenet et al. [6]). We would like to
emphasize that Theorem 1 is compatible with these results. Specifically, Proposition 3.2 assumes
PMH has a bounded mixing time. It is well known that this produces a TV bound for any kernel by
coupling [18]. Our theorem does not have this assumption; it suggests that for MHSubLhd, with a
given user-specified error, there exists a target distribution and proposal satisfying Theorem 1, on
which PMH either does not have bounded mixing time or the mixing time is large enough such that
the TV bound is greater than δ.

C Proof of Statement 1

Proof. We prove this by construction. Consider a dataset {xi}Ni=1. The data instances can take two
values {−MN ,

M
N } where M is a positive constant. Assume that half of the data instances take value

M
N and the remaining take −MN . Let the target distribution be π(θ) = 1

Z exp
(
θ ·
∑N
i=1 xi

)
and the

domain for θ be {0, 1, . . . ,K − 1}. We define the proposal distribution to be the following

p(θ, θ) =
1

2
, for all θ; p(θ, θ − 1) =

1

4
, p(θ, θ + 1) =

1

4
for θ ∈ {1, . . . ,K − 2};

and p(0, 1) = p(K − 1,K − 2) = 1
2 .
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Recall that FMH factorizes the target distribution π(θ) and the proposal distribution p(θ) as follows

π(θ) ∝
m∏
i=1

πi(θ), p(θ) ∝
m∏
i=1

pi(θ)

where m ≥ 1 and πi and pi are some non-negative functions. Then the acceptance rate is given by

aFMH(θ, θ′) =

m∏
i=1

min

(
1,
π(θ′)pi(θ

′, θ)

π(θ)pi(θ, θ′)

)
.

A common choice is to setm = N . On this example, we can write the acceptance rate of transitioning
from θ to θ′ = θ + 1 in FMH as follows

aFMH(θ, θ′) =

N∏
i=1

min (1, exp(xi)) =

(
exp

(
− M

N

))N
2

= exp

(
− M

2

)
.

It is easy to show that the acceptance rate of transitioning from θ to θ′ = θ − 1 in FMH is the same.

When M > −2 log(p), it is clear that the acceptance rate of FMH is less than p. By contrast, the
acceptance rate of standard MH is

aMH(θ, θ′) = min

(
1, exp

(
±

N∑
i=1

xi

))
= 1.

In order to preserve geometric ergodicity, Cornish et al. [12] introduces truncated FMH (TFMH)
which forces FMH degrade to standard MH when the energy exceeds a threshold R. If we set
hyperparameter R > M/2, then in each step, the value of aTFMH will be the same as aFMH. Therefore,
if setting M > −2 log(p), we have

aTFMH

aMH
≤ p

1
= p.

If we set R ≤M/2, TFMH falls back to standard, full-batch MH — using the whole dataset at each
step. This proves the statement.

D Construction of Algorithm 2

Algorithm 2 can be derived by carefully replacing the global bounds on the energy in PoissonMH [27]
with local bounds on the energy differences (Assumption 1). PoissonMH is a variant of Poisson
Gibbs and therefore inherits the same assumptions for Gibbs sampling on graphical models, which
are often violated in the applications of MH. In particular, PoissonMH works on factor graphs which
define a distribution π(θ) over a set of factors {φi(θ)}Ni=1 as follows

π(θ) ∝ exp

(
N∑
i=1

φi(θ)

)
.

PoissonMH assumes that each factor φi is non-negative without the loss of generality (we can add a
positive constant to φi to make it non-negative without changing the distribution) and is bounded
globally by a constant Mi. That is

0 ≤ φi(θ) ≤Mi for all θ.

This assumption does not hold for most applications of MH, such as the linear and logistic regression
experiments in Section 5.

Let L =
∑
iMi and define Poisson auxiliary variable si as the following

si|θ ∼ Poisson
(
λMi

L
+ φi(θ)

)
,
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Algorithm 3 PoissonMH

given: initial state θ ∈ Θ; proposal dist. q; hyperparameter λ; Global bounds Mi, L
loop

propose θ′ ∼ q(·|θ)
for i ∈ {1, . . . , N} do

sample si ∼ Poisson
(
λMi

L + φi(θ)
)

end for
form minibatch S ← {i|si > 0}

compute MH ratio r ←
exp
(∑

i∈S si log
(

1+ L
λMi

φi(θ
′)
))
q(θ′|θ)

exp
(∑

i∈S si log
(

1+ L
λMi

φi(θ)
))
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

where λ > 0 is a hyperparameter. Running standard MH on the joint distribution of θ and si results
in the following acceptance ratio

rPoissonMH(θ, θ′) =
exp

(∑
i si log

(
1 + L

λMi
φi(θ

′)
))

q(θ′|θ)

exp
(∑

i si log
(

1 + L
λMi

φi(θ)
))

q(θ|θ′)
.

Here, the sum is essentially performed over the set of index i whose si is greater than zero. When
si = 0, it is clear that the factor φi will not appear in the acceptance ratio rPoissonMH. Thus PoissonMH
enables using a subset of factors for the MH decision step (Algorithm 3).

To construct our method from this, we can define the factor φi in the factor graph to be

φi(x) =
Ui(θ) + Ui(θ

′)

2
− Ui(x) +

ci
2
M(θ, θ′) (6)

where x ∈ {θ, θ′}. It is easy to see that φi satisfy 0 ≤ φi(x) ≤ ciM(θ, θ′). And then we define the
Poisson variables si as the follows

si|(θ, θ′) ∼ Poisson
(
λci
C

+ φi(θ)

)
= Poisson

(
λci
C

+
Ui(θ

′)− Ui(θ) + ciM(θ, θ′)

2

)
.

These Poisson auxiliary variables {si}Ni=1 are called local, because their distributions change each
iteration depending on the current pair (θ, θ′) and only rely on local bounds in Assumption 1. This is
in contrast to the global auxiliary variables used in PoissonMH and FlyMC which are used to form a
joint distribution with θ and both require global bounds in their conditional distributions.

The acceptance ratio rTunaMH is the same as rPoissonMH but with the new definitions of si and φi. We
outline TunaMH using the notation of φi and si in Algorithm 4.

