
Supplementary for: Adabelief optimizer, adapting
stepsizes by the belief in observed gradients
A. Detailed Algorithm of AdaBelief

Notations By the convention in [1], we use the following notations:

• f(θ) ∈ R, θ ∈ Rd: f is the loss function to minimize, θ is the parameter in Rd
• gt: the gradient and step t
• α, ε: α is the learning rate, default is 10−3; ε is a small number, typically set as 10−8

• β1, β2: smoothing parameters, typical values are β1 = 0.9, β2 = 0.999

• mt: exponential moving average (EMA) of gt
• vt, st: vt is the EMA of g2t , st is the EMA of (gt −mt)

2

•
∏
F,M (y) = argminx∈F ||M1/2(x− y)||

Algorithm 1: AdaBelief
Initialize θ0

m0 ← 0 , s0 ← 0, t← 0
While θt not converged

t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1 + (1− β2)(gt −mt)

2

If AMSGrad
st ← max(st, st−1)

Bias Correction
m̂t ← mt/(1− βt1), ŝt ← (st+ε)/(1− βt2)

Update
θt ←

∏
F,√st

(
θt−1 − m̂t

α√
ŝt+ε

)

B. Convergence analysis in convex online learning case (Theorem 2.1 in main
paper)

For the ease of notation, we absorb ε into st. Equivalently, st ≥ c > 0,∀t ∈ [T]. For simplicity, we
omit the debiasing step in theoretical analysis as in [2]. Our analysis can be applied to the de-biased
version as well.
Lemma 0.1. [3] For any Q ∈ Sd+ and convex feasible set F ⊂ Rd, suppose u1 =

minx∈F

∣∣∣∣∣∣Q1/2(x− z1)
∣∣∣∣∣∣ and u2 = minx∈F

∣∣∣∣∣∣Q1/2(x− z2)
∣∣∣∣∣∣, then we have

∣∣∣∣∣∣Q1/2(u1 − u2)
∣∣∣∣∣∣ ≤∣∣∣∣∣∣Q1/2(z1 − z2)

∣∣∣∣∣∣.
Theorem 0.2. Let {θt} and {st} be the sequence obtained by the proposed algorithm, let
0 ≤ β2 < 1, αt = α√

t
, β11 = β1, 0 ≤ β1t ≤ β1 < 1, st−1 ≤ st,∀t ∈ [T]. Let θ ∈ F , where

F ⊂ Rd is a convex feasible set with bounded diameter D∞. Assume f(θ) is a convex function
and ||gt||∞ ≤ G∞/2 (hence ||gt −mt||∞ ≤ G∞) and st,i ≥ c > 0,∀t ∈ [T], θ ∈ F . Denote the
optimal point as θ∗. For θt generated with Algorithm 1, we have the following bound on the regret:

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt

1

Proof:
θt+1 =

∏
F,√st

(θt − αts−1/2t mt) = min
θ∈F

∣∣∣∣∣∣s1/4t [θ − (θt − αts−1/2t mt)]
∣∣∣∣∣∣

Note that
∏
F,√st(θ

∗) = θ∗ since θ∗ ∈ F . Use θ∗i and θt,i to denote the ith dimension of θ∗ and θt
respectively. From lemma (0.1), using u1 = θt+1 and u2 = θ∗, we have:∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣s1/4t (θt − αts−1/2t mt − θ∗)
∣∣∣∣∣∣2

=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 − 2αt〈mt, θt − θ∗〉

=
∣∣∣∣∣∣s1/4t (θt − θ∗)

∣∣∣∣∣∣2 + α2
t

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
− 2αt〈β1tmt−1 + (1− β1t)gt, θt − θ∗〉 (1)

Note that β1 ∈ [0, 1) and β2 ∈ [0, 1), rearranging inequality (1), we have:

〈gt, θt − θ∗〉 ≤
1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt
2(1− β1t)

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 − β1t
1− β1t

〈mt−1, θt − θ∗〉

≤ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

αt
2(1− β1t)

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

β1t
2(1− β1t)

αt

∣∣∣∣∣∣s−1/4t mt−1

∣∣∣∣∣∣2 +
β1t

2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

Cauchy-Schwartz and Young’s inequality: ab ≤ a2ε

2
+
b2

2ε
,∀ε > 0

)
(2)

