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Abstract

We present an optimal transport framework for learning topics from textual
data. While the celebrated Latent Dirichlet allocation (LDA) topic model and
its variants have been applied to many disciplines, they mainly focus on word-
occurrences and neglect to incorporate semantic regularities in language. Even
though recent works have tried to exploit the semantic relationship between words
to bridge this gap, they, however, these models which are usually extensions of
LDA or Dirichlet Multinomial mixture (DMM) are tailored to deal effectively
with either regular or short documents. The optimal transport distance provides
an appealing tool to incorporate the geometry of word semantics into it. More-
over, recent developments on efficient computation of optimal transport distance
also promote its application in topic modeling. In this paper we ground on optimal
transport theory to naturally exploit the geometric structures of semantically rela-
ted words in embedding spaces which leads to more interpretable learned topics.
Comprehensive experiments illustrate that the proposed framework outperforms
competitive approaches in terms of topic coherence on assorted text corpora which
include both long and short documents. The representation of learned topic also
leads to better accuracy on classification downstream tasks, which is considered
as an extrinsic evaluation.

1 Introduction

Topic models such as Latent Dirichlet Allocation (LDA) [3] and its extensions have been success-
fully applied to various domains such as science publication, social science, and machine translation
[4]. Fundamentally, topic models are probabilistic models that infer a set of latent topics from a
corpus using word co-occurrences within each document. However, when there are a small number
of documents or the corpus contains short documents, topic models will tend to infer poor quality
topics from little evidence of co-occurrences. Moreover, infrequently occurring words in the corpus
might be grouped into irrelevant topics although there are significant statistics of synonyms of those
words in the corpus.

Several existing studies have targeted to incorporate synonyms or semantic relationship between
words into topic models to improve the topic representations. The source of semantic regularities
may come from thesauri or knowledge base [20, 25] or distributional similarity [25, 28, 19]. Dis-
tributional representation of word semantics, aka word embeddings, has been widely utilized to
improve the performance as well as the robustness of learned topics. Much research focuses on
adapting existing frameworks to integrate semantic relationships of words [19, 28, 1, 7], while other
authors developed non-conjugate models for topic modeling with word embedding awareness and
inference with using deep neural networks [8, 14].
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Another notable strand developed recently is the optimal transport theory which has been employed
in formulating loss functions to numerous machine learning problems, particularly in language mo-
deling such as learning document distances [13, 11], generative models [17]. Optimal transport
geometry was also applied to quantify the fit between the observed matrix and its reconstruction in
the nonlinear dictionary learning [23, 22, 26]. When the observed matrix is the normalized word
count matrix, the dictionary learning problem is closely related to topic modeling [9]. The optimal
transport distance becomes appealing to machine learning problems due to its nature of integrating
the geometry of the data space of the distributions. Recent developments on efficient computation
of optimal transport distance [2, 5, 6] also promote its application in machine learning.

In this paper, we aim to apply optimal transport theory to semantically modeling document topics
with geometry awareness of word embedding space. The benefit of using optimal transport dis-
tance is to naturally exploit the geometric structures of semantically related words in embedding
spaces which leads to more interpretable learned topics. Under the convex geometric perspective
of the Latent Dirichlet Allocation (LDA) or probabilistic latent semantic indexing (PLSI) [10, 27],
our proposed framework is a generalized methodology of LDA/PLSI in which the loss of squared
Euclidean distance between a document empirical distribution and its topic mixture is substituted
by regularized optimal transport distance (aka Wasserstein distance). Our model also distinguishes
from nonlinear dictionary learning models [23, 22, 26] in the aspect that we take document length
into account which allows to effectively model heterogeneous corpora of long and short documents.

In summary, our contributions in this paper are: (i) we provide a novel representation which ge-
neralizes the geometric loss function of LDA/PLSI via discrete optimal transport framework. The
framework naturally allows us to incorporate underlying geometry of word semantics in embedding
spaces; (ii) our proposed formulation leads to an efficient learning algorithm using alternating opti-
mization borrowed from discrete optimal transport optimization techniques; (iii) our proposed model
achieves significantly better performance in the comparison with state-of-the-art topic models; (iv)
last but not least, with a strong flavor of geometry and efficient optimization, our framework has
implications to study richer classes of topic models such as with multilevel, hierarchical or temporal
structures.