We now show that Algorithm 4 is statistically equivalent to Algorithm 2. To see this, we first use
thinning, a commonly used technique [7, 8, 12, 19, 27], to quickly resample all si from their new
distributions in each iteration in Algorithm 4. This is achieved by replacing the global bounds with
the local bounds in Algorithm 4 in the Appendix of Zhang and De Sa [27]. Specifically, we first
sample B from a Poisson distribution

B ∼ Poisson(λ+ CM(θ, θ′)).

Here λ+ CM(θ, θ′) is an upper bound on E[
∑
i si]. We then form the minibatch by running

for b ∈ {1, . . . , B} do
sample ib such that P(ib = i) = ci/C, for i = 1 . . . N

with probability λcib+Cφib (θ)

λcib+CcibM(θ,θ′) add ib to I
end for

By substituting λ = χC2M2(θ, θ′) and the expression of φi, we can get the part of “form minibatch
I” in Algorithm 2.
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Algorithm 4 TunaMH

given: initial state θ ∈ Θ; proposal dist. q; λ; Asm. 1 parameters ci, C, M ; function φi defined
in (6)
loop

propose θ′ ∼ q(·|θ) and compute M(θ, θ′)
for i ∈ {1, . . . , N} do

sample si ∼ Poisson
(
λci
C + φi(θ)

)
end for
form minibatch S ← {i|si > 0}

compute MH ratio r ←
exp
(∑

i∈S si log
(

1+ C
λci

φi(θ
′)
))
q(θ′|θ)

exp
(∑

i∈S si log
(

1+ C
λci

φi(θ)
))
q(θ|θ′)

with probability min(1, r), set θ ← θ′

end loop

To see that the MH ratio in Algorithm 2 and 4 are equivalent, we can write out r in Algorithm 4 using
the above fast way of resampling si

rTunaMH =
exp

(∑
i∈I log

(
1 + C

λci
φi(θ

′)
))

q(θ′|θ)

exp
(∑

i∈I log
(

1 + C
λci
φi(θ)

))
q(θ|θ′)

.

We then substitute the definition of φi in (6) and it follows that

rTunaMH = exp

(∑
i∈I

(
log

(
2λci + C (Ui(θ)− Ui(θ′) + ciM(θ, θ′))

2λci + C (Ui(θ′)− Ui(θ) + ciM(θ, θ′))

)))
· q(θ

′|θ)
q(θ|θ′)

.

We can rearrange the log term inside rTunaMH as

log

(
2λci + C (Ui(θ)− Ui(θ′) + ciM(θ, θ′))

2λci + C (Ui(θ′)− Ui(θ) + ciM(θ, θ′))

)
= log

(
2λci + C (Ui(θ)− Ui(θ′)) + ciCM(θ, θ′)

2λci + C (Ui(θ′)− Ui(θ)) + ciCM(θ, θ′)

)
= log

(
1 + C

2λci+ciCM(θ,θ′) (Ui(θ)− Ui(θ′))
1 + C

2λci+ciCM(θ,θ′) (Ui(θ′)− Ui(θ))

)

= 2 artanh

(
C (Ui(θ)− Ui(θ′))
ci(2λ+ CM(θ, θ′))

)
.

So rTunaMH can be written as

rTunaMH = exp

(
2
∑
i∈I

artanh

(
C (Ui(θ)− Ui(θ′))
ci(2λ+ CM(θ, θ′))

))
· q(θ

′|θ)
q(θ|θ′)

.

Finally setting λ to be χC2M2(θ, θ′) produces the MH ratio in Algorithm 2.

By proving the equivalence of the minibatch and the MH ratio, we show that Algorithm 2 and 4 are
statistically equivalent.

E Proof of Theorem 2

In this section, we prove Theorem 2, which asserts that TunaMH is reversible and has stationary
distribution π, and gives bounds on its spectral gap relative to the spectral gap of the original
Metropolis-Hastings algorithm.
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Proof. For convenience, we prove Theorem 2 using Algorithm 4 statement which is statistically
equivalent to Algorithm 2. The transition operator can be written as the following

T (θ, θ′)

= E

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C + φi(θ

′)
)
− log si!

])
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C + φi(θ)

)
− log si!

]) )}

= E

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C + φi(θ

′)
)])

q(θ′|θ) exp
(∑

i

[
si log

(
λci
C + φi(θ)

)]) )}

=
∑
s

{
q(θ′|θ) min

(
1,
q(θ|θ′) exp

(∑
i

[
si log

(
λci
C + φi(θ

′)
)])

q(θ′|θ) exp
(∑

i

[
si log

(
λci
C + φi(θ)

)]) )}∏
i

p(si|θ, θ′)

=
∑
s

{
q(θ′|θ) min

(
exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− φi(θ)−

λci
C
− log si!

])
,

q(θ|θ′) exp
(∑

i

[
si log

(
λci
C + φi(θ

′)
)])

q(θ′|θ) exp
(∑

i φi(θ) + λci
C + log si!

) )}

=
∑
s

{
q(θ′|θ) min

(
exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− φi(θ)−

λci
C
− log si!

])
,

q(θ|θ′)
q(θ′|θ)

exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)
− φi(θ)−

λci
C
− log si!

]))}

Multiplying π(θ) to both sides produces

π(θ)T (θ, θ′)

=
1

Z
exp

(
−
∑
i

Ui(θ)

)
T (θ, θ′)

=
1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)− λci

C
− log si!

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)

− Ui(θ) + Ui(θ
′)

2
− ci

2
M(θ, θ′)− λci

C
− log si!

])))
.

It is clear that the expression is symmetric in θ and θ′. Therefore the chain is reversible and its
stationary distribution is π(θ). This proves the first part of the theorem.
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To prove the second part of the theorem, the bound on the spectral gap, we continue to reduce the
transition probability in the previous proof to

π(θ)T (θ, θ′)

=
1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
λci
C

+ φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)− si log

λci
C

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
λci
C

+ φi(θ
′)

)

− Ui(θ) + Ui(θ
′)

2
− ci

2
M(θ, θ′)− si log

λci
C

]))

·
∏
i

1

si!
exp

(
−λci
C

)(
λci
C

)si
=

1

Z

∑
s

min

(
q(θ′|θ) exp

(∑
i

[
si log

(
1 +

C

λci
φi(θ)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)

])
,

q(θ|θ′) exp

(∑
i

[
si log

(
1 +

C

λci
φi(θ

′)

)
− Ui(θ) + Ui(θ

′)

2
− ci

2
M(θ, θ′)

]))

·
∏
i

1

si!
exp

(
−λci
C

)(
λci
C

)si
.

