
Supplemental Material for:
Untangling tradeoffs between recurrence and self-attention in artificial neural networks

A Theoretical analysis of gradient propagation

A.1 Notational convention

In this paper, we use the notation df
dx to denote the total derivative of f with respect to x, and ∂f

∂x to
denote the partial derivative of f with respect to x.

If we assume f : Rn → Rm, and x ∈ Rn, then df
dx denotes the Jacobian matrix Jf such that

(Jf)ij =
dfi
dxj

(6)

In particular, with this notation, we have that if a function L : Rm → R, and y ∈ Rm then dL
dy is

a row vector, while the conventional notation for ∇yL indicates a column vector. In other words,
(∇yL)T = dL

dy . Hence if L is a function of f(x), then

dL

dx
=
dL

df
· df
dx

(7)

while

∇xL =

(
df

dx

)T
· ∇f(x)L = JTf · ∇f(x)L (8)

Similarly, we have that ∂L∂y is a row vector.

A.2 Preliminary results

Let

st = ψt(h1, h2, . . . , ht, st−1) (9)

where

hi+1 = φ(V si + Uxi+1 + b) (10)

Lemma 1. For all t, k ≥ 0, we have

dst+k+1

dht
=
∂st+k+1

∂ht
+

 k∑
j=0

∂st+k+1

∂ht+j+1

dht+j+1

dht

+
∂st+k+1

∂st+k

dst+k
dht

(11)

Proof. Follows directly from the following multivariable chain rule: if

g(t) = f(g1(t), g2(t), . . . , gn(t)) (12)

then

dg

dt
=

n∑
i=1

∂f

∂gi

dgi
dt

(13)

Lemma 2. If we further denote the Jacobian matrix Jk = ∂sk+1

∂hk
, then we get that for all t, k ≥ 0,

we have

dst+k+1

dht
=
∂st+k+1

∂ht
+

k∑
j=0

(
∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k

)
· dst+j
dht

(14)

13

Proof. Follows directly from the observation that

dht+j+1

dht
=
∂ht+j+1

∂st+j

dst+j
dht

= Jt+j ·
dst+j
dht

(15)

Remark 1. Let us denote

C
(t)
k+1 =

dst+k+1

dht
(16)

E
(t)
k+1 =

∂st+k+1

∂ht
(17)

and

F
(t)
k+1,j =

∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(18)

and thus the recursion formula in Lemma 2 rewrites as

C
(t)
k+1 = E

(t)
k+1 +

k∑
j=0

F
(t)
k+1,j · C

(t)
j (19)

The next two results highlight how to solve this recursion.

Lemma 3. Let Ci, Ei, Fi,j ∈ Rn×n such that for all k ≥ 0, we have

Ck+1 = Ek+1 +

k∑
j=0

Fk+1,j · Cj (20)

Then for all k ≥ 1, we have

Ck = ξ0:kC0 +

k∑
r=1

ξr:kEr (21)

where

ξr:k =

k−r∑
s=1

ξr:k(s) (22)

with

ξr:k(s) =
∑

r=i1<...<is+1=k

Fis+1,is · Fis−1,is−2 · . . . · Fi2,i1 (23)

and ξk:k = Id.

Proof. Let us prove the statement by induction on k ≥ 1.
For k = 1, we have

C1 = E1 + F1,0C0 = ξ1:1E1 + ξ0:1C0 (24)

14

Now let us assume the statement to be true for k, then we get

Ck+1 = Ek+1 +

k∑
j=0

Fk+1,j ·

(
ξ0:jC0 +

j∑
r=1

ξr:jEr

)
(25)

= Ek+1 +

 k∑
j=0

Fk+1,j · ξ0:j

 · C0 +

k∑
j=0

j∑
r=1

Fk+1,jξr:jEr (26)

= Ek+1 + ξ0:k+1C0 +

k∑
r=1

 k∑
j=r

Fk+1,jξr:j

 · Er (27)

= ξk+1:k+1Ek+1 + ξ0:k+1C0 +

k∑
r=1

ξr:k+1Er (28)

= ξ0:k+1C0 +

k+1∑
r=1

ξr:k+1Er (29)

(30)

Lemma 4. If we further assume that C0 = E0, then we have for all k ≥ 1

Ck = Ek +

k∑
s=1

k∑
q=s

ξk−q:k(s)Ek−q (31)

Proof. Using the previous lemma, we get

Ck = Ek +

k∑
s′=1

ξ0:k(s′)C0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (32)

Using the assumption C0 = E0, we get

Ck = Ek +

k∑
s′=1

ξ0:k(s′)E0 +

k−1∑
r=1

k−r∑
s=1

ξr:k(s)Er (33)

= Ek +

k−1∑
r=0

k−r∑
s=1

ξr:k(s)Er (34)

(35)

Now let us put q = k − r, we get

Ck = Ek +

k∑
q=1

q∑
s=1

ξk−q:k(s)Ek−q (36)

= Ek +

k∑
s=1

k∑
q=s

ξk−q:k(s)Ek−q (37)

(38)

15

Remark 2. First, note that Lemma 4 applies here, since C(t)
0 = E

(t)
0 , and thus

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (39)

The idea of Lemma 4 was to regroup all terms with the same number of F factors (where each F
contains a Jacobian matrix Jk which contains the connectivity matrix V of the recurrent net). One
could roughly perceive the term

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (40)

as being the term of degree s for s = 1, 2, . . . , k and E(t)
k the term of degree 0. This will allow us to

consider the terms C roughly as a polynomial in V and we can look the asymptotic behaviour of each
of the coefficients of this polynomial individually. This will then give us a very good understanding
on how the distribution of the attention weights are affecting the magnitude of total gradient.

Proposition 1. For all t ≥ 1, and all k ≥ 0, we have that

dst+k
dht

=

k∑
s=0

ξ̄
(t)
o:k(s) (41)

where for all s ≥ 1,

ξ̄
(t)
o:k(s) =

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1
· . . . · F (t)

i2,i1
· E(t)

i1
(42)

and where ξ̄(t)
o:k(0) = E

(t)
k . With for all k ≥ 0 we have

E
(t)
k =

∂st+k
∂ht

(43)

and for all k ≥ j we have

F
(t)
k+1,j =

∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(44)

Proof. Let t ≥ 1, and recall that we defined C(t)
k = dst+k

dht
, for all k ≥ 0.

As already pointed out, we know that C(t)
0 = E

(t)
0 (thus the claim holds for k = 0).

Then by Lemma 4, we know that for all k ≥ 1 we have

C
(t)
k = E

(t)
k +

k∑
s=1

k∑
q=s

ξ
(t)
k−q:k(s)E

(t)
k−q (45)

= ξ̄
(t)
o:k(0) +

k∑
s=1

k∑
q=s

∑
k−q=i1<...<is+1=k

F
(t)
k,is
· F (t)

is,is−1
· . . . · F (t)

i2,i1
· E(t)

i1
(46)

= ξ̄
(t)
o:k(0) +

k∑
s=1

∑
0≤i1<...<is<k

F
(t)
k,is
· F (t)

is,is−1
· . . . · F (t)

i2,i1
· E(t)

i1
(47)

= ξ̄
(t)
o:k(0) +

k∑
s=1

ξ̄
(t)
o:k(s) (48)

=

k∑
s=0

ξ̄
(t)
o:k(s) (49)

16

Remark 3. In what follows the main emphasis will be to calculate the F (t)
i,j and E(t)

i terms explicitly,
since they are the building blocks of the mentioned polynomials in 2.