By convexity of f , we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

〈gt, θt − θ∗〉

≤
T∑
t=1

{ 1

2αt(1− β1t)

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣s1/4t (θt+1 − θ∗)

∣∣∣∣∣∣2]
+

1

2(1− β1t)
αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
β1t

2(1− β1t)
αt

∣∣∣∣∣∣s−1/4t mt−1

∣∣∣∣∣∣2
+

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2}(

By formula (2)
)

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1

+
1

2(1− β1)

T∑
t=2

[∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

αt
−

∣∣∣∣∣∣s1/4t−1(θt − θ∗)
∣∣∣∣∣∣2

αt−1

]
+

T∑
t=1

[1

2(1− β1)
αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2]+

T∑
t=2

[β1
2(1− β1)

αt−1

∣∣∣∣∣∣s−1/4t−1 mt−1

∣∣∣∣∣∣2]
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

2

(
0 ≤ st−1 ≤ st, 0 ≤ αt ≤ αt−1, 0 ≤ β1t ≤ β1 < 1

)
≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

T∑
t=1

β1t
2αt(1− β1t)

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

since 0 ≤ β1t ≤ β1 < 1
)

(3)

Now bound
∑T
t=1 αt||s

−1/4
t mt||2 in Formula (3), assuming 0 < c ≤ st,∀t ∈ [T].

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 =

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 + αT

∣∣∣∣∣∣s−1/4T mT

∣∣∣∣∣∣2
≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
αT√
c

∣∣∣∣∣∣mT

∣∣∣∣∣∣2
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

(T∑
j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)2
(

since mT =

T∑
j=1

(1− β1,j)gj,i
T−j∏
k=1

β1,T−k+1

)

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

(T∑
j=1

gj,i

T−j∏
k=1

β1

)2
(since 0 < β1,j ≤ β1 < 1)

=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

(T∑
j=1

βT−j1 gj,i

)2
≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

(T∑
j=1

βT−j1

)(T∑
j=1

βT−j1 g2j,i

)
(
Cauchy − Schwartz, 〈u, v〉2 ≤

∣∣∣∣∣∣u∣∣∣∣∣∣2∣∣∣∣∣∣v∣∣∣∣∣∣2, uj =

√
βT−j1 , vj =

√
βT−j1 gj,i

)
=

T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√
cT

d∑
i=1

1− βT1
1− β1

T∑
j=1

βT−j1 g2j,i

≤
T−1∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2 +
α√

c(1− β1)

d∑
i=1

T∑
j=1

βT−j1 g2j,i
1√
T

3

(
since 1− βT1 < 1

)
≤ α√

c(1− β1)

d∑
i=1

T∑
t=1

t∑
j=1

βt−j1 g2j,i
1√
t(

Recursively bound each term in the sum
T∑
t=1

∗
)

=
α√

c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t1√
j

≤ α√
c(1− β1)

d∑
i=1

T∑
t=1

g2t,i

T∑
j=t

βj−t1√
t

≤ α√
c(1− β1)2

d∑
i=1

T∑
t=1

g2t,i
1√
t(

since
T∑
j=t

βj−t1 =

T−t∑
j=0

βj1 =
1− βT−t+1

1

1− β1
≤ 1

1− β1

)

≤ α√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

√√√√ T∑
t=1

1

t(
Cauchy − Schwartz, 〈u, v〉 ≤

∣∣∣∣∣∣u∣∣∣∣∣∣∣∣∣∣∣∣v∣∣∣∣∣∣, ut = g2t,i, vt =
1√
t

)
≤ α
√

1 + log T√
c(1− β1)2

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

(
since

T∑
t=1

1

t
≤ 1 + log T

)
(4)

Apply formula (4) to (3), we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

1 + β1
2(1− β1)

T∑
t=1

αt

∣∣∣∣∣∣s−1/4t mt

∣∣∣∣∣∣2
+

1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2

≤ 1

2(1− β1)

∣∣∣∣∣∣s1/41 (θ1 − θ∗)
∣∣∣∣∣∣2

α1
+

1

2(1− β1)

T∑
t=2

∣∣∣∣∣∣θt − θ∗∣∣∣∣∣∣2[s1/2t

αt
−
s
1/2
t−1
αt−1

]
+

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
1

2(1− β1)