Note that si here are non-negative integers that a Poisson variable can take, not variables. So if we let
ri ∼ Poisson

(
λci
C

)
and ri to be all independent, we can write this as

π(θ)T (θ, θ′) =
1

Z
Emin

(
q(θ′|θ) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ)

))
,

q(θ|θ′) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ

′)

)))

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]
.

Assume G(θ, θ′) is the transition operator of standard MH. Consider the ratio

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)

=
1

Z
Emin

(
q(θ′|θ) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ)

))
,

q(θ|θ′) exp

(∑
i

ri log

(
1 +

C

λci
φi(θ

′)

)))

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]

·

[
1

/(
1

Z
min

(
q(θ′|θ) exp

(
−
∑
i

Ui(θ)

)
, q(θ|θ′) exp

(
−
∑
i

Ui(θ
′)

)))]
.
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We know that min(A,B)
min(C,D) = min

(
A

min(C,D) ,
B

min(C,D)

)
≥ min

(
A
C ,

B
D

)
. The last inequality is due to

the fact that 1
min(C,D) ≥

1
C and 1

min(C,D) ≥
1
D .

With this inequality, we can continue simplifying the ratio,

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)

≥ E

[
min

(
exp

(∑
i ri log

(
1 + C

λci
φi(θ)

))
exp (−

∑
i Ui(θ))

,
exp

(∑
i ri log

(
1 + C

λci
φi(θ

′)
))

exp (−
∑
i Ui(θ

′))

)]

· exp

[
− 1

2

(∑
i

Ui(θ) +
∑
i

Ui(θ
′) + CM(θ, θ′)

)]

= E

[
min

(
exp

(∑
i

(
ri log

(
1 +

C

λci
φi(θ)

)
− φi(θ)

))
,

exp

(∑
i

(
ri log

(
1 +

C

λci
φi(θ

′)

)
− φi(θ′)

)))]

= E

[
max

(
exp

(∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
,

exp

(∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

))))−1]
.

Because f(x) = 1
x is a convex function, by Jensen’s inequality it follows

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[
max

(
exp

(∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
,

exp

(∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

))))]−1

.

We use max(A,B) ≤ (Ap +Bp)
1
p to remove the max function.

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[(
exp

(
p
∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
+

exp

(
p
∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

)))) 1
p

]−1

.

Since x
1
p is concave, by Jensen’s inequality

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ E

[
exp

(
p
∑
i

(
φi(θ)− ri log

(
1 +

C

λci
φi(θ)

)))
+

exp

(
p
∑
i

(
φi(θ

′)− ri log

(
1 +

C

λci
φi(θ

′)

)))]− 1
p

=

[∏
i

E exp

(
pφi(θ)− pri log

(
1 +

C

λci
φi(θ)

))
+

∏
i

E exp

(
pφi(θ

′)− pri log

(
1 +

C

λci
φi(θ

′)

))]− 1
p

.
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E

[
exp

(
− pri log

(
1 + C

λci
φi(θ)

))]
is the moment generating function of the Poisson random

variable ri evaluated at

t = −p log

(
1 +

C

λci
φi(θ)

)
.

We know that

E exp(rit) = exp

(
λci
C

(exp(t)− 1)

)
,

therefore,

E

[
exp

(
− pri log

(
1 +

C

λci
φi(θ)

))]
= exp

(
λci
C

(
1 +

C

λci
φi(θ)

)−p
− λci

C

)
.

Substituting this into the original expression produces

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥

[∏
i

exp

(
λci
C

(
1 +

C

λci
φi(θ)

)−p
− λci

C
+ pφi(θ)

)

+
∏
i

exp

(
λci
C

(
1 +

C

λci
φi(θ

′)

)−p
− λci

C
+ pφi(θ

′)

)]− 1
p

.

Considering the term inside exp. Define a function f(y) = λci
C

(
1 + C

λci
y
)−p
− λci

C + py for y ≥ 0.
It is clear that f(0) = 0. The first derivative is

f ′(y) = p+ (−p)
(

1 +
C

λci
y

)−p−1

which is also 0 at y = 0. The second and third derivatives are

f ′′(y) = (−p)(−p− 1)
C

λci

(
1 +

C

λci
y

)−p−2

, (7)

f ′′′(y) = (−p)(−p− 1)(−p− 2)

(
C

λci

)2(
1 +

C

λci
y

)−p−3

. (8)

By Taylor series, we have

f(y) = f(0) + f ′(0)y +
f ′′(0)

2!
y2 +

f ′′′(v)

3!
y3

where v is between 0 and y. By (8), we know that f ′′′(v) ≤ 0, therefore since y ≥ 0, we have

f(y) ≤ f(0) + f ′(0)y +
f ′′(0)

2!
y2

=
f ′′(0)

2!
y2.

Substituting y = φi(θ) produces

f(φi(θ)) ≤ (−p)(−p− 1)
C

λci
φ2
i (θ)

≤ (−p)(−p− 1)
C

λci
c2iM

2(θ, θ′).

Similarly, we can get

f(φi(θ
′)) ≤ p(p+ 1)

C

λci
c2iM

2(θ, θ′).
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Substituting these to the spectral ratio, we get

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥

[
2
∏
i

exp

(
p(p+ 1)

C

λci
c2iM

2(θ, θ′)

)]− 1
p

=

[
2 exp

(∑
i

p(p+ 1)
C

λ
ciM

2(θ, θ′)

)]− 1
p

=

[
2 exp

(
p(p+ 1)

C2

λ
M2(θ, θ′)

)]− 1
p

= 2−
1
p exp

(
−(p+ 1)

C2

λ
M2(θ, θ′)

)
.

Now, we maximize the R.H.S. with respect to p. Let E = C2

λ M
2(θ, θ′), then it becomes

2−
1
p exp (−(p+ 1)E) = exp

(
−E − pE − 1

p
log 2

)
.

The maximum is attained at p =
√

log 2
E and the value is

exp
(
−E − 2

√
E log 2

)
.

It follows that

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ exp

(
−C

2

λ
M2(θ, θ′)− 2

√
C2

λ
M2(θ, θ′) log 2

)
.

We set λ = χC2M2(θ, θ′), it becomes

π(θ)T (θ, θ′)

π(θ)G(θ, θ′)
≥ exp

(
− 1

χ
− 2

√
log 2

χ

)
.