Notations. We denote a corpus of N documents of vocabulary size V by D = {di}Ni=1. Each
document contains ni (repeated) word counts and is represented as a normalized empirical distribu-
tion on the support of V vocabulary: di = 1

ni

∑V
v=1 nivδwv , where nvi is the number of word v in

document i. We also denote the normalized word count of document i as n̄i, a (sparse) vector of V
dimensions. The collection of K learned topics is denoted as B = {βk}Kk=1 where k-th topic be-
longs to the simplex ΣV−1 of RV . Regularized optimal transport distance between two distributions
p and q is written as OTγ (p, q).

2 Related background

In this section, together with related work, we review key results on optimal transport, distance, and
barycenter, as well as the geometric view of the notable LDA model that we are using in subsequent
sections for developing our proposed framework. We also review literature related to our work.

2.1 Optimal transport distance and LDA geometry interpretation

Let p and q ∈ P (X) be two discrete probability distributions on the arbitrary space X ⊆ Rn
endowed with cost function d between two points x, y ∈ X . Suppose that p and q share the fixed
number of supports V which means p =

∑V
v=1 rvδxv and q =

∑V
v=1 cvδxv where u, v ∈ ΣV , the

simplex of RV .

Optimal transport distance between p and q is defined as the optimization problem OT (p, q) =
minT

∑
u,v tuvduv, such that

∑V
v tuv = ru and

∑V
u tuv = cv . Here, duv = d (xu, xv) and T is a

V ×V matrix called transportation plan in which tuv is an element at row u, column v. As computing
the distance has the cubic time complexity, Cuturi [5] suggested using the entropic regularization,
H = −

∑
uv tuv ln tuv , to relax the problem and lead to fast computation.

Optimal transport barycenter is a notion of Fréchet mean of a set of discrete probability dis-
tributions {p1, . . . pm} which is defined as the minimizer of the following optimization problem
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argmin
q∈P(X)

∑m
i=1 λiOT (q, pi) where λi > 0 and

∑
i λi = 1. Similar to optimal transport distance, the

problem of finding the barycenter needs a high complexity algorithm to compute. However, relaxing
this problem with entropic regularization also leads to a smooth problem with efficient algorithms
to solve [2, 6].

Optimal transport (Wasserstein) dictionary learning [23, 22] is an extension of non-negative ma-
trix factorization in which the loss function l2 of reconstruction error is substituted by Wasserstein
distance. Let D = {di}Ni=1 be normalized bag-of-word of documents where di in V -dimensional
simplex. Dictionary learning aims to learn to factorize D into K dictionary elementsB = {βk}Kk=1
of the same dimension V and matrix mixture weights Λ = {λi}Ni=1. The objective of learning is
to solve problems of form minB,Λ L (di,

∑
λikβk). When loss function L is squared Euclidean

distance the problem becomes non-negative matrix factorization (NMF). Otherwise, if L is Kull-
back–Leibler divergence, it becomes PLSI [9]. In Wasserstein dictionary learning, authors dedicated
to using Wasserstein (optimal transport) distance for loss function L. Dictionary elementsB can be
interpreted as the topics while Λ can be considered as document topic proportions.

Convex geometry of topics interpretation of LDA was introduced in [27, 3, 10] in which learning
topics from documents in LDA model is equivalent to estimate the convex hull of the K topics
Ω = Conv (ω1, . . . ,ωK) from noisy observation of documents. Here ωk represents a topic to
be learned in LDA. The authors surrogate the LDA’s likelihood with the geometric loss function
as minΩ

∑N
i=1 ni minωi∈Ω ‖ωi − n̄i‖22, where n̄i is normalized word counts in document i. Ba-

sed on this interpretation, we propose replacing squared l2 loss with optimal transport distance to
incorporate the underlying geometry of word embedding space.