T∑
t=1

β1t
αt

∣∣∣∣∣∣s1/4t (θt − θ∗)
∣∣∣∣∣∣2(

By formula (4)
)

≤ 1

2(1− β1)

d∑
i=1

s
1/2
1,i D

2
∞

α1
+

1

2(1− β1)

T∑
t=2

d∑
i=1

D2
∞

[s1/2t,i

αt
−
s
1/2
t−1,i

αt−1

]

4

+
(1 + β1)α

√
1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
since x ∈ F ,with bounded diameter D∞, and

s
1/2
t,i

αt
≥
s
1/2
t−1,i

αt−1
by assumption.

)
≤ D2

∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1ts
1/2
t,i

αt(
αt ≥ αt+1 and perform telescope sum

)
(5)

�

Corollary 0.2.1. Suppose β1,t = β1λ
t, 0 < λ < 1 in Theorem (0.2), then we have:

T∑
t=1

ft(θt)− ft(θ∗) ≤
D2
∞
√
T

2α(1− β1)

d∑
i=1

s
1/2
T,i +

(1 + β1)α
√

1 + log T

2
√
c(1− β1)3

d∑
i=1

∣∣∣∣∣∣g21:T,i∣∣∣∣∣∣
2

+
D2
∞β1G∞

2(1− β1)(1− λ)2α
(6)

Proof: By sum of arithmetico-geometric series, we have:
T∑
t=1

λt−1
√
t ≤

T∑
t=1

λt−1t ≤ 1

(1− λ)2
(7)

Plugging (7) into (5), we can derive the results above. �

C. Convergence analysis for non-convex stochastic optimization (Theorem 2.2
in main paper)

Assumptions

• A1, f is differentiable and has L − Lipschitz gradient, ||∇f(x) − ∇f(y)|| ≤ L||x −
y||, ∀x, y. f is also lower bounded.
• A2, at time t, the algorithm can access a bounded noisy gradient, the true gradient is also

bounded. i.e. ||∇f(θt)|| ≤ H, ||gt|| ≤ H, ∀t > 1.
• A3, The noisy gradient is unbiased, and has independent noise. i.e. gt = ∇f(θt) +
ζt,Eζt = 0, ζt⊥ζj , ∀j, t ∈ N, t 6= j

Theorem 0.3. [4] Suppose assumptions A1-A3 are satisfied, β1,t is chosen such that 0 ≤ β1,t+1 ≤
β1,t < 1, 0 < β2 < 1,∀t > 0. For some constant G,

∣∣∣∣∣∣αt mt√
st

∣∣∣∣∣∣ ≤ G,∀t. Then Adam-type
algorithms yield

E
[T∑
t=1

αt〈∇f(θt),∇f(θt)/
√
st〉
]
≤

E

[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√st − αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣ αt√st − αt−1√

st−1

∣∣∣∣∣
∣∣∣∣∣
2]

+ C4 (8)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken w.r.t all randomness corresponding to {gt}.

5

Furthermore, let γt := minj∈[d] min{gi}ti=1
αi/(
√
si)j denote the minimum possible value of effec-

tive stepsize at time t over all possible coordinate and past gradients {gi}ti=1. The convergence rate
of Adam-type algorithm is given by

mint∈[T] E

[∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] = O

(
s1(T)

s2(T)

)
(9)

where s1(T) is defined through the upper bound of RHS of (8), and
∑T
t=1 γt = Ω(s2(T))

Proof: We provide the proof from [4] in next section for completeness. �

Theorem 0.4. Assume minj∈[d](s1)j ≥ c > 0, noise in gradient has bounded variance, Var(gt) =

σ2
t ≤ σ2,∀t ∈ N, then the AdaBelief algorithm satisfies:

min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ H√
Tα

[C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
=

1√
T

(Q1 +Q2 log T)

where

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
Q2 =

HC1α(H2 + σ2)

c

Proof: We first derive an upper bound of the RHS of formula (8), then derive a lower bound of the
LHS of (8).