We will assume that

st = f(ht, ct) (50)

with

ct = α1,th1 + α2,th2 + . . .+ αt,tht (51)

and

αj,t =
exp (ej,t)∑t
i=1 exp (ei,t)

(52)

where

ei,t = a(st−1, hi) (53)

Let us recall that for all k ≥ 0 we have

E
(t)
k =

∂st+k
∂ht

(54)

and for all k ≥ j we have

F
(t)
k+1,j =

∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(55)

Lemma 5. With the assumption of Remark 3, we have that for all t ≥ 2

∂st
∂st−1

= ∂2f(ht, ct) ·

(
t∑
i=1

αi,tYi,t

)
(56)

where ∂2f is the the partial derivative of f with respect to the second variable, and where we define

Yi,t = hi ·

 ∂ei,t
∂st−1

−
t∑

j=1

αj,t ·
∂ej,t
∂st−1

 (57)

Proof.
∂st
∂st−1

= ∂2f(ht, ct) ·
∂ct
∂st−1

(58)

= ∂2f(ht, ct) ·

[
t∑
i=1

hi ·
(
∂αi,t
∂st−1

)]
(59)

= ∂2f(ht, ct) ·

 t∑
i=1

hi ·

 t∑
j=1

∂αi,t
∂ej,t

· ∂ej,t
∂st−1

 (60)

= ∂2f(ht, ct) ·

 t∑
i=1

hi ·

 t∑
j=1

αi,t(1i=j − αj,t) ·
∂ej,t
∂st−1

 (61)

= ∂2f(ht, ct) ·

 t∑
i=1

αi,thi

 ∂ei,t
∂st−1

−
t∑

j=1

αj,t
∂ej,t
∂st−1

 (62)

= ∂2f(ht, ct) ·

(
t∑
i=1

αi,tYi,t

)
(63)

17

Lemma 6. With the assumption of Remark 3, we have that for all k ≥ j:
∂sk
∂hj

= 1k=j · ∂1f(hk, ck) + αj,k∂2f(hk, ck) · (I +Xj,k) (64)

where ∂1f and ∂2f are the partial derivatives of f with respect to the first and second variable,
respectively, and where we define

Xj,k =

(
hj −

k∑
i=1

hiαi,k

)
· ∂ej,k
∂hj

(65)

Proof.

∂sk
∂hj

= 1k=j · ∂1f(hk, ck) · ∂hk
∂hk

+ ∂2f(hk, ck) · ∂ck
∂hj

(66)

= 1k=j · ∂1f(hk, ck) + ∂2f(hk, ck) ·

[
αj,k · I +

k∑
i=1

hi ·
∂αi,k
∂hj

]
(67)

= 1k=j · ∂1f(hk, ck) + ∂2f(hk, ck) ·

[
αj,k · I +

k∑
i=1

hi ·
∂αi,k
∂ej,k

∂ej,k
∂hj

]
(68)

= 1k=j · ∂1f(hk, ck) + ∂2f(hk, ck) ·

[
αj,k · I +

k∑
i=1

hi · αi,k(1i=j − αj,k)
∂ej,k
∂hj

]
(69)

= 1k=j · ∂1f(hk, ck) + ∂2f(hk, ck) ·

[
αj,k · I +

(
hjαj,k − αj,k

k∑
i=1

hi · αi,k

)
∂ej,k
∂hj

]
(70)

= 1k=j · ∂1f(hk, ck) + αj,k∂2f(hk, ck) ·

[
I +

(
hj −

k∑
i=1

hi · αi,k

)
∂ej,k
∂hj

]
(71)

= 1k=j · ∂1f(hk, ck) + αj,k∂2f(hk, ck) · (I +Xj,k) (72)

Corollary 1. With the assumption of Remark 3, and the notations of lemma 5 and 6, we have for all
k′ ≥ 0,

E
(t)
k′ = 1k′=0∂1f(ht, ct) + αt,t+k′∂2f(ht+k′ , ct+k′) · [I +Xt,t+k′] (73)

and for all k ≥ j,

F
(t)
k+1,j = αt+j+1,t+k+1 · ∂2f(ht+k+1, ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (74)

+ 1k=j ·

(
∂1f(ht+k+1, ct+k+1)Jt+j + ∂2f(ht+k+1, ct+k+1) ·

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(75)

Proof. Applying lemma 6, we get that for all k ≥ 0,

E
(t)
k′ =

∂st+k′

∂ht
(76)

= 1k′=0 · ∂1f(ht, ct) + αt,t+k′ · ∂2f(ht+k′ , ct+k′) · [I +Xt,t+k′] (77)
(78)

and then by applying lemma 5 and 6, we get that for all k ≥ j,

18

F
(t)
k+1,j =

∂st+k+1

∂ht+j+1
· Jt+j + 1j=k ·

∂st+k+1

∂st+k
(79)

= [1k=j∂1f(ht+k+1, ct+k+1) (80)
+ αt+j+1,t+k+1∂2f(ht+k+1, ct+k+1) · (I +Xt+j+1,t+k+1)] · Jt+j (81)

+ 1k=j · ∂2f(ht+k+1, ct+k+1) ·

(
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

)
(82)

= αt+j+1,t+k+1 · ∂2f(ht+k+1, ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (83)

+ 1k=j ·

(
∂1f(ht+j+1, ct+k+1)Jt+j + ∂2f(ht+k+1, ct+k+1) ·

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(84)

Proposition 2. We can rewrite for all k′ ≥ 0 and all k ≥ j ≥ 0

E
(t)
k′ = αt,t+k′ · D̃(t)

k′,0 + 1k′=0R̃
(t)
0 (85)

F
(t)
k+1,j = αt+j+1,t+k+1 ·D(t)

k+1,j + 1k=j ·R(t)
k+1 (86)

where

D
(t)
k+1,j+1 = ∂2f(ht+k+1, ct+k+1) · [I +Xt+j+1,t+k+1] · Jt+j (87)

R
(t)
k+1 = ∂1f(ht+k+1, ct+k+1) · Jt+k + ∂2f(ht+k+1, ct+k+1) · [

t+k+1∑
i=1

αi,t+k+1Yi,t+k+1]

(88)

D̃
(t)
k′ = ∂2f(ht+k′ , ct+k′) · [I +Xt,t+k′] (89)

R̃
(t)
0 = ∂1f(ht, ct) (90)

while Xi,i′ and Yi,i′ are defined as in lemma 5 and 6.

Proof. Follows straight from Corollary 1.

Remark 4. If we are further assuming that

st = f(ht, ct) = ht + ct (91)

then for all k ≥ 0, we have

E
(t)
k = 1k=0 · I + αt,t+k · [I +Xt,t+k] (92)

and for all k ≥ j, we have

F
(t)
k+1,j = αt+j+1,t+k+1 · [I +Xt+j+1,t+k+1] · Jt+j + 1k=j ·

(
Jt+j +

[
t+k+1∑
i=1

αi,t+k+1Yi,t+k+1

])
(93)

Proof. This follows directly form corollary 1 and the observation that

∂1f(ht, ct) = ∂2f(ht, ct) = I (94)

19

Remark 5. If we are further assuming that

ej,t = a(st−1, hj) = vTa · tanh (Wast−1 + Uahj) (95)

as done in [4], we get that

∂ej,t
∂hj

= vTa · diag[1− tanh2 (Wast−1 + Uahj)] · Ua (96)

and
∂ej,t
∂st−1

= vTa · diag[1− tanh2 (Wast−1 + Uahj)] ·Wa (97)

which we can plug into the definitions of Xj,k and Yj,k to get explicit expressions for matrices E(t)
k′

and F (t)
k+1,j .

Lemma 7. If, with the assumptions Remark 3, we assume that for all i, t ≥ 1, we have ei,t =
a(st−1, hi, θ) depending on some parameter θ ∈ RN×M , then we have

dL

dθ
=
∑
j,t

αj,t ·
dL

dst
· ∂2f(ht, ct) · hj ·

[∑
i

(1i=j − αi,t) ·
∂ei,t
∂θ

]
(98)

Proof. If we denote θ(i,t) to be the parameter for ei,t, then we have

dL

dθ
=
∑
i,t

dL

dθ(i,t)
(99)

=
∑
i,j,t

dL

dαj,t
· ∂αj,t
∂ei,t

· ∂ei,t
∂θ(i,t)

(100)

=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dαj,t
· ∂ei,t
∂θ

(101)

where
dL

dαj,t
=
dL

dst
· ∂st
∂ct
· ∂ct
∂αj,t

=
dL

dst
· ∂2f(ht, ct) · hj (102)

Hence
dL

dθ
=
∑
i,j,t

αj,t(1i=j − αi,t) ·
dL

dst
· ∂2f(ht, ct) · hj ·

∂ei,t
∂θ

(103)

=
∑
j,t

αj,t ·
dL

dst
· ∂2f(ht, ct) · hj ·

[∑
i

(1i=j − αi,t) ·
∂ei,t
∂θ

]
(104)

Lemma 8. Let us recall that for all t ≥ 0, we have

ht+1 = φ(V st + Uxt+1 + b︸ ︷︷ ︸
=at

) (105)

where φ is a non-linear activation function, V ∈ Rn×n, U ∈ Rn×m and b ∈ Rn. Then we have that[
dL

dV
,
dL

dU
,
dL

db

]
=

T∑
t=1

[st−1, xt, 1] · dL
dht
· diag(φ′(at)) (106)

20

Proof. Let us denote V (t), U (t), b(t) the matrices V,U, b of at−1 respectively, then[
dL

dV
,
dL

dU
,
dL

db

]
=
∑
t

[
dL

dV (t)
,
dL

dU (t)
,
dL

db(t)

]
(107)

=
∑
t

[st−1, xt, 1] · dL

dat−1
(108)

=
∑
t

[st−1, xt, 1] · dL
dht
· dht
dat−1

(109)

=
∑
t

[st−1, xt, 1] · dL
dht
· diag(φ′(at−1)) (110)

Remark 6. Combining the fact that dL
dht

= dL
dsT

dsT
dht

, the results from propositions 1 and 2, with
lemma 8, we see that attention weights αi,t which are very close to 0, do not contribute to the
gradient and the learning of V,U and b.