2.2 Related work

Since the seminal work on learning distributional representation of word semantics using neural net-
works was introduced [15], there are amount of works attempts to exploit this information into topic
models to improve interpretation of learned topics. There is previous research pursuing this goal by
extending LDA models. These methods modify the priors [28, 24] or replace the Multinomial likeli-
hood with a Gaussian [7] or a Von-Mises Fisher [1] likelihood to handle continuous observations of
embeddings. Some other research has customized LDA by combining the original likelihood with
the embedding likelihood [19].

Other recent research was developed non-conjugate models for topic modeling with word embed-
ding awareness and inference with using deep neural networks [8, 14]. These methods construct
the variational distributions as deep neural networks called inference network and optimize the evi-
dence lower bound (ELBO) which is a lower bound for the divergence between the model and the
variational distribution.

Yurochkin et. al. [27] have introduced the geometry interpretation for LDA and proposed an ef-
ficient algorithm for learning LDA. However, their method is designed for learning LDA which
neglects word semantics. Our proposed framework can be viewed as an improvement of this work
by naturally incorporating the word semantics into modeling.

Optimal transport distance has been used to learn topics from textual data in [22, 23, 26]. These
models aim to learn topics and document topic proportions from the normalized bag-of-word ma-
trix of documents by nonlinear dictionary learning. In addition, the work of [26] extends optimal
transport dictionary learning in [23] by jointly learning a cost function between words in the voca-
bulary. These models are closely related to our proposed model, we elaborate on the differences and
geometric view in Section 3.1.

3 Geometry-aware optimal transport approach to topic modeling

3.1 Documents, topics and problem formulation

The input for our model is similar to that of LDA which consists of N documents in normalized
bag-of-words representation. Each document i has ni words in the list of vocabulary, and each word
v may occur more than once in the document and its occurrences denoted niv . The normalized
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bag-of-word representation of each document i, di, can be represented as an empirical distribution.
Similarly, the corpus including N documents are represented as an empirical distribution P on the
space of (empirical) document distributions as follows:

di = 1
ni

V∑
v=1

nivδwv P = 1∑
i ni

N∑
i=1

niδdi .

The aim of the model is to learn topics from the corpus where topics are represented as a collection
of K distributions B = {βk}Kk=1, each of them has the same support with documents, i.e. βk =∑
v ωvδwv . Collectively, we form a topic distribution Q (on the space of topics) defined as

Q =
K∑
k=1

bkδβk . (1)

Our goal is to learn the topic distribution Q that is close to the empirical distribution P . To this end,
we use the regularized optimal transport distance as the divergence, bearing a similarity to LDA,
except instead of viewing the generative process as an admixture view with squared l2 loss function
[27], our model directly minimizes the discrete optimal transport between P and Q, hence we term
our model Optimal Transport based LDA, OTLDA. Topics and document topic proportions are the
solutions to the following optimization problem

min
B,b,π

OTγ(P,Q) = min
B,b,π

K∑
k=1

N∑
i=1

πikOTγ(βk, di)− γH (π) , (2)

such that
∑
i πik = bk and

∑
k πik = ni∑

i
ni

where π = {πik}N,Ki=1,k=1. Here, OTγ (· | ·) again

is the regularized optimal transport distance between document and topic and is used as a ground
distance between two atoms in P and Q distributions; H (π) = −

∑
i,k πik ln πik is the entropic

regularization term. The transportation plan π can be interpreted as the topic proportions of docu-
ments in the corpus which are used as document representations in downstream tasks.

probability simplex topics

documents

topic mixture
of document i

Figure 1: Geometric interpretation of LDA and
OTLDA models. Vertices of the polytope repre-
sent the topics to be learned while black dots
depicts (normalized) document observations. In
LDA, the loss function is squared l2 while we pro-
pose to use optimal transport distance in OTLDA.