E
[T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2] ≤ 1

c
E
[T∑
t=1

d∑
i=1

(αt,igt,i)
2
] (

since 0 < c ≤ st,∀t ∈ [T]
)

=
1

c

d∑
i=1

T∑
t=1

α2
tE(gt,i)

2

=
1

c

T∑
t=1

α2
tE
[∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 +
∣∣∣∣∣∣σt∣∣∣∣∣∣2] (10)

E
[T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

]
= E

[d∑
i=1

T∑
t=1

αt−1√
st−1,i

− αt√
st, i

]
(

since αt ≤ αt−1, st,i ≥ st−1,i
)

= E
[d∑
i=1

α1√
s1,i
− αT√

sT,i

]
≤ E

[d∑
i=1

α1√
s1,i

]
≤ dα√

c

(
since 0 < c ≤ st, 0 ≤ αt ≤ α1 = α,∀t

)
(11)

E
[T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2] = E
[T∑
t=1

d∑
i=1

(αt√
st
− αt−1√

st−1

)2
i

]

6

≤ E
[T∑
t=1

d∑
i=1

∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣
i

α√
c

]
(

Since
∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣ =
αt−1√
st−1

− αt√
st
≤ αt−1√

st−1
≤ α√

c

)
≤ dα2

c

(
By (11)

)
(12)

Next we derive the lower bound of LHS of (8).

E
[T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]
≥ 1

H
E
[T∑
t=1

αt

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≥ α

√
T

H
min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 (13)

Combining (10), (11), (12) and (13) to (8), we have:

α
√
T

H
min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ E
[T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]

≤ E
[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2]+ C4

≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2 + α2

t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4 (14)

≤ C1

c

T∑
t=1

E
[
α2
t (H

2 + σ2)
]

+ C2
dα√
c

+ C3
dα2

c
+ C4

≤ C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4 (15)

(
since αt =

α√
t
,

T∑
t=1

1

t
≤ 1 + log T

)
Re-arranging above inequality, we have

min
t∈[T]

E
∣∣∣∣∣∣∇f(θt)

∣∣∣∣∣∣2 ≤ H√
Tα

[C1α
2(H2 + σ2)(1 + log T)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
=

1√
T

(Q1 +Q2 log T) (16)

where

Q1 =
H

α

[C1α
2(H2 + σ2)

c
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(17)

Q2 =
HC1α(H2 + σ2)

c
(18)

�

Corollary 0.4.1. If c > C1H and assumptions for Theorem 0.3 are satisfied, we have:

1

T

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ 1

T

1
1
H −

C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(19)

Proof: From (13) and (14), we have

1

H
E
[T∑
t=1

αt

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ E

[T∑
t=1

αt〈∇f(θt),
∇f(θt)√

st
〉
]

7

≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2 + α2

t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4

(20)

By re-arranging, we have(1

H
− C1

c

) T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ C1

c

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣σt∣∣∣∣∣∣2]+ C2
dα√
c

+ C3
dα2

c
+ C4

≤ C1α
2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4 (21)

By assumption, 1
H −

C1

c > 0, then we have

T∑
t=1

E
[
α2
t

∣∣∣∣∣∣∇f(θt)
∣∣∣∣∣∣2] ≤ 1

1
H −

C1

c

[
C1α

2σ2

c

(
1 + log T

)
+ C2

dα√
c

+ C3
dα2

c
+ C4

]
(22)

�

D. Proof of Theorem 0.3

Lemma 0.5. [4] Let θ0 , θ1 in the Algorithm, consider the sequence

zt = θt +
β1,t

1− β1,t
(θt − θt−1),∀t ≥ 2

The following holds true:

zt+1 − zt = −
(β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)αtmt√
st

− β1,t
1− β1,t

(αt√
st
− αt−1√

st−1

)
mt−1 −

αtgt√
st
,∀t > 1 (23)

and
z2 − z1 = −

(β1,2
1− β1,2

− β1,1
1− β1,1

)α1m1√
v1
− α1g1√

v1
(24)

Lemma 0.6. [4] Suppose that the conditions in Theorem (0.3) hold, then

E
[
f(zt+1 − f(zt))

]
≤

6∑
i=1

Ti (25)

where

T1 = −E
[t∑
i=1

〈∇f(zi),
β1,i

1− β1,i

(αi√
vi
− αi−1√

vi−1

)
mi−1〉

]
(26)

T2 = −E
[t∑
i=1

αi〈∇f(zi),
gi√
vi
〉
]