Similarly, it follows directly from lemma 7, that attention weights αi,t which are very close to 0,
do not contribute to the gradient and the learning of any parameters θ of the alignment function
ei,t = a(st−1, hi, θ). In case we have an alignment function as in remark 5, these parameters are
Wa, Ua and va.

If we have the case where one state hi is such that all attention weights αi,t ≈ 0 for all t ≥ i, then we
can see that hi does not contribute to the gradient and learning to any parameters be it parameters
from the recurrence or the alignment function.

In practice we have observed that in the majority of tasks, most states hi fall in either of two
categories:

• αi,t is sufficiently bounded away from 0 for most t ≥ i, and thus contributes to learning.
This is what we call a "relevant state".

• αi,t ≈ 0 for almost all t ≥ i, and thus doesn’t contribute much to learning, and the gradient
can be approximated by assuming αi,t = 0 for all t ≥ i. This is what he call a "non-relevant
state".

This observation is what lead us to the intuition that we can approximate the gradient, by decomposing
it via proposition 1, into gradient paths involving only skip connections between "relevant states".

A.3 Uniform attention case

Remark 7. In this subsection, we are going to assume:

• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.

• all assumptions from Remark 3.

• uniform attention: αi,t = 1/t for all t ≥ 1.

A.3.1 Overview

Remark 8. Recalling corollary 1, together the main proposition 1 form last section, we can hope
to simplify these expressions using the new assumptions from the previous remark 7. Recalling

21

expression from lemma 5 and 6:

Xj,t =

(
hj −

t∑
i=1

hiαi,t

)
· ∂ej,t
∂hj

(111)

=

(
hj −

1

t

t∑
i=1

hi

)
· ∂ej,t
∂hj

(112)

Hence, for our calculations we are going to assume that
(
hj − 1

t

∑t
i=1 hi

)
≈ 0, and thus Xj,t ≈ 0

for all 1 ≤ j ≤ t. Similarly,
t∑
i=1

αi,tYi,t =

t∑
i=1

αi,thi ·

 ∂ei,t
∂st−1

−
t∑

j=1

αj,t ·
∂ej,t
∂st−1

 (113)

=
1

t

t∑
i=1

hi ·

 ∂ei,t
∂st−1

−
t∑

j=1

1

t
· ∂ej,t
∂st−1

 (114)

=
1

t

t∑
i=1

hi ·
∂ei,t
∂st−1

− 1

t

t∑
j=1

(
1

t

t∑
i=1

hi

)
· ∂ej,t
∂st−1

(115)

=
1

t

t∑
i=1

hi ·
∂ei,t
∂st−1

− 1

t

t∑
i=1

1

t

t∑
j=1

hj

 · ∂ei,t
∂st−1

(116)

=
1

t

t∑
i=1

hi − 1

t

t∑
j=1

hj

 · ∂ei,t
∂st−1

(117)

≈ 0 (118)
Recalling the expression from corollary 1 and that f(ht, ct) = ht + ct by remark 3, and that Jt = V
for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

(
1

t+ k′
+ 1k′=0

)
· I (119)

and for all k ≥ j, we get

F
(t)
k+1,j =

(
1

t+ k + 1
+ 1k=j

)
· V (120)

Hence by recalling proposition 1, the main expression of interest becomes

dst+k
dht

=

k∑
s=0

ξ̄
(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (121)

where

χ
(t)
0:k(s)

def
=

∑
0≤i1<...<is<k

(
1

t+ k
+ 1k−is=1

)
·
(

1

t+ is
+ 1is−is−1=1

)
· . . . (122)

. . . ·
(

1

t+ i2
+ 1i2−i1=1

)
·
(

1

t+ i1
+ 1i1=0

)
(123)

Remark 9. The goal is thus to have a good estimation of the terms

χ
(t)
0:k(s) (124)

in order to then find an asymptotic estimation for

dst+k
dht

=

k∑
s=0

V s · χ(t)
0:k(s) (125)

as k →∞. In order to do so, we will adopt the following strategy:

22

Step 1. Estimate the expression

ω
(t)
l:k(s)

def
=

∑
l≤i1<...<is<k

1

t+ is
· 1

t+ is−1
· . . . · 1

t+ i2
· 1

t+ i1
(126)

for all s ≥ 1. This will be done in sub-subsection A.3.2.

Step2. Estimate the expression

θ
(t)
l:k(s)

def
=

∑
l≤i1<...<is<k

(
1

t+ is
+ 1is−is−1=1

)
·
(

1

t+ is−1
+ 1is−1−is−2=1

)
· . . . (127)

. . . ·
(

1

t+ i2
+ 1i2−i1=1

)
·
(

1

t+ i1
+ 1i1=0

)
(128)

for all s ≥ 1, because as we will see the expression θ(t)
l:k(s) can be decomposed into ω(t)

l′:k′(s
′)

expressions for s ≥ s′ ≥ 1. This will be done in sub-subsection A.3.3.

Step 3. The final step will consist in putting the results from the two previous sub-subsections
together, and getting a final asymptotic estimate for dst+k

dht
as k →∞, by noting that

χ
(t)
0:k(s) =

1

t+ k
· θ(t)

0:k(s) +
1

t+ k − 1
· θ(t)

0:k−1(s− 1) + . . . (129)

. . .+
1

t+ k − s+ 1
· θ(t)

0:k−s+1(1) +
1

t+ k − s
+ 1k=s (130)

This will be treated in sub-subsection A.3.4.

A.3.2 Estimating ω

Remark 10. In this sub-subsection we are going to estimate ω(t)
0:k(s), which is a sum of products of s

distinct factors. The idea will be to start from the expression(
1

t
+

1

t+ 1
+ . . .+

1

t+ k − 1

)s
(131)

and substract all products containing at least two identical factors, followed by a division by s!.

This approach will be similar in spirit to the inclusion-exclusion principle, with the only difference
that the desired term will not computed directly, but instead one first establishes a recursive formula
using ω(t)

0:k(s′) with s′ ≤ s.

Solving this recursive formula will enable us to express ω
(t)
0:k(s) only in terms of

(1
t + 1

t+1 + . . .+ 1
t+k−1). In fact, ω(t)

0:k(s) will be a polynomial of degree s in (1
t + 1

t+1 + . . .+ 1
t+k−1).

We adopt this approach, because we have a very good estimate for
1

t
+

1

t+ 1
+ . . .+

1

t+ k − 1
(132)

Namely, we know that for all n, we have

1 +
1

2
+ . . .+

1

n− 1
+

1

n
= lnn+ γ + εn ≤ lnn+ 1 (133)

23

where γ > 1
2 is the Euler-Mascheroni constant and εn behaves asymptotically as 1

2n . In other words,

1

t
+

1

t+ 1
+ . . .+

1

t+ k − 1
= ln

(
t+ k − 1

t− 1

)
+ εt+k−1 − εt−1 (134)

= ln

[
t+ k − 1

t− 1
· exp (εt+k−1 − εt−1)

]
(135)

= lnβt−1,t+k−1 (136)

where βl,l′
def
= l′

l · exp (εl′ − εl). In order to reinforce the intuition here, let us imagine that T = t+k,
then

lnβt−1,t+k−1 ∼ lnT (137)

as T →∞. Hence we should expect ω(t)
0:k(s) to behave asymptotically as a polynomial of degree s in

lnT .

Let us emphasize that we would like to express ω(t)
0:k(s) with as much precision as possible (i.e. not

omitting the monomials in lnT of degree less than s), since we would like to later on use this estimate
in subsequent steps when summing multiple ω(t)

0:k(s) terms over s.

In order to further ease notation, we will simply write ω(s) for ω(t)
0:k(s), whenever there is no

ambiguity.

Finally, for this sub-subsection only we will use the following notation

Sl
def
=

1

tl
+

1

(t+ 1)l
+ . . .+

1

(t+ k − 1)l
(138)

for all l ≥ 1, and keeping in mind that Sl converges as k →∞, for all l ≥ 2.