We now distinguish our proposed model
with existing Wasserstein dictionary learning
(WDL) models in [22, 23, 26] which also le-
arn topics B and document topic proportions
Λ. First, our model represents the collection of
topics as a proper distributions Q, i.e. weig-
hts of topics sum to one while there is no
constraint on the collection of topics in WDL
models. Second, our model takes account of
the word counts of documents, i.e., document
length when we formalize the corpus empiri-
cal distribution P . In contrast, the normali-
zed matrix to be decomposed in WDL does
not carry information about the length of docu-
ments. Thanks to normalization constraints and
word count consideration, our model shares a
nice geometry interpretation with LDA as des-
cribed in [27]. Moreover, this formulation also
allows us to derive an efficient learning algo-
rithm using alternating optimization, whereas,
WDL learning procedure use gradient-based
optimization which inherits slow convergence when the regularizer γ is small.

Geometric interpretation. Let’s recall the geometric surrogate loss function to the likelihood of
LDA, JGLDA = minΩ

∑N
i=1 ni minωi∈Ω ‖ωi − di‖22. We can intuitively depict this geometry in

Figure 1. The topics form a polytope on the simplex of RV−1 which are learned from document
observations using the squared l2 distance c (di, ωi) between a document di and its topic mixture ωi.
In our proposed framework, we instead use the optimal transport distance for c (di, ωi) which allows
us to incorporate the underlying geometry of word semantics via their distributional representation,
e.g. word2vec.
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3.2 Learning topics as a discrete optimal transport optimization

Given the corpus of N documents in normalized bag-of-words format, and the number of topics K,
we would like to learn the topic distributions B = {βk}Kk=1, the topic proportions b = {bk}Kk=1,
and the topic proportions of documents π = {πik}N,Ki=1,k=1 which are the solution of the following
optimization

argmin
B,b,π

K∑
k=1

N∑
i=1

πikOTγ(βk, di)− γH (π) .

We can solve this problem by using the principle of alternating optimization. For each iteration, we
first fix the topic distributions B to compute the transportation plan from documents to topics and
topic proportions. Then, we learn the new topic distributions B based on updated π and b. Howe-
ver, before discussing how to update model parameters, we examine the way to compute Sinkhorn
distance between document and topic OTγ which is essential to our solution.

Computing OTγ(βk, di). Regularized optimal transport distance between document i and topic k
is similar to word mover distance in [13] with an additional entropic regularization

OTγ (βk, di) = min
τ

V,V∑
u=1,v=1

τuvduv − γτH (τ ) , (3)

subject to
∑
u τuv = ωv and

∑
v τuv = niv

ni
. Here, H (τ ) = −

∑
uv τuv ln τuv and duv is the

distance between word u and v in the embedding space. In our framework, the distance can be
any valid divergence such as cosine dissimilarity or Euclidean distance. We can use the Sinkhorn
algorithm [5, 2] to efficiently compute the above distance.

Fixing B, computing π and b. We provide the result for updating π and b while fixing B and
defer the derivation to Supplementary material. Suppose that we have obtained {βk}Kk=1, our goal
is to find optimal πjk and bk for all j, k, which is the optimizer of

min
b,π

K∑
k=1

N∑
i=1

πikcik − γH (π) , (4)

such that
∑
k πik = ni∑

i
ni

. Here, cik = OTγ(βk, di) is computed using Sinkhorn algorithm as

described in Eq. (3). The transportation plan π solution of the problem in Eq. (4) is obtained at

πik = ni∑
i ni

exp(−γcik)∑
v exp(−γcik) ,

and the proportion of topic k is simply as bk =
∑
i πik.

Fixing π and b, computing B. Assuming that document topic proportions π and the proportions
of topics b are fixed, our goal is now to update βk’s as the solution of the following optimization
problem

βk = argmin
β

∑
i

πik
bk

OT(β, di) (5)

which turns out that βk is the (regularized) optimal transport barycenter which can be attained using
Sinkhorn-based algorithms in [6, 2].