(27)

T3 = −E
[t∑
i=1

〈∇f(zi),
(β1,i+1

1− β1,i+1
− βi

1− βi

)αimi√
vi
〉
]

(28)

T4 = E
[t∑
i=1

3L

2

∣∣∣∣∣∣(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)αimi√
vi

∣∣∣∣∣∣2] (29)

T5 = E
[t∑
i=1

3L

2

∣∣∣∣∣∣ β1,i
1− β1,i

(αi√
vi
− αi−1√

vi−1

)
mi−1

∣∣∣∣∣∣2] (30)

T6 = E
[t∑
i=1

3L

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2] (31)

8

Lemma 0.7. [4] Suppose that the condition in Theorem 0.3 hold, T1 in (26) can be bounded as:

T1 = −E
[t∑
i=1

〈∇f(zi),
β1,i

1− β1,i

(αi√
vi
− αi−1√

vi−1

)
mi−1〉

]
≤ H2 β1

1− β1
E

[
t∑
i=2

d∑
j=1

∣∣∣(αi√
vi
− αi−1√

vi−1

)
j

∣∣∣] (32)

Lemma 0.8. [4] Suppose the conditions in Theorem 0.3 are satisfied, then T3 in (28) can be bounded
as

T3 = −E
[t∑
i=1

〈∇f(zi),
(β1,i+1

1− β1,i+1
− βi

1− βi

)αimi√
vi
〉
]

≤
(β1

1− β1
− β1,t+1

1− β1,t+1

)
(H2 +G2) (33)

Lemma 0.9. [4] Suppose assumptions in Theorem 0.3 are satisfied, then T4 in (29) can be bounded
as:

T4 = E
[t∑
i=1

3L

2

∣∣∣∣∣∣(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)αimi√
vi

∣∣∣∣∣∣2]
≤ 3L

2

(β1
1− β1

− β1,t+1

1− β1,t+1

)2
G2 (34)

Lemma 0.10. [4] Suppose the assumptions in Theorem 0.3 are satisfied, then T5 in (30) can be
bounded as:

T5 = E
[t∑
i=1

3L

2

∣∣∣∣∣∣ β1,i
1− β1,i

(αi√
vi
− αi−1√

vi−1

)
mi−1

∣∣∣∣∣∣2]
≤ 3L

2

(β1
1− β1

)2
H2E

[
t∑
i=2

d∑
j=1

(αi√
vi
− αi−1√

vi−1

)2
j

]
(35)

Lemma 0.11. [4] Suppose the assumptions in Theorem 8 are satisfied, then T2 in (27) are bounded
as:

T2 = −E
[t∑
i=1

αi〈∇f(zi),
gi√
vi
〉
]

≤ E
t∑
i=2

1

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2 + L2
(β1

1− β1

)2(1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αigi√
vi

)2
j

]

+ L2H2
(β1

1− β1

)4(1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αi√
vi
− αi−1√

vi−1

)2
j

]

+ 2H2E

[
d∑
j=1

t∑
i=2

∣∣∣∣∣(αi√
vi
− αi−1√

vi−1

)
j

∣∣∣∣∣
]

+ 2H2E

[
d∑
j=1

(α1√
v1

)
j

]

− E

[
t∑
i=1

αi〈∇f(xi),∇f(xi)/
√
vi〉

]
(36)

9

Proof of Theorem 0.3

We provide the proof from [4] for completeness. We combine Lemma 0.5, 0.6, 0.7, 0.8, 0.9, 0.10
and 0.11 to bound the objective.

E
[
f(zt+1)− f(zt)

]
≤

6∑
i=1

Ti

≤ H2 β1
1− β1

E

[
t∑
i=2

d∑
j=1

∣∣∣(αi√
vi
− αi−1√

vi−1

)
j

∣∣∣]

+
(β1

1− β1
− β1,t+1

1− β1,t+1

)
(H2 +G2)

+
3L

2

(β1
1− β1

− β1,t
1− β1,t

)2
G2

+
3L

2

(β1
1− β1

)2
H2E

[
t∑
i=2

d∑
j=1

(αi√
vi
− αi−1√

vi−1

)2
j

]

+ E
t∑
i=2

1

2

∣∣∣∣∣∣αigi√
vi

∣∣∣∣∣∣2 + L2
(β1

1− β1

)2(1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αigi√
vi

)2
j

]