Remark 11. Let us now build a first intuition on how to apply an inclusion-exclusion-like principle
in order to calculate ω(s) for small s.

For s = 1:

ω(1) = S1 (139)

For s = 2:

ω(2) =
1

2!

(
S2

1 − S2

)
(140)

Here we expand S2
1 , then substract the sum of products of doubles S2, followed by a division of

2! = 2 to divide out the number of permutations.

For s = 3: first we need to substract the sum of products of triples S3, and then the sum products
where exactly two factors are identical S2 · ω(1)− S3. The latter appears

(
3

2,1

)
= 3!

2!1! = 3 times in
the expansion of S3

1 . Similarly, we need to divide out the number of permutations 3!. Hence

ω(3) =
1

3!

[
S3

1 − S3 − 3 · (S2 · ω(1)− S3)
]

=
S3

1

3!
− 1

2
S2 · ω(1) +

1

3
S3 (141)

Let us form now on denote (3) for the sum of products of triples, and (2, 1) the sum of products where
exactly two factors are the same.

24

More generally we would denote

(j1, j2, . . . , jk) (142)

with j1 ≥ j2 ≥ . . . ≥ jk ≥ 1, to denote the sum of products where one factor appears exactly j1
times, another factor (distinct from the previous one!) appears exactly j2 times, and another factor
(distinct from the previous two!) appears exactly j3 times, etc. This leaves us with exactly k distinct
factors each having multiplicity j1, j2, . . . , jk respectively. This sum appears with

(
s

j1, j2, . . . , jk

)
=

s!

j1! · j2! · . . . · jk!
(143)

repetitions in the expansion of Ss1 , where s = j1 + j2 + . . .+ jk.

For s = 4: when expanding S4
1 , we need to take into account

• (4) = S4 with
(

4
4

)
= 4!

4! = 1 repetition.

• (3, 1) = S3 · ω(1)− S4 with
(

4
3,1

)
= 4!

3!·1! = 4 repetitions.

• (2, 2) = S2
2 − S4 with

(
4

2,2

)
= 4!

2!·2! = 6 repetitions.

• (2, 1, 1) = S2 · ω(2) − (3, 1) = S2 · ω(2) − S3 · ω(1) + S4 with
(

4
2,1,1

)
= 4!

2!·1!·1! = 12
repetitions.

Hence we get

ω(4) =
1

4!
[S4

1 − S4 − 4 · (S3 · ω(1)− S4)− 6 · (S2
2 − S4) (144)

− 12 · (S2 · ω(2)− S3 · ω(1) + S4)] (145)

=
1

4!
[S4

1 − 4 · S3 · ω(1) + 4 · S4 − 6 · S2
2 + 6 · S4 − 12 · S2ω(2) (146)

+ 12 · S3 · ω(1)− 12 · S4 − S4] (147)

=
1

4!

[
S4

1 − 12 · S2 · ω(2) + 8 · S3 · ω(1)− 3 · (S4 + S2
2)
]

(148)

=
S4

1

4!
− S2

2
ω(2) +

S3

3
ω(1)− (S4 + 2 · S2

2)

8
(149)

Notice how, as we progress with higher values of s, we build a recursive formula in ω(s′) with s′ ≤ s.

Intuition. Note that the coefficient of ω(2) for s = 4, is the same as the coefficient for ω(1) for
s = 3, and is the same as the ’constant term’ for s = 2. Similarly, the coefficient of ω(1) for s = 4 is
the same as the ’constant term’ for s = 3. (By convention here, we don’t consider the terms Ss

1

s! to not
be part of the ’constant term’.)

Hence, in the recursive formula for ω(s), we would expect the coefficient of ω(s′) with s′ < s to be
equal to the ’constant term’ in the formula for ω(s− s′).

Notation. For all s > l ≥ 0, let us denote δs,l to be the coefficient of the term ω(l) in the recursive
formula for ω(s). By convention, we denote δs,0 for the ’constant term’ in the recursive formula for
ω(s). Hence for all s ≥ 1, we have

ω(s) =
Ss1
s!

+ δs,s−1 · ω(s− 1) + δs,s−2 · ω(s− 2) + . . .+ δs,1 · ω(1) + δs,0 (150)

Hypothesis. The hypothesis will thus rewrite as

δs,l = δs−l,0 (151)

25

for all s > l ≥ 0, which will prove by induction on s in the next lemma.

Lemma 9. Let s ≥ 1. Then

ω(s) =
Ss1
s!

+ δ1,0 · ω(s− 1) + δ2,0 · ω(s− 2) + . . .+ δs−1,0 · ω(1) + δs,0 (152)

Proof. Let us prove by induction on s that for all s > l ≥ 0, we have

δs,l = δs−l,0 (153)

. We already verified the cases s = 1, 2, 3, 4 in the previous remark. Thus let us suppose the induction
hypothesis is true for s, and consider the mapping

Υ : (j1, j2, . . . , jk) 7→ (j1, j2, . . . , jk, 1) (154)

where j1 ≥ j2 ≥ . . . ≥ jk ≥ 1 and s = j1 + j2 + . . .+ jk, mapping a partition of s onto a partition
of s+ 1.

If we suppose that (j1, j2, . . . , jk) consists of exactly r 1’s, then we can write

(j1, j2, . . . , jk) = cr · ω(r) + cr−1 · ω(r − 1) + . . .+ c1 · ω(1) + c0 (155)

for some coefficients cr, cr−1, . . . , c1, c0, and with(
s

j1, j2, . . . , jk

)
=

s!

j1! · j2 · . . . · jk!
(156)

repetitions in the expansion of Ss1 .

The contribution of (j1, j2, . . . , jk) to the coefficient δs,r′ of ω(r′) with r′ ≤ r < s, in the final
recursive formula of ω(s) will be

cr′

j1! · j2! · . . . · jk!
(157)

(keeping in mind that we are dividing by s! after having done all the substractions from Ss1).

Meanwhile,

(j1, j2, . . . , jk, 1) = cr · ω(r + 1) + cr−1 · ω(r) + . . .+ c1 · ω(2) + c0 · ω(1) + c̃0 (158)

for some coefficient c̃0, with (
s+ 1

j1, j2, . . . , jk, 1

)
=

(s+ 1)!

j1! · j2 · . . . · jk!
(159)

repetitions in the expansion of Ss+1
1 .

The contribution of (j1, j2, . . . , jk, 1) to the coefficient δs+1,r′+1 of ω(r′ + 1) with r′ ≤ r < s, in
the final recursive formula of ω(s+ 1) will be

cr′

j1! · j2! · . . . · jk!
(160)

(keeping in mind that we are dividing by (s+ 1)! after having done all the substractions from Ss+1
1).

Conversely, the coefficient δs+1,r′+1 only receives contributions from partitions of (s+ 1) having at
least (r′ + 1) 1’s, which correspond exactly to the contributions from the partitions of s having at
least r′ 1’s. Hence

δs+1,r′+1 = δs,r′ (161)

Then by the induction hypothesis, we have δs,r′ = δs−r′,0. In other words

δs+1,r′+1 = δs−r′,0 (162)

which completes the proof by induction.

26

Remark 12. Note that all the coefficients δs,l consist of linear combination of products with factors
equal to Sj with j ≥ 2, which are known to converge as T → ∞. Thus those can be considered
constants when doing an asymptotic analysis in the subsequent sub-subsections. Also note that
δs,s−1 = δ1,0 = 0.

Proposition 3. For all s ≥ 1, we have

ω(s) =

s∑
r=0

ψs−r
Sr1
r!

(163)

where for l ≥ 2

ψl
def
=

l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (164)

with

Ψl,k
def
= {(j1, j2, . . . , jk) with j1 ≥ . . . ≥ jk > 1 and j1 + . . .+ jk = l} (165)

and where we define ψ0 = 1 and ψ1 = 0.

Proof. For l ≥ 2, we have

ψl =

l−1∑
k=1

∑
(j1,j2,...,jk)∈Ψl,k

δj1,0 · . . . · δjk,0 (166)

= δl,0 +

l−1∑
k=1

 l−2∑
j=2

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (167)

= δl,0 +

l−2∑
j=2

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj,0 · δj2,0 · . . . · δjk,0

 (168)

= δl,0 +

l−2∑
j=2

δj,0 ·

 l−j∑
k=1

∑
(j2,...,jk)∈Ψl−j,k−1

δj2,0 · . . . · δjk,0

 (169)

= δl,0 +

l−2∑
j=2

δj,0 · ψl−j (170)

=

l∑
j=1

δj,0 · ψl−j (171)

(172)

In other words, we have shown that for all l ≥ 2,

ψl =

l−1∑
j=0

δl−jψj (173)

Let us now prove the proposition by induction on s.