We complete the theorem by a Dirichlet form argument. We can write the Dirichlet form E(f) of a
Markov chain with transition operator G as [13]:

E(f) =
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
G(θ, θ′)π(θ)dθdθ′.

If we let L2
0(π) to be the Hilbert space of functions f such that f has mean zero and is square

integrable with respect to probability measure π. It follows that the spectral gap γ of a Markov chain
is [2]

γ = inf
f∈L2

0(π):V arπ [f ]=1
E(f).

From this, it is easy to get that

γ̄ = inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
T (θ, θ′)π(θ)dθdθ′

]

≥ exp

(
− 1

χ
− 2

√
log 2

χ

)
· inf
f∈L2

0(π):V arπ [f ]=1

[
1

2

∫ ∫ [
(f(θ)− f(θ′))

2
]
G(θ, θ′)π(θ)dθdθ′

]

= exp

(
− 1

χ
− 2

√
log 2

χ

)
· γ.
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F Derivation of Equation (2)

Based on the bound in Theorem 2, to make sure that the spectral ratio γ̄/γ ≥ κ, we can set χ such
that

exp

(
− 1

χ
− 2

√
log 2

χ

)
= κ.

Solving the above equation gives us

χ =
(2 log 2− log κ+ 2

√
log 2(log 2− log κ))

log2 κ
≤ 4

(1− κ) log(1/κ)
.

Since the spectral gap ratio is monotonically increasing w.r.t. χ, we can instead set χ to the upper
bound

χ =
4

(1− κ) log(1/κ)

which guarantees that γ̄/γ ≥ κ.

G Theoretically Optimal Value of χ

The overall wall-clock time L for a chain to converge can be represented as the number of steps times
the wall-clock time l of each step. We then minimize an upper bound of this overall wall-clock time
to get the optimal value of χ.

Consider a lazy Markov chain on a finite state Θ. The relaxation time trel of a Markov chain is
defined to be the inverse of the spectral gap γ: trel = 1/γ. The mixing time tmix, i.e. the number of
steps required for a chain to converge to within TV distance δ to the target distribution π, is bounded
by Levin and Peres [18]

tmix ≤ trel log

(
1

δ ·minθ∈Θ π(θ)

)
.

It follows that the overall wall-clock time L is upper bouned by

L = l · tmix ≤ l · trel log

(
1

δ ·minθ∈Θ π(θ)

)
.

We assume that the expected wall clock time to run a step is proportional to the batch size plus some
constant, which measures the cost of computing the proposal. Specifically, We use η and ξ to denote
the time to get a proposal θ′ and compute a Ui in a step. Then we can write the time of a step l as

l = Bξ + η.

In order to minimize L, we can instead minimize its upper bound, which is equivalent to minimize

l · trel = (Bξ + η) · 1

γ
. (9)

Recall that for TunaMH, the average batch size over all steps is

E(θ,θ′)∼π(θ)q(θ′|θ)[χC
2M2(θ, θ′) + CM(θ, θ′)],

and the spectral gap γ̄ is lower bounded by the spectral gap of standar MH γ such that

γ̄ ≥ exp

(
− 1

χ
− 2

√
log 2

χ

)
· γ.

Substituting the expression of batch size and spectral gap to (9) gives

l · trel ≤
(
E(θ,θ′)∼π(θ)q(θ′|θ)[χC

2M2(θ, θ′) + CM(θ, θ′)]ξ + η
)
· exp

(
1

χ
+ 2

√
log 2

χ

)
· 1

γ
.
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To minimize the RHS of the above equation over χ, we let the derivative w.r.t. χ to be zero and get,

ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)]χ−1 + (ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η)χ−2

+
√

log 2ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)]χ−

1
2

+
√

log 2(ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η)χ−
3
2

= ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M
2(θ, θ′)].

When χ is small, the LHS is approximately (ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η)χ−2 which gives
us

χ =

√
ξCE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)] + η

ξC2E(θ,θ′)∼π(θ)q(θ′|θ)[M2(θ, θ′)]
.

When it is quick to get a proposal (η ≈ 0) and the variance of M is small, we can further simplify it
to

χ =
1√

CE(θ,θ′)∼π(θ)q(θ′|θ)[M(θ, θ′)]
.

In practice, we can get the above theoretically optimal value of χ by empirically estimating the mean
and variance of M(θ, θ′). Note that even if these empirical estimates are accurate, there may exist
better χ, since the upper bounds (the mixing time bound and the spectral gap bound) we use to get
the optimal value may be loose. We give a simpler heuristic to tune χ in practice in Section 5.

H Proof of Theorem 3

First, we will show the following lemma, which gives half of what we want to have in the theorem.

Lemma 1. Considering the same setting as the theorem, the average batch size B of any exact,
stateless minibatch MH algorithm at any iteration follows

E[B] ≥ 2−18 · κC2M2(θ, θ′)− 2−4 · κ.

Proof. We prove the lemma by construction. First, observe that since the state space Θ has at least
two states, we can restrict our attention to just two of those states, by choosing a π that has zero mass
on any other state in the space and a q that never proposes transitioning out to any of those other
states (at which π has zero mass). Such a proposal will still be ergodic, so it still satisfies our general
assumption that we consider only ergodic chains in this paper. Without loss of generality, suppose
that those two states are {−M2 ,

M
2 } (this is without loss of generality because we can always just

rename the states), and let C denote the constant in the theorem statement and define (with a bit of
abuse of notation) the constant M := M(−M2 ,

M
2 ). By doing this, we can (again without loss of

generality) restrict our attention to the case where Θ = {−M2 ,
M
2 }.

Next, we construct our counterexample. Let the dataset be {xi}Ni=1 where xi ∈ {−1, 1}. We let the
domain for parameter θ to be {−M2 ,

M
2 }, and the target distribution to be

π(θ) =
1

Z
exp

(
−

N∑
i=1

Ui(θ)

)
=

1

Z
exp

(
−Cθ
N

N∑
i=1

xi

)

where Ui(θ) = C
N · θxi. Note that by letting N become large, any minibatch MH algorithm that

queries the energy difference oracle some number of times will observe a distribution of energy
differences that is arbitrarily close to a sequence of independent identically distributed random
variables supported on {±CMN }.