+ L2H2
(β1

1− β1

)4(1

1− β1

)2
E

[
d∑
j=1

t−1∑
i=2

(αi√
vi
− αi−1√

vi−1

)2
j

]

+ 2H2E

[
d∑
j=1

t∑
i=2

∣∣∣∣∣(αi√
vi
− αi−1√

vi−1

)
j

∣∣∣∣∣
]

+ 2H2E

[
d∑
j=1

(α1√
v1

)
j

]

− E

[
t∑
i=1

αi〈∇f(xi),∇f(xi)/
√
vi〉

]

≤ E
[
C1

T∑
t=1

∣∣∣∣∣∣αtgt/√st∣∣∣∣∣∣2 + C2

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣
1

+ C3

T∑
t=1

∣∣∣∣∣∣ αt√
st
− αt−1√

st−1

∣∣∣∣∣∣2]+ C4 (37)

The constants are defined below:

C1 ,
3

2
L+

1

2
+ L2 β1

1− β1
(1

1− β1
)2

(38)

C2 , H
2 β1

1− β1
+ 2H2 (39)

C3 ,
[
1 + L2

(1

1− β1
)2(β1

1− β1
)]
H2
(β1

1− β1
)2

(40)

C4 ,
(β1

1− β1
)
(H2 +G2) +

(β1
1− β1

)2
G2 + 2H2E

[
||α1/

√
v1||1

]
+ E[f(z1)− f(z∗)] (41)

�

E. Bayesian interpretation of AdaBelief

We analyze AdaBelief from a Bayesian perspective.

10

Theorem 0.12. Assume the gradient follows a Gaussian prior with uniform diagonal covariance,
g̃ ∼ N (0, σ2I); assume the observed gradient follows a Gaussian distribution, g ∼ N (g̃, C), where

C is some covariance matrix. Then the posterior is: g̃
∣∣g, C ∼ N((I + C

σ2)−1g, (I
σ2 + C−1)−1

)
We skip the proof, which is a direct application of the Bayes rule in the Gaussian distribution case
as in [5]. If g is averaged across a batch of size n, we can replace C with C

n .

According to Theorem 0.12, the gradient descent direction with maximum expected gain is:

E
[
g̃
∣∣g, C] = (I +

C

σ2
)−1g = σ2(σ2I + C)−1g ∝ (σ2I + C)−1g (42)

Denote ε = σ2, then adaptive optimizers update in the direction (εI + C)−1g; considering the
noise in gt, in practice most optimizers replace gt with its EMA mt, hence the update direction is
(εI+C)−1mt. In practice, adaptive methods such as Adam and AdaGrad replace (εI+C)−1/2(εI+
C)−1/2mt with αI(εI + C)−1/2mt for numerical stability, where α is some predefined learning
rate. Both Adam and AdaBelief take this form; their difference is in the estimate of C: Adam
uses an uncentered approximation CAdam ≈ EMA diag(gtg

>
t), while AdaBelief uses a centered

approximation CAdaBelief ≈ EMA diag[(gt − Egt)(gt − Egt)>]. Note that the definition of C is
the covariance hence it is centered. Note that for the ith parameter, E(git)

2 = (Egit)2 + Var(git), so
when Var git � ||Egit||, we have CiAdaBelief < CiAdam, and AdaBelief behaves closer to the ideal
and takes a larger step than Adam because C is in the denominator.

From a practical perspective, ε can be interpreted as a numerical term to avoid division by 0; from
the Bayesian perspective, ε represents our prior on gt, with a larger ε indicating a larger σ2. Note
that as the network evolves with training, the distribution of the gradient is distorted (an example
with Adam is shown in Fig. 2 of [6]), hence the Gaussian prior might not match the true distribution.
To solve the mismatch between prior and the true distribution, it might be reasonable to use a weak
prior during late stages of training (e.g., let σ2 grow at late training phases, and when σ2 → ∞
reduces to a uniform prior). We only provide a Bayesian perspective here, and leave the detailed
discussion to future works.