In summary, We summarize the learning procedure for our proposed framework in Algorithm 1. We
have the following result guaranteeing the local convergence of this algorithm. We deferred detailed
derivation of this algorithm and the full proof to the Supplementary Material.

Proposition 1 Algorithm 1 monotonically decreases the objective function of OTLDA (2) until local
convergence.

Proof. we sketch the proof as follows: updating on document topic proportions π and topic pro-
portion b decreases the partial objective function in Eq. (4) and then updating topics B decreases
further the main objective function by optimizing the partial function in Eq. (5). Hence, each itera-
tion will reduce the objective function in Eq. (2) until convergence.

5



Algorithm 1 Optimal Transport based LDA (OTLDA)
Require: Data D = {di}ni=1; the number of topics K; the regularization hyper-parameter λ > 0.
Ensure: Learned topic proportions b, topic distributions B = {βk}Kk=1, and document topics pro-

portions π
Initialize topic proportions b and topic distributions {βk}Kk=1.
while not converged do

1. Update document-topic propotions π and topic proportions b:
for i = 1 to N do

for k = 1 to K do
Compute document-topic propotion πij as ni∑

i
ni

exp(−λcik)∑
v

exp(−λcik)
where cik = OTγ(βk, di)

Update topic proportion bk =
∑n
i=1 πik.

end for
end for
2. Update topics βk:
for k = 1 to K do

Update topics βk as solution of barycenter argmin
β

∑
i
πik
bk

OT(β, di).

end for
end while

Table 1: Details of experimental copora. #docs: number of documents; #words/doc: the average
number of words per document; #vocabulary : the number of word tokens.

Dataset #docs (N) #vocabulary (V) #words/doc
20NG 18, 845 3, 072 80.8

Wikipedia 100, 000 4, 962 81.8
20NGshort 3, 197 4, 157 9.8

Twitter 2, 471 4, 359 8.0

4 Experiments

To illustrate the performance of our proposed model, we conducted comprehensive experiments on
several benchmark text datasets to fully evaluate the performance of OTLDA against the state-of-
the-art topic models with and without word embeddings.

4.1 Experimental Setup

Datasets: our experiments are conducted on two categories of textual data including regular and
short documents to demonstrate the robustness of OTLDA in terms of learning topic representation.
For regular documents, we use two popular corpora including 20Newsgroups (20NG) and Wikipedia.

• The 20Newsgroups corpus consists of newsgroups post including approximately18, 000
documents. We follow the pre-processing process in [8] in which the vocabulary is removed
stop words, words with document frequency less than 100 times. Documents with less than
one word are further removed from the corpus. We then use 80% for training, 10% for both
validation and testing.

• The larger Wikipedia corpus is downloaded from wikipedia.com1 including about 1.1 mil-
lion documents.We also follow the pre-processing process in [12] We pre-process data
using a vocabulary list taken from the top 10, 000 words in Project Gutenberg2 and remove
all words less than three characters. We extracted a subset of 100, 000 documents for our
experiments.

We also use two short text corpora namely 20NGshort and Twitter to demonstrate the strength of
our model in the capability of modeling short texts. The 20NGshort is a subset of documents from
the 20NG dataset with document length less than twenty-one and more than three words. We also

1We used the dump of the English Wikipedia on June 02, 2015.
2https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/PG/2006/04/1-10000
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Table 2: Intrinsic and extrinsic topic coherence measures on four datasets: 20NG, 20NGshort,
Tweets, Wikipedia. Each row group depicts the performance of each dataset. Two models, LFTM
and WNMF, took a very long time to run for large scale datasets like Wikipedia, hence ∗ denotes
not available. Higher topic coherence means the model performs better.