We define ci = C
N , and the proposal distribution to be

p(θ, θ) =
1

2
, p(θ,−θ) =

1

2
for θ ∈

{
− M

2
,
M

2

}
.
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Now, let 0 < q < 1 be some constant, and consider two cases: (1) 1
N

∑
i xi = q and (2) 1

N

∑
i xi =

−q < 0. Suppose that in both cases the xi are shuffled at random. These two cases will have different
stationary distributions,

π1(θ) =
1

Z
exp (−Cqθ) and π2(θ) =

1

Z
exp (Cqθ) ,

and an exact algorithm must be able to distinguish between them. Therefore by using these cases, we
can get a bound on the required batch size needed for the exact MH algorithm to distinguish between
them. First, we observe that the two cases are symmetric, such that if T1 is the transition matrix of the
chain in case (1) and T2 is the transition matrix of the chain in case (2), then T1(θ, θ′) = T2(θ′, θ).
Let 0 < ψ < 1

2 denote the probability that T1 transitions from M
2 to −M2 . Then because the MH

method is exact and the chain is reversible, the probability of the reverse transition is ψ exp(−CMq).
So, explicitly, the transition operators will look like

T1 =

[
1− ψ ψe−CMq

ψ 1− ψe−CMq

]
and T2 =

[
1− ψe−CMq ψ
ψe−CMq 1− ψ

]
.

The eigenvectors and eigenvalues of this are

T1π1 = π1 and T1

[
−1
1

]
= (1− ψ − ψ exp(−CMq))

[
−1
1

]
.

Suppose that we initialize both chains uniformly on {−M2 ,
M
2 }. Observe that[

1/2
1/2

]
=

[
exp(−CMq)

1+exp(−CMq)
1

1+exp(−CMq)

]
+

1− exp(−CMq)

2(1 + exp(−CMq))
·
[

1
−1

]
,

the first vector being π1 and the second being a multiple of the other eigenvector. Equivalently,[
1/2
1/2

]
= π1 +

1

2
tanh

(
CMq

2

)
·
[

1
−1

]
,

and so for any t, after t steps of the Markov chain, the distribution will be

T t1

[
1/2
1/2

]
= π1 +

1

2
tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))

t ·
[

1
−1

]
.

Similarly,

T t2

[
1/2
1/2

]
= π2 +

1

2
tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))

t ·
[
−1
1

]
.

So, the total variation distance between the state of the chains at time t will be bounded by

TV
(
T t1

[
1/2
1/2

]
, T t2

[
1/2
1/2

])
≥ TV (π1, π2)− tanh

(
CMq

2

)
· (1− ψ − ψ exp(−CMq))

t
.

Also observe that

TV (π1, π2) =
1

2

∥∥∥∥∥
[

exp(−CMq)
1+exp(−CMq)

1
1+exp(−CMq)

]
−

[
1

1+exp(−CMq)
exp(−CMq)

1+exp(−CMq)

]∥∥∥∥∥
1

=
1− exp(−CMq)

1 + exp(−CMq)
= tanh

(
CMq

2

)
,

so

TV
(
T t1

[
1/2
1/2

]
, T t2

[
1/2
1/2

])
≥ tanh

(
CMq

2

)
·
(

1− (1− ψ − ψ exp(−CMq))
t
)
.

Also, since we know that our algorithm is guaranteed to have spectral gap ratio at least κ with the
original chain, it follows that ψ ≥ κ/2, and so

TV
(
T t1

[
1/2
1/2

]
, T t2

[
1/2
1/2

])
≥ tanh

(
CMq

2

)
·
(

1−
(

1− κ

2
− κ

2
exp(−CMq)

)t)
.

Now, denote the exact minibatch algorithm to be A. As it runs, the algorithm A will request data
examples by querying the energy difference oracle. Under case (1), we let yi denote the ith sample
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that A would have observed if it requested i or more samples, and similarly we let zi denote the
analogous sample in case (2). Fix some constant t ∈ N (which we will set later). We let K1 denote
the total number of samples observed by A across the first t iterations in case (1), and set

µ = {y1, y2, . . . , yK1}.
Similarly, we let K2 denote the number of samples observed by A across the first t iterations in
case (2), and set

ν = {z1, z2, . . . , zK2}.
Now, we fix some constant K (to be set later), and consider the following coupling between the
behavior of A across its first t iterations in case (1) and in case (2). First, let all internal randomness
of A and the proposal process under case (1) and (2) be the same, which means that for a given
observation of data examples, the algorithm A will make the same decision, such as whether to
require more data examples or not and whether to accept or not. Second, choose a coupling that
minimizes the probability that

(y1, y2, . . . , yK1) 6= (z1, z2, . . . , zK2).

Such a coupling is guaranteed to exist by the Coupling Lemma, and the probability that these two are
not equal will be equal to the total variation distance between their distributions. Third, assign all the
other yi and zi, for i > K, independently according to their distribution.

We are interested in the quantity p(µ 6= ν), which bounds the probability that the algorithm may
make a different decision in cases (1) and (2). We can decompose this probability into two terms,

p(µ 6= ν) = p(µ 6= ν and yj = zj for all j ≤ K) + p(µ 6= ν and yj 6= zj for some j ≤ K).

If µ 6= ν but yj = zj for all j ≤ K, the only way that this is possible is for K1 > K (and,
symmetrically, also K2 > K), since otherwise the algorithms would behave identically. So,

p(µ 6= ν) ≤ p(K1 > K) + p(yj 6= zj for some j ≤ K). (10)

By Markov’s inequality,

p(µ 6= ν) ≤ E[K1]

K
+ p(yj 6= zj for some j ≤ K).

For the second term of (10), we can reduce the case to only considering K samples. Let Sy be the
total number of samples yi that are −1 and let Sz be the total number of samples zi that are −1.
Since A is effectively sampling a shuffled dataset at some arbitrary indices without replacement, both
of these random variables Sy and Sz are—properly speaking—hypergeometric random variables.
However, since our dataset size N is arbitrary here, we can by setting N very large work in the
limit (as N →∞) in which these variables become binomial (since sampling with replacement and
without replacement can be made to have arbitrarily close to the same distribution by making the
dataset large). Observe that (in this limit) Sy follows a binomial distribution B(K, 1−q

2 ) and Sz
follows a binomial distribution B(K, 1+q

2 ). Clearly, if Sy = Sz , then we can arrange the coupling so
that (y1, . . . , yK) = (z1, . . . , zK). So, by the Coupling Lemma,

p(yj 6= zj for some j ≤ K) = p(Sy 6= Sz) = TV(Sy, Sz).