11

(a) VGG11 on Cifar10 (b) ResNet34 on Cifar10 (c) DenseNet121 on Cifar10

(d) VGG11 on Cifar10 (e) ResNet34 on Cifar10 (f) DenseNet121 on Cifar10

Figure 1: Training (top row) and test (bottom row) accuracy of CNNs on Cifar10 dataset. We report
confidence interval [µ± σ] of 3 independent runs.

F. Experimental Details

1. Image classification with CNNs on Cifar

We performed experiments based on the official implementation1 of AdaBound [7], and exactly
replicated the results of AdaBound as reported in [7]. We then experimented with different optimiz-
ers under the same setting: for all experiments, the model is trained for 200 epochs with a batch
size of 128, and the learning rate is multiplied by 0.1 at epoch 150. We performed extensive hyper-
parameter search as described in the main paper. In the main paper we only report test accuracy;
here we report both training and test accuracy in Fig. 1 and Fig. 2. AdaBelief not only achieves the
highest test accuracy, but also a smaller gap between training and test accuracy compared with other
optimizers such as Yogi.

2. Image Classification on ImageNet

We experimented with a ResNet18 on ImageNet classication task. For SGD, we use the same learn-
ing rate schedule as [8], with an initial learning rate of 0.1, and multiplied by 0.1 at epoch 30 and 60;
for AdaBelief, we use an initial learning rate of 0.001, and decayed it at epoch 70 and 80. Weight
decay is set as 10−4 for both cases. To match the settings in [9] and [6], we use decoupled weight
decay. As shown in Fig. 3, AdaBelief achieves an accuracy very close to SGD, closing the general-
ization gap between adaptive methods and SGD. Meanwhile, when trained with a large learning rate
(0.1 for SGD, 0.001 for AdaBelief), AdaBelief achieves faster convergence than SGD in the initial
phase.

3. Robustness to hyperparameters

Robustness to ε We test the performances of AdaBelief and Adam with different values of ε
varying from 10−4 to 10−9 in a log-scale grid. We perform experiments with a ResNet34 on Cifar10
dataset, and summarize the results in Fig. 4. Compared with Adam, AdaBelief is slightly more
sensitive to the choice of ε, and achieves the highest accuracy at the default valiue ε = 10−8;

1https://github.com/Luolc/AdaBound

12

https://github.com/Luolc/AdaBound

(a) VGG11 on Cifar100 (b) ResNet34 on Cifar100 (c) DenseNet121 on Cifar100

(d) VGG11 on Cifar100 (e) ResNet34 on Cifar100 (f) DenseNet121 on Cifar100

Figure 2: Training (top row) and test (bottom row) accuracy of CNNs on Cifar10 dataset. We report
confidence interval [µ± σ] of 3 independent runs.

Figure 3: Training and test accuracy (top-1) of ResNet18 on ImageNet.

AdaBelief achieves accuracy higher than 94% for all ε values, consistently outperforming Adam
which achieves an accuracy around 93%.

Robustness to learning rate We test the performance of AdaBelief with different learning rates.
We experiment with a VGG11 network on Cifar10, and display the results in Fig. 5. For a large
range of learning rates from 5 × 10−4 to 3 × 10−3, compared with Adam, AdaBelief generates
higher test accuracy curve, and is more robust to the change of learning rate.

4. Experiments with LSTM on language modeling

We experiment with LSTM models on Penn-TreeBank dataset, and report the results in Fig. 6. Our
experiments are based on this implementation 2. Results [µ ± σ] are measured across 3 runs with
independent initialization. For completeness, we plot both the training and test curves.

We use the default parameters α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 for 2-layer and 3-layer
models; for 1-layer model we set ε = 10−12 and set other parameters as default. For simple models

2https://github.com/salesforce/awd-lstm-lm

13

https://github.com/salesforce/awd-lstm-lm

Figure 4: Training (top row) and test (bottom row) accuracy of ResNet34 on Cifar10, trained with
AdaBelief (left column) and Adam (right column) using different values of ε. Note that AdaBelief
achieves an accuracy above 94% for all ε values, while Adam’s accuracy is consistently below 94%.

Figure 5: Training (top row) and test (bottom row) accuracy of VGG on Cifar10, trained with
AdaBelief (left column) and Adam (right column) using different values of learning rate.