The case s = 1 is trivial by the definition of ψ0 and ψ1.

27

Let us now assume the formula is true for s, and let us prove it for s+ 1. By the previous lemma 3,
we know that

ω(s+ 1) =
Ss+1

1

(s+ 1)!
+

s∑
l=1

δs+1−l,0 · ω(l) + δs+1,0 (174)

=
Ss+1

1

(s+ 1)!
+

s∑
l=1

δs+1−l,0 ·

(
l∑

r=0

ψl−r ·
Sr1
r!

)
+ δs+1,0 (175)

=
Ss+1

1

(s+ 1)!
+

s∑
l=1

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr1
r!

+ δs+1,0 (176)

=
Ss+1

1

(s+ 1)!
+

s∑
l=0

l∑
r=0

δs+1−l,0 · ψl−r ·
Sr1
r!

(177)

=
Ss+1

1

(s+ 1)!
+

s∑
r=0

s∑
l=r

δs+1−l,0 · ψl−r ·
Sr1
r!

(178)

=
Ss+1

1

(s+ 1)!
+

s∑
r=0

s−r∑
l′=0

δs+1−r−l′,0 · ψl′ ·
Sr1
r!

(179)

=
Ss+1

1

(s+ 1)!
+

s∑
r=0

ψs+1−r ·
Sr1
r!

(180)

=

s+1∑
r=0

ψs+1−r ·
Sr1
r!

(181)

completing the proof by induction.

Remark 13. Hence we have shown that for all s ≥ 1

ω(s) =

s∑
r=0

ψs−r
Sr1
r!

=
Ss1
s!

+

s−2∑
r=0

ψs−r
Sr1
r!

(182)

or in other words

ω(s) =
(lnβt−1,t+k−1)s

s!
+

s−2∑
r=0

ψs−r
(lnβt−1,t+k−1)r

r!
∼ (lnT)s

s!
+

s−2∑
r=0

ψs−r
(lnT)r

r!
(183)

as t+ k = T →∞, which is roughly the polynomial in lnT of degree s we were anticipating.

A.3.3 Estimating θ

Remark 14. Let us now recall the definition for all s ≥ 1,

θ
(t)
l:k(s)

def
=

∑
l≤i1<...<is<k

(
1

t+ is
+ 1is−is−1=1

)
·
(

1

t+ is−1
+ 1is−1−is−2=1

)
· . . . (184)

. . . ·
(

1

t+ i2
+ 1i2−i1=1

)
·
(

1

t+ i1
+ 1i1=0

)
(185)

which we would like to estimate using ω(t)
l:k(s).

In order to build a first intuition, let us look at how it plays out for small values for s.

28

Notation. In this subsection we omit the superscript (t) notation because there is no ambiguity. We
will also occasionally do the abuse of notation and assume ωl:k(0) = 1 for all l < k.

For s = 1, we get

θ0:k(1) = 1 + ω0:k(1) (186)

For s = 2, we get

θ0:k(2) = 1 + ω1:k(1) + ω0:k−1(1) + ω0:k(2) (187)

In what follows, we will use the following recursive formula quite frequently

θ0:k(s+ 1) = θ0:k−1(s) +

k−1∑
j=s

1

t+ j
θ0:j(s) (188)

Hence for s = 3, we get

θ0:k(3) = 1 + ω1:k−1(1) + ω0:k−2(1) + ω2:k(1) + ω0:k−1(2) (189)

+ ω1:k(2) +

k−1∑
j=2

ω0:j−1(1)

t+ j
+ ω0:k(3) (190)

Now let us further observe that for all s ≥ 1 and 0 ≤ r ≤ l, we have

ωl+r:k+r(s) ≤ ωl:k(s) ≤ ωl−r:k−r(s) (191)

This implies that

1 + 2 · ω1:k(1) + ω0:k(2) ≤ θ0:k(2) ≤ 1 + 2 · ω0:k−1(1) + ω0:k(2) (192)

and, similarly,

1 + 3 · ω2:k(1) + 3 · ω1:k(2) + ω0:k(3) ≤ θ0:k(3) ≤ 1 + 3 · ω0:k−2(1) + 3 · ω0:k−1(2) + ω0:k(3)
(193)

Hypothesis. We can thus see the binomial coefficients arising, and we would expect that in general,
we have

s∑
r=0

(
s

r

)
· ω0:k−s+r(r) ≥ θ0:k(s) ≥

s∑
r=0

(
s

r

)
· ωs−r:k(r) (194)

Lemma 10. For all k ≥ s ≥ 1, we have

s∑
r=0

(
s

r

)
· ω(t)

0:k−s+r(r) ≥ θ
(t)
0:k(s) ≥

s∑
r=0

(
s

r

)
· ω(t)

s−r:k(r) (195)

Proof. Let us prove this lemma by induction on s. The cases s = 1, 2, 3 have already been treated in
the previous remark.

Let us now assume that the claim holds for s, and prove it for s+ 1 using the recursive formula

θ0:k(s+ 1) = θ0:k−1(s) +

k−1∑
j=s

1

t+ j
θ0:j(s) (196)

29

For the lower bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≥
s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

k−1∑
j=s

1

t+ j

s∑
r=0

(
s

r

)
· ωs−r:j(r) (197)

=

s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1

t+ j
· ωs−r:j(r) (198)

=

s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s∑
r=0

(
s

r

)
· ωs−r:k(r + 1) (199)

=

s∑
r=0

(
s

r

)
· ωs−r:k−1(r) +

s+1∑
r=1

(
s

r − 1

)
· ωs−r+1:k(r) (200)

= 1 + ω0:k(s+ 1) +

s∑
r=1

[(
s

r

)
+

(
s

r − 1

)]
· ωs−r+1:k(r) (201)

= 1 + ω0:k(s+ 1) +

s∑
r=1

(
s+ 1

r

)
· ωs−r+1:k(r) (202)

=

s+1∑
r=0

(
s+ 1

r

)
· ωs−r+1:k(r) (203)

(204)

For the upper bound, using the induction hypothesis, we get

θ0:k(s+ 1) ≤
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

k−1∑
j=s

1

t+ j

s∑
r=0

(
s

r

)
· ω0:j−(s−r)(r) (205)

=

s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1

t+ j
· ω0:j−(s−r)(r) (206)

≤
s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1∑
j=s

1

t+ j − (s− r)
· ω0:j−(s−r)(r)

(207)

=

s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
·
k−1−(s−r)∑

j′=r

1

t+ j′
· ω0:j′(r) (208)

=

s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s∑
r=0

(
s

r

)
· ω0:k−(s−r)(r + 1) (209)

=

s∑
r=0

(
s

r

)
· ω0:k−1−(s−r)(r) +

s+1∑
r=1

(
s

r − 1

)
· ω0:k−(s+1−r)(r) (210)

= 1 + ω0:k(s+ 1) +

s∑
r=1

[(
s

r

)
+

(
s

r − 1

)]
· ω0:k−(s+1−r)(r) (211)

= 1 + ω0:k(s+ 1) +

s∑
r=1

(
s+ 1

r

)
· ω0:k−(s+1−r)(r) (212)

=

s+1∑
r=0

(
s+ 1

r

)
· ω0:k−(s+1−r)(r) (213)

(214)

completing the proof by induction.

30

Remark 15. Let us recall that

ωl:k(r) =

r∑
q=0

ψr−q
(lnβt+l−1,t+k−1)q

q!
(215)

Thus the difference between the upper-bound and the lower-bound becomes

s∑
r=0

(
s

r

)[
ωo:k−(s−r)(r)− ωs−r:k(r)

]
=

s∑
r=0

(
s

r

)
·

[
r∑
q=0

ψr−q
(lnβt−1,t+k−(s−r)−1)q − (lnβt+s−r−1,t+k−1)q

q!

]
(216)

which converges to zero as T = t+ k →∞.

A.3.4 Putting it all together

Remark 16. Now it is time to turn to χ(t)
0:k(s) and finally put it all together, so that we can finally

estimate

dst+k
dht

=

k∑
s=0

V s · χ(t)
0:k(s) (217)

and get the asymptotic estimate when T = t+ k →∞.