From the analysis in Adell and Jodrá [1], we can bound the total variance distance between these two
binomial variables with

TV(Sy, Sz) ≤
√
e · τ

(1− τ)2

where τ =
√

K+2
2 · q < 1. Substituting these bounds, we get

p(µ 6= ν) ≤ E[K1]

K
+
√
e · τ

(1− τ)2
.

But the probability that µ 6= ν must be an upper bound on the probability that the distributions of
the chains in case (1) and (2) after t steps are not equal, since if µ = ν in the coupling then the two
chains are in the same state. So, using our bound from earlier, we get

tanh

(
CMq

2

)
·

(
1−

(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t)
≤ E[K1]

K
+
√
e · τ

(1− τ)2
.
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Now isolating E[K1] gives

K · tanh

(
CMq

2

)
·

(
1−

(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t)
−K ·

√
e · τ

(1− τ)2
≤ E[K1].

Also, observe that(
1− 1

2
κ− 1

2
κ exp(−CMq)

)t
≤
(

1− 1

2
κ

)t
≤ exp

(
−κt

2

)
,

so

K · tanh

(
CMq

2

)
·
(

1− exp

(
−κt

2

))
−K ·

√
e · τ

(1− τ)2
≤ E[K1].

This gives us the lower bound on E[K1] that we are interested in. Now, it remains to assign q, K,
and t. We start by assigning t such that

t =
⌈
2κ−1 log(2)

⌉
,

in which case

exp

(
−κt

2

)
≤ 1

2

and so

K · 1

2
· tanh

(
CMq

2

)
−K ·

√
e · τ

(1− τ)2
≤ E[K1].

Now, we add some simplifying assumptions, which we will validate are true later. We assume that

τ =

√
K + 2

2
· q ≤ 1

2
;

in this case √
e · τ

(1− τ)2
·K ≤ 4

√
e · τ ≤ 5

√
K + 2 · q.

We set q such that
CMq = 1,

and we assume that CM is large enough that this assignment of q is within range (i.e. 0 < q < 1).
This gives us

K · 1

2
· tanh

(
1

2

)
− 5K

√
K + 2 · 1

CM
≤ E[K1].

Since tanh(1/2) > 5/16, we can simplify this to

K · 5

32
− 5K

√
K + 2 · 1

CM
≤ E[K1].

All that remains is to assign K. We assign K such that
√
K + 2 · 1

CM
=

1

64
.

In this case, we get

K =
C2M2

4096
− 2,

and our bound reduces to (
C2M2

4096
− 2

)
· 5

64
≤ E[K1].

We can simplify this further to

2−16 · C2M2 − 5

32
≤ E[K1].

Now, this is a bound on the expected number of samples taken across t iterations. This means that the
number of samples taken in any given iteration will be bounded by

E[K1]

t
≥

2−16 · C2M2 − 5
32

2κ−1 log(2) + 1
=

2−16 · κC2M2 − 5κ
32

2 log(2) + κ
.
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A few more loose bounds, leveraging κ < 1, gives us

E[K1]

t
≥ 2−18 · κC2M2 − κ

16
.

This proves the lemma.

Next, we will show the following lemma, which characterizes what happens when CM is small.
Lemma 2. Considering minibatch MH algorithms in the same setting as the theorem, the expected
batch size at any iteration must be lower bounded by

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

Proof. Here, we will prove a lower bound that characterizes the limits of exact stateless minibatch
MH algorithms when they use very few examples. Again, without loss of generality we consider a
reduction to the two-state case as we did in the proof of the previous lemma. Suppose that a exact
stateless minibatch MH algorithm with the same forward and backward proposal probabilities (given
some c1, . . . , cN , C, and M ) requests any energy function examples at all only with probability p.
Consider two cases, which have the same c1, . . . , cN , C and M . In the first case,

n∑
i=1

(Ui(θ)− Ui(θ′)) = CM(θ, θ′),

while in the second case,
n∑
i=1

(Ui(θ)− Ui(θ′)) = −CM(θ, θ′).

These are clearly possible by setting Ui to the limits of what is covered by the bounds. In the first
case, the baseline MH method would accept with probability 1. In the second case, it will accept
with probability exp(−CM(θ, θ′)). Since the stateless MH algorithm is reversible, it must accept in
the first case with some probability a and in the second case with probability a · exp(−CM(θ, θ′)).
But, the algorithm can only distinguish the two cases if it requests samples, which only happens with
probability at most p. So,

a− a · exp(−CM(θ, θ′) ≤ p.
Since we know that it must be the case that a ≥ κ (from a straightforward analysis of a two-state
case), it follows that

p

κ
≥ p

a
≥ 1− exp(−CM(θ, θ′)) ≥ 1

2
min (CM(θ, θ′), 1) .

Since p is an obvious lower bound on the expected value of the batch size, it follows that

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

To prove Theorem 3 we now combine the results of these two lemmas. We have

E[B] ≥ 2−18 · κC2M2(θ, θ′)− 2−4 · κ.
and

E[B] ≥ κ

2
min (CM(θ, θ′), 1) .

Since these are both lower bounds, we can combine them to get

E[B] ≥ max
(

2−18 · κC2M2(θ, θ′)− 2−4 · κ, κ
2

min (CM(θ, θ′), 1)
)

= κ ·max

(
2−18 · C2M2(θ, θ′)− 2−4,

1

2
min (CM(θ, θ′), 1)

)
.

It is obvious from a simple big-O analysis here that there exists a global constant ζ > 0 such that

E[B] ≥ ζ · κ
(
C2M2(θ, θ′) + CM(θ, θ′)

)
.

This proves the theorem.
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I Proof of Corollary 1

Proof. Recall that the lower bound on the batch size in each iteration is

E[B] ≥ ζ · κ
(
C2M2(θ, θ′) + CM(θ, θ′)

)
.

Since C = O– (N) and M(θ, θ′) = O– (N−(h+1)/2), the expectation of the batch size follows

E[B] = O– (C2M2(θ, θ′) + CM(θ, θ′)) = O– (CM(θ, θ′)) = O– (N1−h/2).

When h = 1, E[B] = O– (1) and when h = 2, E[B] = O– (1/
√
N).