14

(a) 1-layer LSTM (b) 2-layer LSTM (c) 3-layer LSTM

(d) 1-layer LSTM (e) 2-layer LSTM (f) 3-layer LSTM

Figure 6: Training (top row) and test (bottom row) perplexity on Penn-TreeBank dataset, lower is
better.

Table 1: Structure of GAN
Generator Discriminator

ConvTranspose ([inchannel = 100, outchannel = 512, kernel = 4×4, stride = 1]) Conv2D([inchannel=3, outchannel=64, kernel = 4×4, stride=2])
BN-ReLU LeakyReLU

ConvTranspose ([inchannel = 512, outchannel = 256, kernel = 4×4, stride = 2]) Conv2D([inchannel=64, outchannel=128, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 256, outchannel = 128, kernel = 4×4, stride = 2]) Conv2D([inchannel=128, outchannel=256, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 128, outchannel = 64, kernel = 4×4, stride = 2]) Conv2D([inchannel=256, outchannel=512, kernel = 4×4, stride=2])
BN-ReLU BN-LeakyReLU

ConvTranspose ([inchannel = 64, outchannel = 3, kernel = 4×4, stride = 2]) Linear(-1, 1)
Tanh

(1-layer LSTM), AdaBelief’s perplexity is very close to other optimizers; on complicated models,
AdaBelief achieves a significantly lower perplexity on the test set.

5. Experiments with GAN

We experimented with a WGAN [10] and WGAN-GP [11]. The code is based on several public
github repositories 3,4. We summarize network structure in Table 1. For WGAN, the weight of
discriminator is clipped within [−0.01, 0.01]; for WGAN-GP, the weight for gradient-penalty is set
as 10.0, as recommended by the original implementation. For each optimizer, we perform 5 inde-
pendent runs. We train the model for 100 epochs, generate 64,000 fake samples (60,000 real images
in Cifar10), and measure the Frechet Inception Distance (FID) [12] between generated samples and
real samples. Our implementation on FID heavily relies on an open-source implementation5. We re-
port the FID scores in the main paper, and demonstrate fake samples in Fig. 7 and Fig. 8 for WGAN
and WGAN-GP respectively.

We also experimented with Spectral Normalization GAN based on a public repository 6. For this ex-
periment, we set ε = 10−16 and use the rectification technique as in RAdam. Other hyperparamters
and training schemes are the same as in the repository.

3https://github.com/pytorch/examples
4https://github.com/eriklindernoren/PyTorch-GAN
5https://github.com/mseitzer/pytorch-fid
6https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

15

https://github.com/pytorch/examples
https://github.com/eriklindernoren/PyTorch-GAN
https://github.com/mseitzer/pytorch-fid
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

(a) AdaBelief (b) RMSProp (c) Adam

(d) RAdam (e) Yogi (f) Fromage

(g) MSVAG (h) AdaBound (i) SGD

Figure 7: Fake samples from WGAN trained with different optimizers.

16

(a) AdaBelief (b) RMSProp (c) Adam

(d) RAdam (e) Yogi (f) Fromage

(g) MSVAG (h) AdaBound (i) SGD

Figure 8: Fake samples from WGAN-GP trained with different optimizers.

17

References

[1] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[2] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[3] H Brendan McMahan and Matthew Streeter, “Adaptive bound optimization for online convex
optimization,” arXiv preprint arXiv:1002.4908, 2010.

[4] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong, “On the convergence of a class of
adam-type algorithms for non-convex optimization,” arXiv preprint arXiv:1808.02941, 2018.

[5] Nicolas L Roux, Pierre-Antoine Manzagol, and Yoshua Bengio, “Topmoumoute online natural
gradient algorithm,” in Advances in neural information processing systems, 2008, pp. 849–856.

[6] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han, “On the variance of the adaptive learning rate and beyond,” arXiv preprint
arXiv:1908.03265, 2019.

[7] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun, “Adaptive gradient methods with
dynamic bound of learning rate,” arXiv preprint arXiv:1902.09843, 2019.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2016, pp. 770–778.

[9] Ilya Loshchilov and Frank Hutter, “Fixing weight decay regularization in adam,” 2018.
[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017.
[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville,

“Improved training of wasserstein gans,” in Advances in neural information processing sys-
tems, 2017, pp. 5767–5777.

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” in
Advances in neural information processing systems, 2017, pp. 6626–6637.

18