Let us recall that

χ
(t)
0:k(s) =

1

t+ k
· θ(t)

0:k(s) +
1

t+ k − 1
· θ(t)

0:k−1(s− 1) + . . . (218)

. . .+
1

t+ k − s+ 1
· θ(t)

0:k−s+1(1) +
1

t+ k − s
+ 1k=s (219)

Using the abuse of notation θl:k(0) = 1 for l < k, we can rewrite it as follows

χ
(t)
0:k(s) = 1k=s +

s∑
i=0

1

t+ k − i
· θ0:k−i(s− i) (220)

The idea is to use the inequality from lemma 10, and get a similar result for χ(t)
0:k(s), then show that

the lower and upper bound are no more than Θ(1/T) apart, thus enabling us to eventually get an
asymptotic estimate for dst+k

dht
.

We are also omitting the superscript (t) notation here because of lack of ambiguity.

Lemma 11. For all s ≥ 0 and k ≥ 1, we have

1k=s +
1

t+ k
·
s∑
r=0

(
s+ 1

r + 1

)
· ωs−r:k(r) ≤ χ0:k(s) ≤ 1k=s +

1

t+ k − s
·
s∑
r=0

(
s+ 1

r + 1

)
· ω0:k−(s−r)(r)

(221)

31

Proof. Using the upper-bound of lemma 10, we get

χ0:k(s) = 1k=s +

s∑
i=0

1

t+ k − i
· θ0:k−i(s− i) (222)

≤ 1k=s +

s∑
i=0

1

t+ k − i
·
s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (223)

≤ 1k=s +
1

t+ k − s
·
s∑
i=0

s−i∑
r=0

(
s− i
r

)
· ω0:k−s+r(r) (224)

= 1k=s +
1

t+ k − s
·
s∑
r=0

[
s−r∑
i=0

(
s− i
r

)]
· ω0:k−s+r(r) (225)

= 1k=s +
1

t+ k − s
·
s∑
r=0

(
s+ 1

r + 1

)
· ω0:k−s+r(r) (226)

Similarly, using the lower-bound of lemma 10, we get

χ0:k(s) = 1k=s +

s∑
i=0

1

t+ k − i
· θ0:k−i(s− i) (227)

≥ 1k=s +

s∑
i=0

1

t+ k − i
·
s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (228)

≥ 1k=s +
1

t+ k
·
s∑
i=0

s−i∑
r=0

(
s− i
r

)
· ωs−r:k(r) (229)

= 1k=s +
1

t+ k
·
s∑
r=0

[
s−r∑
i=0

(
s− i
r

)]
· ωs−r:k(r) (230)

= 1k=s +
1

t+ k
·
s∑
r=0

(
s+ 1

r + 1

)
· ωs−r:k(r) (231)

Lemma 12. For all s ≥ 0, we have

χ0:k(s) = 1k=s +
1

t+ k

[
s∑
r=0

(
s+ 1

r + 1

)
· ωs−r:k(r)

]
+ Θ

(
1

t+ k

)
(232)

for all large enough k > 1, and where the implicit constants from the Θ(.) notation are dependent on
s.

Proof. Building on the previous lemma 11, and substracting the lower bound from the upper bound,
we get

s∑
r=0

(
s+ 1

r + 1

)
·
[
ω0:k−s+r(r)

t+ k − s
− ωs−r:k(r)

t+ k

]
=

s∑
r=0

r∑
q=0

(
s+ 1

r + 1

)
ψr−q
q!
·
[

(lnβt−1,t+k−s+r−1)q

t+ k − s
− (lnβt+s−r−1,t+k−1)q

t+ k

]
(233)

When assuming that for large k, we have

(lnβt−1,t+k−s+r−1)q ≈ (lnβt+s−r−1,t+k−1)q (234)

32

then
(lnβt−1,t+k−s+r−1)q

t+ k − s
− (lnβt+s−r−1,t+k−1)q

t+ k
≈ 1

t+ k
·
[

s

t+ k − s
· (lnβt−1,t+k−s+r−1)q

]
(235)

≤ 1

t+ k
·
[

s

t+ k − s
· (lnβt−1,t+k−s+r−1)s

]
(236)

≤ τs
t+ k

(237)

for some τs > 0 depending on s, for all sufficiently large k.

In other words, we have
s∑
r=0

(
s+ 1

r + 1

)
·
[
ω0:k−s+r(r)

t+ k − s
− ωs−r:k(r)

t+ k

]
≤ τ̃s
t+ k

(238)

for for some τ̃s > 0 depending on s, for all sufficiently large k.

Meanwhile, for all large enough k, we have
s∑
r=0

(
s+ 1

r + 1

)
·
[
ω0:k−s+r(r)

t+ k − s
− ωs−r:k(r)

t+ k

]
≈ s

(t+ k)(t+ k − s)
·
s∑
r=0

r∑
q=0

(
s+ 1

r + 1

)
ψr−q
q!
· (lnβt−1,t+k−s+r−1)q

(239)

≥ τ ′s
(t+ k)2

·
s∑
r=0

r∑
q=0

(
s+ 1

r + 1

)
ψr−q
q!
· (lnβt−1,t+k−s+r−1)q

(240)

≥ τ ′s
(t+ k)2

·
s∑
r=0

r∑
q=0

ψr−q
q!
· (lnβt−1,t+k−s+r−1)q

(241)

=
τ ′s

(t+ k)2
·
s∑
q=0

s−q∑
r′=0

ψr′

q!
· (lnβt−1,t+k−s+r′+q−1)q

(242)

≈ τ ′s
(t+ k)2

·
s∑
q=0

(
s−q∑
r′=0

ψr′

)
· (ln (t+ k))q

q!
(243)

≥ τ ′′s
(t+ k)2

·
s∑
q=0

(ln (t+ k))q

q!
(244)

≈ τ ′′s · exp [ln (t+ k)]

(t+ k)2
(245)

=
τ ′′s
t+ k

(246)

for some τ ′s, τ
′′
s > 0 depending on s.

Proposition 4. If V is a normal matrix with eigenvalues λ1, λ2, . . . , λn of modulus smaller than 1,
then

dsT
dht

= PΛTP
∗ (247)

where P ∗ is the conjugate transpose of the unitary matrix P (independent of T) and where ΛT is a
diagonal matrix satisfying

(ΛT)ii ∼ T
−1 · c+ Tλi−1 · c′ (248)

for some positive real constants c, c′, as T →∞.

33

Proof. Let V = PΛP ∗ be the Schur decomposition of V , with Λ = diag(λ1, λ2, . . . , λn). Note that
since we supposed that V is normal, we thus have that the Schur matrix Λ is indeed diagonal and is
composed of the eigenvalues on the diagonal.

Based on lemma 12, one can show that there exists a function g : N→ R+
0 such that

χ0:k(s) = 1k=s +
1

t+ k

[
s∑
r=0

(
s+ 1

r + 1

)
· ωs−r:k(r) + g(s)

]
(249)

Thus

dst+k
dht

=

k∑
s=0

V s · χ0:k(s) (250)

= V k +
1

t+ k

[
k∑
s=0

g(s) · V s +

k∑
s=0

s∑
r=0

(
s+ 1

r + 1

)
· ωs−r:k(r) · V s

]
(251)

= V k +
1

t+ k

[
k∑
s=0

g(s) · V s +

k∑
s=0

s∑
r=0

r∑
q=0

(
s+ 1

r + 1

)
· ψr−q

(lnβt+s−r−1,t+k−1)q

q!
· V s

]
(252)
(253)

Since the eigenvalues of V are of modulus smaller than 1, we can assume that there exists a constant
d > 0 (dependent on the choice of eigenvalues of V) such that for all k > d we have V k ≈ 0.

Furthermore since V m = (PΛP ∗)m = PΛmP ∗ for all m ∈ N0, while keeping in mind that we pick
T = t+ k, we can write

ΛT =
1

T

[
d∑
s=0

g(s) · Λs +

d∑
s=0

s∑
r=0

r∑
q=0

(
s+ 1

r + 1

)
· ψr−q

(lnβt+s−r−1,T−1)q

q!
· Λs

]
(254)

=
1

T

[
d∑
s=0

g(s) · Λs +

d∑
s=0

s∑
q=0

s∑
r=q

(
s+ 1

r + 1

)
· ψr−q

(lnβt+s−r−1,T−1)q

q!
· Λs

]
(255)

=
1

T

[
d∑
s=0

g(s) · Λs +

d∑
q=0

d∑
s=q

s∑
r=q

(
s+ 1

r + 1

)
· ψr−q

(lnβt+s−r−1,T−1)q

q!
· Λs

]
(256)

=
1

T

[
d∑
s=0

g(s) · Λs +

d∑
q=0

d∑
s=q

s∑
r=q

(
s+ 1

r + 1

)
· ψr−q

(Λ · lnβt+s−r−1,T−1)q

q!
· Λs−q

]
(257)

=
1

T

 d∑
s=0

g(s) · Λs +

d∑
q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1

r′ + q + 1

)
· ψr′

(Λ · lnβt+s′−r′−1,T−1)q

q!
· Λs

′


(258)

∼ 1

T

 d∑
s=0

g(s) · Λs +

d∑
q=0

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1

r′ + q + 1

)
· ψr′

(Λ · lnT)q

q!
· Λs

′

 (259)

=
1

T

[
d∑
s=0

g(s) · Λs
]

+
1

T

 d∑
q=0

(Λ · lnT)q

q!
·

d−q∑
s′=0

s′∑
r′=0

(
s′ + q + 1

r′ + q + 1

)
· ψr′ · Λs

′

 (260)

≈ 1

T

[
d∑
s=0

g(s) · Λs
]

+
1

T
exp (Λ · lnT) · (c0 + c1 · Λ + . . .+ cd · Λd) (261)

∼ c

T
+
c′

T
exp (Λ · lnT) (262)

for some positive constants c′, c, c0, c1, . . . , cd.