J Experimental Details and Additional Results

J.1 Experiment in Section 2.1

To verify Theorem 1, we empirically construct a distribution in the form of Section A such that
AustereMH and MHminibatch are biased on. Note that the proof in Section A shows there must exist
such a distribution for any inexact minibatch method but does not tell us how to find one for a specific
method. Therefore, in order to find such a distribution, we construct an example and empirically test
whether AustereMH and MHminibatch are biased on it.

We let data xi take one of two values {−1, 5}. Consider a dataset of size 6000. We let 5000 data take
value −1 and the remaining 1000 data take value 5. Define the target distribution π(θ) to be

π(θ) ∝ exp

(
− 1

N

N∑
i=1

θ · xi

)
where the domain of θ is {0, 1, . . . ,K − 1}. Therefore the number of state is K. Since

∑
i xi = 0, it

is clear to see that the stationary distribution of θ is a uniform distribution. We define the proposal
distribution to be the following

p(θ, θ) =
1

2
, for all θ; p(θ, θ − 1) =

1

4
, p(θ, θ + 1) =

1

4
for θ ∈ {1, . . . ,K − 2};

and p(0, 1) = p(K − 1,K − 2) = 1
2 .

We set the hyperparameter error ε in AustereMH to be 0.01 and δ in MHminibatch to be 5, following
the setting in their original papers [17, 26]. We set batch size m in both methods to be 30. We find
that AustereMH and MHminibatch are both inexact on this example and the error increases as we
increase K. Thus we empirically verify the statement in Theorem 1.

Besides the density estimate comparison on K = 200 shown in Figure 1b, we additionally report the
estimate results on other values of K in Figure 5. We see that the results are similar, all showing that
TunaMH and standard MH can give accurate estimate whereas inexact methods are seriously wrong.

On Robust Linear Regression We further tested AustereMH on robust linear regression in Sec-
tion 5.1 with N = 5000. We computed the MSE between estimated and true parameters. MH,
TunaMH and AustereMH obtained MSE 0.149, 0.15 and 1.19 respectively, indicating inexact method
error can be large on typical problems.

J.2 Robust Linear Regression

We follow the experimental setup of robust linear regression (RLR) in Cornish et al. [12]. Specifically,
we have data xi ∈ Rd and yi ∈ R. The likelihood is modeled by a student’s t-distribution with
degrees of freedom v:

p(yi|θ, xi) = Student(yi − θᵀxi|v).

It follows that

Ui(θ) =
v + 1

2
log

(
1 +

(yi − θᵀxi)2

v

)
,
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Figure 5: Density estimate comparison on K = 500, 1000, 2000, 5000.

and the first derivative

∂jUi(θ) = −(v + 1)
xij(yi − θᵀxi)
v + (yi − θᵀxi)2

.

Since the function Ui is Lipschitz continuous, we can easily get the bound used in TunaMH, TFMH
and SMH. We set M(θ, θ′) = ‖θ − θ′‖2 and then it follows

ci = sup
θ∈R
‖∇Ui(θ)‖2 =

v + 1

2
√
v
‖xi‖2 .

The data xi and yi is generated as follows

yi =
∑
j

xij + εi

where εi ∼ N (0, 1).

In Section 5.1, we set v = 4, d = 100 and use a flat prior p(θ) = 1. Note that our problem dimension
d is much larger than that in the SMH paper [12] (d = 10). This makes the control variates in SMH
problematic since the bounds they require appear to scale badly in high dimensions.

To reach the target acceptance rate, we set the stepsize in each method as in Table 2 and 3. For
TunaMH and TunaMH-MAP, we set χ = 1e − 5 for N = 5000, 20000 and χ = 1e − 4 for
N = 50000, 100000. For FlyMC and FlyMC-MAP, we set the probability for a data going from dark
to bright qd→b to be 0.01. Without the MAP, we collect 80000 samples after 200000 step burnin.
With the MAP, we collect 80000 samples without burnin.

Table 2: Stepsize of methods without the MAP.

MH TFMH FlyMC TunaMH

RLR N = 5000 4e-3 1e-4 2.7e-3 8e-4, χ = 1e− 5

RLR N = 20000 2e-3 3e-5 1.5e-3 3e-4, χ = 1e− 5

RLR N = 50000 1.3e-3 1.2e-5 9e-4 2e-4, χ = 1e− 4

RLR N = 100000 9e-4 6e-6 7e-4 1.7e-4, χ = 1e− 4

TGM 3e-1 2.2e-2 1e-2 1e-1
LR 5e-3 1e-4 2e-3 1e-3
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Table 3: Stepsize of methods with the MAP.

MH-MAP SMH-1 SMH-2 FlyMC-MAP TunaMH-MAP

RLR N = 5000 4e-3 4e-3 4e-3 6e-3 8e-4, χ = 1e− 5

RLR N = 20000 2e-3 2e-3 2e-3 3.5e-3 3e-4, χ = 1e− 5

RLR N = 50000 1.2e-3 1.2e-3 1.2e-3 2.5e-3 1.2e-4, χ = 1e− 4

RLR N = 100000 9e-4 5.9e-4 8e-4 1.7e-3 7e-5. χ = 1e− 4

TGM - 1e-1 - 1e-2 -

J.2.1 Additional Experimental Results with d = 10

We ran RLR experiment with d = 10 and N = 105 to compare the performance in low dimensions.
The ESS/S for TFMH, FlyMC, TunaMH are 0.02, 0.75, & 1.7, respectively; SMH-1, SMH-2, FlyMC-
MAP and TunaMH-MAP are 174.7, 5969.5, 730.8, & 730.1 respectively. This suggests TunaMH is
significantly better without MAP/control variates. With MAP/control variates, TunaMH is better than
SMH-1, similar to FlyMC and worse than SMH-2.

J.3 Truncated Gaussian Mixture

The data in this truncated Gaussian mixture (TGM) task is generated as follows

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x)

where θ1 = 0, θ2 = 1 and σ2 = 2. The posterior θ has two modes at (θ1, θ2) = (0, 1) and
(θ1, θ2) = (1,−1). In order to get the bounds required by all methods, we truncate the Gaussian by
setting θ1, θ2 ∈ [−3, 3].

For simplicity we assume a flat prior p(θ) = 1. Then the energy is given by

Ui(θ) = − log p(xi|θ) = log(2
√

2πσx)−log

[
exp

(
− (xi − θ1)2

2σ2
x

)
+exp

(
− (xi − θ1 − θ2)2

2σ2
x

)]
.