corpus #topics metrics EKmeans LDA ETM LFTM WNMF OTLDA

20NG 50
TC-UCI -2.039 -2.039 -1.117 -1.272 -2.349 -0.988

TC-UMass 0.131 0.164 0.185 -0.044 0.194 0.319

20NGshort 20
TC-UCI -3.093 -1.633 -0.278 -0.635 -0.485 0.465

TC-UMass -0.982 -0.431 -0.355 -0.984 -0.696 -0.388

Tweets 20
TC-UCI -2.98 -2.66 -1.149 -1.61 -0.672 0.162

TC-UMass -0.989 -0.516 -0.354 -0.984 -0.623 -0.468

Wikipedia 100
TC-UCI -1.783 -1.086 -0.529 ∗ ∗ 0.57

TC-UMass 0.116 0.219 0.231 ∗ ∗ 0.256

use 2011 and 2012 micro-blog tracks at Text REtrieval Conference (TREC)3 which includes 2, 471
tweets of the average length of 8. We summarize the statistics of datasets in Table 1.

Baseline methods and settings: we evaluate the proposed method in both quantitative and qua-
litative aspects. For the quantitative aspect, we use topic coherence (TC) to measure the intrinsic
performance of the methods while document classification (DCS) is used as the extrinsic evaluation
metric. We evaluate the performance of OTLDA against existing topic model methods4 including
naive model of clustering word embedding vectors using k-means (EKmeans); notable Latent Diri-
chlet Allocation (LDA) [3] - topic modeling based on word co-occurrences; two extensions of LDA
incorporating word embedding information: ETM [8] - a neural topic model; and LFTM5 [19] - pro-
babilistic topic model with embedding latent feature; and WNMF [22] a Wasserstein distance-based
topic model. We used the default parameters given with the source code or the best settings reported
in the papers for the ETM, LFTM, WNMF models while for LDA, we use the default parameter
given by the Gensim package. For all models with embedding, we use the pre-trained word2vec
from Google.6

Evaluation metrics: we use topic coherence and F -score and accuracy of document classification
to evaluate the performance of our proposed model. Topic coherence is a quantitative measure to
evaluate the interpretability of the learned topics which is highly correlated to human judgment [16].
In this paper, we use two versions of topic coherence, extrinsic UCI measure (TC-UCI)7 [18, 21] and
intrinsic UMass measure (TC-UMass) [16]. Both measures share the same high-level idea, however,
the TC-UCI uses the word correlation statistics from a universal corpus, e.g. Wikipedia, while the
UMass uses the training corpus as the reference corpus.

4.2 Experimental Results

Quantitative results: we ran our proposed methods with several regularization terms including
0.05, 0.1, 1 50 and choose the best performance among them. We found that with regular do-
cuments, large regularizer λ, e.g 50, provide a better topic coherence while a smaller regularizer,
e..g. λ = 0.05, is more suitable for short documents. We also report the effect of regularizer on the
topic coherence on the corpus in the Supplementary Material. Table 2 reports the comprehensive
topic coherence measures on four corpora. In the table, the best and the second-best score of each
corpus are boldface and underline highlighted respectively. We observe that when dealing with re-
gular documents, the OTLDA outperforms baseline methods in terms of both intrinsic and extrinsic
topic coherence, meanwhile, ETM and WNMF are the second-best of TC-UCI and TC-UMass re-

3This is originally from https://trec.nist.gov/data/microblog.html and pre-processed by Jipeng et. al. at
https://github.com/qiang2100/STTM

4We are unable to compare with DWL [26] since the code of the model is not publicly available.
5Authors develop two class of models for regular (LFLDA) and short (LFDMM) text. Depending on the

dataset, we choose the corresponding method.
6https://code.google.com/archive/p/word2vec/
7We used the Palmetto package (http://palmetto.aksw.org) with Wikipedia corpus.
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Table 4: Comparison of cherry-picked top three ETM and OTLDA topics on Wikipedia corpus
related to government keyword.

ETM
government, foreign, department, minister, public, ministry, development, office, economic, council, service

pay, money, financial, million, cost, economic, rate, tax, funds, government, increase

political, movement, government, independence, party, freedom, war, social, president, union, republic

OTLDA
community, provide, business, educational, develop, government, help, specific, development, encourage, work

government, legislature, state, legislative, political, commission, judicial, senate, committee, governor, national

government, community, education, educational, public, business, local, university, national, organization, private

spectively. For short text, OTLDA performs much better in comparison with its baselines in terms
of extrinsic coherence, however, it is a bit behind the intrinsic performance of ETM. Note that the
TC-UMass values of all models are small since the length of documents is small which leads to low
empirical word co-occurrence.