34

Hence

(ΛT)ii ∼ c · T−1 + c′ · Tλi−1 (263)

Theorem 1. If V is a normal matrix with eigenvalues of modulus smaller than 1, then

‖dsT
dht
‖ = Ω(1/T) (264)

as T →∞. (here ‖.‖ is the Frobenius norm.)

Proof. Let us start off with the observation that

T−1 · c+ Tλi−1 · c′ = Ω
(
T−min (1,1−Re(λi))

)
(265)

as T →∞. And thus, by using proposition 4, we get

‖dsT
dht
‖ = Ω(T−η) (266)

where

η = min
i=1,...,n

{min (1, 1−Re(λi))} ≤ 1 (267)

Remark 17. Note that V being normal is not a necessary condition for the generality of the theorem
to hold. We simply chose V to be normal in order to make the calculations less cumbersome.

In case V is non-normal, its Schur matrix Λ becomes triangular instead of diagonal. In fact, if ti,j
are the off-diagonal elements of Schur matrix of V (with i < j), then

‖V ‖ =
√

Tr(V ∗V) =
√

Tr(Λ∗Λ) =

√√√√ n∑
i=1

|λi|2 +
∑
i<j

|ti,j |2 ≥

√√√√ n∑
i=1

|λi|2 (268)

Thus every lower bound on
√∑n

i=1 |λi|2 induces a lower bound on ‖V ‖, and in particular an
asymptotic lower bound on the modulus of one of the eigenvalues of dsTdht

induces an asymptotic lower
bound on ‖dsTdht

‖.

A.4 Sparse relevance case with bounded dependency depth

Remark 18. Similarly to remark 7, we are going to assume for this subsection:

• no non-linearity in the hidden-to-hidden connection: Jt = V for all t.

• all assumptions from Remark 3.

• κ-sparse attention: for each t ≥ 1, there are at most κ ≤ t values for i such that αi,t 6= 0.

(Let us define κt
def
= |{i such that αi,t 6= 0}|)

• uniform attention across attended states: for all t ≥ 1, and all i ≤ t such that αi,t 6= 0, we
have αi,t = 1/κt ≥ 1/κ.

35

Remark 19. Similarly to remark 8, let us recall that

Xi,t =

hi − t∑
j=1

αj,thj

 · ∂ei,t
∂hi

(269)

and that

t∑
i=1

αi,tYi,t =

t∑
i=1

αi,t · hi ·

 ∂ei,t
∂st−1

−
t∑

j=1

αj,t ·
∂ej,t
∂st−1

 (270)

=

t∑
i=1

αi,t · hi ·
∂ei,t
∂st−1

−
t∑
i=1

αi,t

 t∑
j=1

αj,t · hj

 · ∂ei,t
∂st−1

(271)

=

t∑
i=1

αi,t ·

hi − t∑
j=1

αj,thj

 · ∂ei,t
∂st−1

(272)

Thus we can see that both expressions have the common factor
(
hi −

∑t
j=1 αj,thj

)
.

By defining

At
def
= {i such that αi,t 6= 0} (273)

we see that

hi −
t∑

j=1

αj,thj = hi −
1

κt

∑
j∈At

hj (274)

and we are going to assume for the sake of simplicity that

hi ≈
1

κt

∑
j∈At

hj (275)

and thus Xi,t ≈ 0 and
∑t
i=1 αi,tYi,t ≈ 0.

Recalling the expression from corollary 1 and that f(ht, ct) = ht + ct by remark 3, and that Jt = V
for all t, this will give for all k′ ≥ 0

E
(t)
k′ =

(
1t∈At+k′

κt+k′
+ 1k′=0

)
· I (276)

and for all k ≥ j, we get

F
(t)
k+1,j =

(
1t+j+1∈At+k+1

κt+k+1
+ 1k=j

)
· V (277)

Hence by recalling proposition 1, the main expression of interest becomes

dst+k
dht

=

k∑
s=0

ξ̄
(t)
0:k(s) =

k∑
s=0

V s · χ(t)
0:k(s) (278)

where

χ
(t)
0:k(s)

def
=

∑
0≤i1<...<is<k

(
1t+is+1∈At+k

κt+k
+ 1k−is=1

)
·
(

1t+is−1+1∈At+is

κt+is
+ 1is−is−1=1

)
·

(279)

. . . ·
(

1t+i1+1∈At+i2

κt+i2
+ 1i2−i1=1

)
·
(

1t∈At+i1

κt+i1
+ 1i1=0

)
(280)

36

Remark 20. Let us now have a look at how we could potentially simplify the analysis of χ(t)
0:k(s).

If we further assume V to be normal we can write

V = PΛP ∗ (281)
where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix consisting of the eigenvalues of V , and P ∗ is
the conjugate transpose of P .

Hence, we can rewrite

dst+k
dht

=

k∑
s=0

V s · χ(t)
0:k(s) = P ·

(
k∑
s=0

Λs · χ(t)
0:k(s)

)
· P ∗ (282)

We can therefore see that the asymptotic behaviour of dst+k

dht
depends largely on the asymptotic

behaviour of the modulus of the complex-valued polynomial

p0:k(λ)
def
=

k∑
s=0

λs · χ(t)
0:k(s) (283)

and thus

‖dst+k
dht

‖ =

√√√√ n∑
i=1

|p0:k(λi)|2 (284)

where ‖.‖ is the Frobenius norm. Hence in order to prove that

‖dst+k
dht

‖ = Ω(1/κd) (285)

for all large enough k (note that k and κ here are two different symbols), it would suffice to show that
there exists λ ∈ {λ1, . . . , λn} such that, for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (286)

For simplicity we are going to assume that for all t, we have κt = κ.

Let us further define for all s ≥ 1,

f
(s)
0:k(i1, . . . , is)

def
=

(
1t+is+1∈At+k

κt+k
+ 1k−is=1

)
·
(

1t+is−1+1∈At+is

κt+is
+ 1is−is−1=1

)
· . . . (287)

. . . ·
(

1t+i1+1∈At+i2

κt+i2
+ 1i2−i1=1

)
·
(

1t∈At+i1

κt+i1
+ 1i1=0

)
(288)

whenever (i1, . . . , in) satisfies 0 ≤ i1 < i2 < . . . < is < k, and

f
(s)
0:k(i1, . . . , is)

def
= 0 (289)

otherwise.

Theorem 2. Given the κ-sparsity assumption and the dependency depth d, we have that if V is
normal and has one positive real eigenvalue, then

‖dst+k
dht

‖ = Ω(1/κd) (290)

for all large enough k.

37

Proof. By the hypothesis on the dependency depth d, we know that for each k, there exists s′ ≤ d
and (i1, i2, . . . , is′) such that

f
(s′)
0:k (i1, . . . , is′) ≥

(
1

κ

)s′+1

≥
(

1

κ

)d+1

(291)

Hence if λ is real and positive, then for all large enough k, we have

|p0:k(λ)| = Ω(1/κd) (292)

Let us recall that, since V is normal we can write

‖dst+k
dht

‖ =

√√√√ n∑
i=1

|p0:k(λi)|2 (293)

where λ1, . . . , λn are the eigenvalues of V .

Hence, if V has at least one positive real eigenvalue then

‖dst+k
dht

‖ = Ω(1/κd) (294)

for all large enough k.

Remark 21. As already mentioned, since κ and d are assumed to be constant, the theorem states
that

‖dst+k
dht

‖ = Ω(1) (295)

The dependence on κ and d was simply given in order to get an intuition on how κ and d are
influencing the lower bound, and that d has more leverage on the lower bound than κ.