Denote E1 = exp

(
− (xi−θ1)2

2σ2
x

)
and E2 = exp

(
− (xi−θ1−θ2)2

2σ2
x

)
. To get the upper bound in

TunaMH, TFMH and SMH, we compute the gradient

∂Ui(θ)

∂θ1
= − 1

E1 + E2

(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)
,

∂Ui(θ)

∂θ2
= − 1

E1 + E2

(
E2 ·

xi − θ1 − θ2

σ2
x

)
.

Since θi ∈ [−3, 3], it follows that∣∣∣∣∂Ui(θ)∂θ1

∣∣∣∣ ≤ |xi|+ 3

σ2
x

+
|xi|+ 3 + 3

σ2
x

≤ 2 |xi|+ 9

σ2
x

,∣∣∣∣∂Ui(θ)∂θ2

∣∣∣∣ ≤ |xi|+ 3 + 3

σ2
x

≤ |xi|+ 6

σ2
x

.

Therefore we can set M(θ, θ′) = ‖θ − θ′‖2 and

ci =

√(
2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

.
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To use the control variate in SMH, we need to compute the second derivatives

∂2Ui(θ)

∂2θ1
=

1

(E1 + E2)2
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)2

−
[
E1 ·

((
xi − θ1

σ2
x

)2

− 1

σ2
x

)
+ E2 ·

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2

∂2Ui(θ)

∂θ1∂θ2
=

1

(E1 + E2)2
·
(
E2 ·

(
xi − θ1 − θ2

σ2
x

))
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)
−
[
E2

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2

∂2Ui(θ)

∂2θ2
=

1

(E1 + E2)2
·
(
E1 ·

xi − θ1

σ2
x

+ E2 ·
xi − θ1 − θ2

σ2
x

)2

−
[
E2 ·

((
xi − θ1 − θ2

σ2
x

)2

− 1

σ2
x

)]
· 1

E1 + E2
.

Given the parameter space, we have the upper bounds∣∣∣∣∂2Ui(θ)

∂2θ1

∣∣∣∣ ≤ (2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 3

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
2

σ2
x∣∣∣∣∂2Ui(θ)

∂θ1∂θ2

∣∣∣∣ ≤ 2 |xi|+ 9

σ2
x

· |xi|+ 6

σ2
x

+

(
|xi|+ 6

σ2
x

)2

+
1

σ2
x∣∣∣∣∂2Ui(θ)

∂2θ2

∣∣∣∣ ≤ (2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
1

σ2
x

.

It follows

Ū2,i =

(
2 |xi|+ 9

σ2
x

)2

+

(
|xi|+ 3

σ2
x

)2

+

(
|xi|+ 6

σ2
x

)2

+
2

σ2
x

.

which is required in SMH-1.

To get the lower bounds in FlyMC, we use the first-order Taylor expansion for Ui(θ). Higher order
approximation is possible but would require heavier computation. By Taylor expansion,

Ui(θ) = Ui(θ
0) +∇Ui(θ0)ᵀ(θ − θ0) +

1

2
(θ − θ0)ᵀ∇2Ui(c)(θ − θ0)

where c is between θ and θ0.

Then we can define logBi(θ) in FlyMC as the follows

logBi(θ) = −Ui(θ0)−∇Ui(θ0)ᵀ(θ − θ0)− 1

2
·max

c

∥∥∇2Ui(c)
∥∥

1
·
∥∥θ − θ0

∥∥2

1

= −Ui(θ0)−∇Ui(θ0)ᵀ(θ − θ0)− 1

2
· Ū2,i ·

∥∥θ − θ0
∥∥2

1
.

The sum of logBi is
N∑
i=1

logBi(θ) = −N · Ui(θ0)−
( N∑
i=1

∇Ui(θ0)

)ᵀ

(θ − θ0)− 1

2
·
N∑
i=1

Ū2,i ·
∥∥θ − θ0

∥∥2

1
.

We set θ0 to be 0 and the MAP solution in standard and MAP-tuned FlyMC respectively.

We tune the stepsize of each method to reach the acceptance rate 60% and the value of stepsize
is summarized in Table 2 and 3. We set χ = 10−4 in TunaMH and qd→b = 0.01 in FlyMC and
FlyMC-MAP. We compute the symmetric KL between the run-average density estimate and the true
distribution. Since this is a two-dimensional problem, we are able to visualize the density estimate.
As shown in Figure 6, we plot the density estimate after running the method for 1 second. It is clear
to see that the density estimate of TunaMH is close to the truth whereas all other methods are unable
to provide accurate density estimate given the time budget.
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Figure 6: Visualization of the density estimate after 1 second.

J.4 Logistic Regression on MNIST

MNIST with only 7s and 9s images contains 12214 training data and 2037 test data. Let h be the
sigmoid function. Let the label yi ∈ {0, 1}, then the model in logistic regression (LR) is

p(yi = 1) = h(θᵀxi) =
1

1 + exp (−θᵀxi)
.

It follows that
Ui(θ) = −yi log h (θᵀxi)− (1− yi) log h (−θᵀxi) .

It is easy to see that
|∂jUi| = |(h(θᵀxi)− yi)xij | ≤ 1 · |xij | .

Thus we can set M(θ, θ′) to be ‖θ − θ′‖2 and ci to be ‖xi‖2. We use this bound for TunaMH, TFMH
and SMH. For FlyMC, we use the same bound on logistic regression as in the FlyMC paper [20].

We set the target acceptance rate to be 60% and the resulted stepsize is reported in Table 2. We set
qd→b to be 0.1 following [20].

37


	Introduction
	Preliminaries and Drawbacks of Prior Minibatch MH Methods
	The Importance of Being Exact
	Issues with Existing Exact Methods

	TunaMH: Asymptotically Optimal Exact MH
	Towards Optimal Exact Minibatch MH
	Experiments
	Robust Linear Regression
	Truncated Gaussian Mixture
	Logistic Regression on MNIST

	Conclusion and Future Work
	Proof of Theorem 1
	Connection between Theorem 1 and TV Bound of Inexact MH Methods
	Proof of Statement 1
	Construction of Algorithm 2
	Proof of Theorem 2
	Derivation of Equation (2)
	Theoretically Optimal Value of 
	Proof of Theorem 3
	Proof of Corollary 1
	Experimental Details and Additional Results
	Experiment in Section 2.1
	Robust Linear Regression
	Additional Experimental Results with d=10

	Truncated Gaussian Mixture
	Logistic Regression on MNIST