To compare the extrinsic predictive performance, we use document classification as a downstream
task. After topics are learned from the corpus, we use trained models to predict the document-topic
proportions for testing and validation subsets. We use the learned document-topic proportions of
training data and its labels to train a Support Vector Machine classifier (SVC). We use SVC model in
scikit-learn with the default parameters to train and report the classification performance in Table 3.
We choose the three best models in topic coherence to compare with our proposed model. Table 3
depict the results of document classification. OTLDA surpass the baseline methods in terms of both
accuracy and F-score.

We can intuitively justify the better semantic coherence of learned topics using underlying mecha-
nism of word embeddings. The word embeddings are resulted from learning co-occurring of words
in documents, therefore when two words wu and wv appear more frequently in the corpus, their
embeddings are more similar, i.e. cuv is small. Our proposed model aims to optimize Eq. (5) which
will put a higher value on γiuv . As a consequence, the pair of wu and wv usually gets higher weight
in topic βk. When computing topic coherence, we usually choose top words with high weights, it
is more like this pair of words to present in the list of the top words which may produce bigger the
numerator of coherence formula. Another property that our proposed model process is the clustering
characteristic which means closer documents in terms of optimal transport (aka word mover distance
- WMD) will have similar topic proportion vectors. We also knew that WMD provides good dis-
tance for documents in text classification in [13]. Our results in the downstream classification task
are orthogonal with their results.

Table 3: Classification performance of 20NG cor-
pus using document-topic proportions as vector
representation for documents.

metrics ETM WNMF OTLDA
Accuracy 0.469 0.412 0.478
Precision 0.477 0.437 0.471

Recall 0.455 0.423 0.464
F1 0.443 0.421 0.459

Qualitative results: we cherry-pick three to-
pics related to government (the keyword in the
top ten words of the topic) learned by ETM and
OTLDA models to investigate the qualitative
performance of the models. The top row of Ta-
ble 4 depicts topics from ETM models while the
bottom row is the topics from OTLDA models.
The ETM topics are relatively too broad and ge-
neral, and the second topic is not much related
to government. The topics learned by OTLDA
are more detailed. For example, both the first
and third topics mention community education
(of) government and business. But the first is about help and encourage while the other topic is
about public and private university (ies). The results reflect that OTLDA prefers to learn topics with
fine granularity.

5 Conclusion

We have presented an optimal transport framework called OTLDA for topic modeling which is
grounded on the convex geometric perspective of topics in relation to document observation. Based
on this interpretation, we have developed an efficient learning algorithm using alternating optimiza-
tion. Extensive experiments illustrate that the proposed model outperforms competitive approaches
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in terms of topic coherence as well as better classification accuracy for downstream tasks. We also
wish to highlight the conceptual difference between OTLDA and Wasserstein dictionary learning,
WNMF. OTLDA takes the number of word counts of documents into account as well as using nor-
malized learned topic proportions, while WNMF does not. Our approach to topic modeling may
lend itself naturally to other LDA extensions due to its simplicity and flexibility. Future direction
can, for example, consider dynamic or supervised settings.

Broader Impact

Topic modeling is one of the most popular tools for text understanding and text mining. Understan-
ding large document collections, retrieving scientific findings related to some disease, or discovering
the trends of current news of the election are some examples of domain application of topic models.
Our work provides a new theoretical framework to improve the interpretation of learned topics.
Hence, it will be beneficial to some current applications that use directly from learned topics of the
topic models. Learning more interpretable topics from a huge corpus can also be important for deci-
sion making support applications. As the work addresses a fundamental research problem we believe
that it does not put anyone at disadvantages. Our method is data-driven which completely depends
on the input corpora. The potential of unfairness may come from the process of data collection.
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