Regarding the normality of V , the same remark can be made as in remark 17.

Then note that if V is a (real) n× n matrix, with n odd, then we have at least one real eigenvalue.
Thus the restriction of having at least one positive real eigenvalue is not that severe.

Further, one can show that the theorem holds in a slightly more general setting where one might not
have at least one positive real eigenvalue.

Let us consider the case where κ = 1, |λ| < 1 such that we could consider λc ≈ 0 for some large
enough positive integer c, and that all states between T and T − c have dependency depth of exactly
d (where T = t+ k), then

p0:k(λ) =
λd

κd
· (1 + λ+ . . .+ λc−d) =

λd

κd
·
(

1− λc−d+1

1− λ

)
(296)

Hence we can see that if we can show that
∣∣∣ 1−λc−d+1

1−λ

∣∣∣ is lower bounded asymptotically by a constant,
independent of d and κ, (which it is in this case), then we have

|p0:k(λ)| = Ω(1/κd) (297)

We also see that we would like λ to be sufficiently bounded away from a small set of critical values
such as the (c− d)-th roots of unity.

In a more general setting, we can rewrite

p0:k(λ) =
λd

κd
· q0:k(λ) (298)

38

for some polynomial q0:k with positive real coefficients, and we would like λ to be such that
|q0:k(λ)| = Ω(1) for all sufficiently large k.

Our hypothesis is that the theorem holds as long as λ is sufficiently bounded away from a small set of
critical values in C \ R+, or in other words, we would need only at least one eigenvalue to satisfy
this condition. This set of critical values is a dependent on κ, d and the overall configuration of the
attention weights.

39

B Effects of memory sparsity on basic reinforcement learning tasks

We consider a few tasks from MiniGrid [8] in the OpenAI gym [6] in which an agent must get to
certain goal states. We use a partially observed formulation of the task, where the agent only sees a
small number of squares ahead of it. Our goal is to compare generalization of the solutions learned
by full and sparse memory-augmented models, by training on smaller version of an environment
and testing it on a larger version. To do so, we compare the use of MemLSTM (full attention) and
RelLSTM (sparse attention). We note that some purely recurrent models can perform well on these
tasks where sequence lengths are rather short, but the scope of this experiment is to explicitly compare
the effect of different memory densities.

Table 4: Average Train and Test Rewards for MiniGrid Reinforcement Learning task. The models
were trained on the smaller version of the environment and tested on the larger version to test to
generalization of the solution learned.

Environment MemLSTM RelLSTM

Train

RedBlueDoors-6x6 0.97 0.97
GoToObject-6x6 0.85 0.84

MemoryS7 0.4 0.94
GoToDoor-5x5 0.17 0.25

Fetch-5x5 0.42 0.5
DoorKey-5x5 0.94 0.93

Test

RedBlueDoors-8x8 0.95 0.95
GoToObject-8x8 0.66 0.74

MemoryS13 0.24 0.30
GoToDoor-8x8 0.11 0.15

Fetch-8x8 0.44 0.45
DoorKey-16x16 0.31 0.44

These tasks are difficult to solve with standard RL algorithms, due to (1) the partial observability
of the environment and (2) the sparsity of the reward, given that the agent receives a reward only
after reaching the goal. We use Proximal Policy Optimization (PPO, [36]) along with MemLSTM,
and RelLSTM as the recurrent modules. All models were each trained for 5000000 steps on each
environment. The hyperparameters used for RelLSTM are ν = 5 and ρ = 5. On the MiniGrid-
DoorKey-5x5-v0 environment the average reward for MemLSTM is 0.94 and RelLSTM is 0.93.
On transferring the learned solution to the 16x16 version of that environment the average reward
for MemLSTM is 0.31 and RelLSTM is 0.44. As illustrated in 4, we find that transfer scores for
RelLSTM are much higher than for MemLSTM across several environments.

40

C Tradeoff analysis between sparsity and gradient propagation

As already discussed in Section 4, the sparsity coefficient κ verifies κ = ν + ρ ≥ |St|+ |Rt| for all
time step t, where we denote ν for the size of the short-term buffer, and ρ for the maximal size of the
relevant sets Rt. In this section we would like to see how gradient propagation varies when changing
sparsity. As already discussed at the end of Section 3 as well as at the end of Section 4, decreasing
κ, would increasingly force gradients to backpropagate through the recurrent connections, thus
degrading gradient stability. Meanwhile, increasing κ would increase the size of the computational
graph. Thus we would like to find the optimal trade-off between sparsity and gradient propagation.
This trade-off is clearly task-specific and needs to be determined experimentally. The only way to
do so is by either changing ν or changing ρ (or both). Hence we are going to analyze the effects on
gradient propagation by separately changing ν and ρ.

Figure 3: Both sides show gradient norm plots of ‖∇htL‖ in log scale after training for Denoise Task
with t ranging from 0 (latest time step) to 1000 (furthest time step). (Left) We took four MemLSTM
models for ρ = 3, 8, 18, 25 while keeping ν = 15 fixed. (Right) We took four MemLSTM models
for ν = 3, 8, 18, 25 while keeping ρ = 15 fixed. (Note that the y-axis of the two plots have different
scales, as indicated in the plots.)

For Figure 3 (left), we can see that when choosing ρ too small (here for instance ρ = 3), gradient
propagation becomes unstable, while larger values for ρ all show stable gradient propagation. This
confirms our initial intuition that we can decrease ρ until a task-specific treshold and maintain stable
gradient propagation, while decreasing ρ beyond this treshold would cause gradient propagation to
become unstable.

For Figure 3 (right), we can see that changing ν has much less leverage on gradient propagation than
changing ρ. Gradient propagation stays relatively stable regardless of the values for ν. The only
difference is that for the extreme value of ν = 3, we can see that gradient propagation became slightly
less stable, because with smaller ν predictions for future relevancy might become less accurate.

41

D Additional Results

Figure 4: Cross-entropy vs training updates for Copy (top) and Denoise (bottom) tasks for T =
{100, 200, 300, 500, 1000, 2000}. 1 unit of the x-axis is equal to 100 iterations of training with the
exception of expRNN where 1 unit on the x-axis is 10 iterations of training.

Table 5: Results for Copy Task

T LSTM orth-RNN expRNN MemRNN SAB RelRNN RelLSTM

100 100% 100% 100% 100% 100% 100% 100%
200 100% 100% 100% 100% 100% 100% 100%
300 100% 100% 100% 100% 100% 100% 100%
500 12% 100% 100% 100% 100% 100% 100%
1000 12% 80% 100% 100% 100% 100% 100%
2000 12% 11% 100% OOM 100% 100% 100%

Table 6: Hyperparameters used for Copy task

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -

RelRNN 0.0002 Adam tanh 10 10

42

Figure 5: Training curves for LSTM on Denoise task

Figure 6: Training curves for GORU on Denoise task

Figure 7: Heatmap of attention scores on PTB task training with full attention and BPTT of 125

43

Figure 8: Validation accuracy curves for pMNIST

Figure 9: Heatmap of attention scores on MNIST digit classification. 7 pixels were grouped at each
time step to make visualization of heatmap easier.

Figure 10: Heatmap of attention scores on Copy task when only doing attention over the Short Term
Buffer.

44

Table 7: Hyperparameters used for Denoise task

Model lr optimizer non-linearity ν ρ

orthRNN 0.0002 RMSprop modrelu - -
expRNN 0.0002 RMSprop modrelu - -
LSTM 0.0002 Adam - - -
GORU 0.001 RMSprop - - -

RelRNN 0.0002 RMSprop modrelu 10 10

Table 8: Hyperparameters used for sequential MNIST

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.0001 Adam modrelu - -
expRNN 0.0001(0.00001) Adam modrelu - -
LSTM 0.0002 - - -
GORU - -

RelRNN 0.0003 Adam modrelu 10 10

Figure 11: Heatmap of attention scores on Denoise task when only doing attention over the Short
Term Buffer.

Table 9: Hyperparameters used for PTB

Model lr (lr orth) optimizer non-linearity ν ρ

orthRNN 0.001 Adam tanh - -
expRNN 0.003(0.0003) Adam tanh - -
LSTM 0.0002 - - -
GORU - -

RelRNN 0.0003 Adam tanh 10 5

45

	Theoretical analysis of gradient propagation
	Notational convention
	Preliminary results
	Uniform attention case
	Overview
	Estimating
	Estimating
	Putting it all together

	Sparse relevance case with bounded dependency depth

	Effects of memory sparsity on basic reinforcement learning tasks
	Tradeoff analysis between sparsity and gradient propagation
	Additional Results

