
Supplementary Materials for ‘What Did You Think
Would Happen? Explaining Agent Behaviour through

Intended Outcomes’

Herman Yau
CVSSP, University of Surrey

Chris Russell
Amazon Web Services

Simon Hadfield
CVSSP, University of Surrey

Section 1 provide the definition of double Q-learning, the update equation for estimating its belief
map, and a formal proof of consistency between the two. Section 2 provides additional experimental
and architectural details about the implementations of our various techniques. Section 3 reports
our findings for the Monte Carlo variants of our algorithm, in both the blackjack and cartpole
environments. We also show additional exploration and insight into the contrastive explanations
developed in the report.

1 Double Q-learning

Double Q-learning[1] is a modification of Q-learning which maintains two Q-tables making it is less
prone to over-estimation. After each episode, one of the Q-tables (QA or QB) is randomly updated,
using one of the following two equations.

QA
i (st, at)← (1− α)QA(st, at) + α

(
rt + γQB

i−1

(
st+1, argmax

a
QA

i−1(st+1, a)
))

QB
i (st, at)← (1− α)QB(st, at) + α

(
rt + γQA

i−1

(
st+1, argmax

a
QB

i−1(st+1, a)
))

Belief Map Update Step Similarly, we maintain two belief maps (HA and HB) and update them
in sync with the Q-tables, that is each time QA is updated, we also update HA and the same for QB

and HB . The updates are given by the following two equations

HA
i (st, at)← (1− α)HA(st, at) + α

(
1st,at

+ γHB
(
st+1, argmax

a
QA(st+1, a)

))
HB

i (st, at)← (1− α)HB(st, at) + α
(
1st,at

+ γHA
(
st+1, argmax

a
QB(st+1, a)

))
Proof of Consistency

Proof. The proof is almost identical to that of Q-learning in the main body of the paper. In the base
case, all Q and H are zero initialised, and therefore consistent. For the inductive step, after each
episode, one of A or B is updated, and we assume that both QA

i−1 and QB
i−1 are consistent with HA

i−1
and HB

i−1 . Without loss of generality, we assume A is selected: We consider time i and we write
mt = argmax

a∈A
QA

i−1(st, a) then:

vec(HA
i (st, at))

>vec(R) = vec
(
(1− α)HA

i−1(st, at) + α
(
1st,at

+ γHB
i−1(st+1,mt+1)

))>
vec(R)

= (1− α)QA
i−1(st, at) + αvec

(
1s,a + γHB

i−1(st+1,mt+1)
)>

vec(R)

= (1− α)QA
i−1(st, at) + α(rt + γQB

i−1(st+1,mt+1))

= QA
i (st, at).

as required.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



2 Agent Description

Blackjack In both Monte Carlo control and Q-learning we share the same training settings. We
set the learning rate α = 0.1, discount factor γ = 1. We set an initial exploration probability ε = 1
which is exponentially decreased to ε = 0.05 with a decay rate of 0.9999 throughout the training.

Cartpole Similar to blackjack, we share the same training settings in cartpole. We set learning
rate α = 0.1 and discount factor γ = 1. Episode terminates when the length of the episode reaches
200 timesteps. We initially set exploration probability ε = 1 which is linearly decreased to ε = 0.1
throughout the first 500 episodes.

In DQN training, we use Adam [2] optimizer with ε = 1e− 8, exponential decays β1 = 0.9, β2 =
0.999. The learning rate is α = 0.0001. We use Huber loss with discount factor γ = 1. We clip
gradients to be in the range of [−1, 1]. For each learning iteration, we batch 16 experience together
for optimisation. We initially set exploration probability ε = 1 which is linearly decreased to ε = 0.1
throughout the first 500 episodes. Full details of the neural network architectures can be found in
Table 1 and 2.

Layer Type Input Size
input N/A N/A 4
fc1 MLP input 128
fc2 MLP fc1 512

output MLP fc2 2
Table 1: DQN neural network architecture

Layer Type Input Size
input N/A N/A 162
fc1 MLP input 512
fc2 MLP fc1 1024
fc3 MLP fc2 2048

output MLP fc3 2*2*162
Table 2: DBN neural network architecture. Output is reshaped to RA×S×A before return.

Taxi We first describe the training details for Q-learning. We set the learning rate α = 0.4 and
discount factor γ = 0.9. An episode terminates when the agent completes the episode or reaches a
threshold of 200 timesteps. We initially set exploration probability ε = 1 which is linearly decreased
to ε = 0.1 in the first 250 episodes.

In DQN training, we use Adam [2] optimizer with ε = 1e− 8, exponential decays β1 = 0.9, β2 =
0.999. The learning rate is α = 0.0001. We use Huber loss with discount factor γ = 1. We clip
gradients to be in the range of [−1, 1]. For each learning iteration, we batch 16 experience together
for optimisation. We initially set exploration probability ε = 1 which is linearly decreased to ε = 0.1
in the first 250 episodes. In order to speed up training of DBN, we made a small modification by
splitting belief update and action into two inputs: belief update is a binary indicator function 1 at
position s, and action is converted into one-hot encoding before being fed into the neural network.
Full details of the neural network architectures can be found in Table 3 and 4.

Layer Type Input Size
input N/A N/A 4
fc1 MLP input 500
fc2 MLP fc1 2000

output MLP fc2 6
Table 3: DQN neural network architecture

2



Layer Type Input Size
input_belief N/A N/A 500
input_action N/A N/A 6
belief_stream MLP input_belief 1024
action_stream MLP input_action 128

concat N/A input_belief, input_action 1024+128 = 1152
fc3 MLP concat 2048

output MLP fc3 500
Table 4: DBN neural network architecture. Output is reshaped to RA×S×A before return.

3 Further Results

Suppose we have the best action a0 and second best action a1 at state s, we can compute a contrastive
explanation G by subtracting the belief of a0 against a1:

G(s, a0, a1) = H(s, a0)−H(s, a1) (1)

Since H(s, a) is a decomposition of Q(s, a), the subtraction will tell us which future states constitute
the overall goodness of a0 over a1 in s. We apply equation 1 to generate the contrastive explanations
below.

Blackjack For conciseness, the visualisations of blackjack have been trimmed to only show reach-
able states. Figure 1 shows a belief map computed for an agent trained using Monte-Carlo control.
This can be compared against that of the tabular Q-learning agent in Figure 3 of the main paper.

In Figure 2 and Figure 3 we verify that we can recover the Q-table from learned beliefs via a proxy
reward map, thus our theorem in the main paper holds. In figure 4 and 5 we show that different
contrastive explanations can be extracted by applying equation 1.

Cartpole We verify in figure 7 and 8 that our theorem in the main paper holds without the aid of a
proxy map. We also give a demonstration of contrastive explanations in figure 9 and 10.

Taxi We provide animations of Figure 4 and 5 in the main text; see attached video for the animation.
We also give contrastive explanations from DQN agent in Figure 11. Although the contrastive
explanations are noticeably fuzzier, the extracted intention is similar to our results for Q-learning.

3



(a) Belief map for sticking (b) Belief map for hitting

(c) Reward belief for sticking

(d) Reward belief for hitting

Figure 1: Monte Carlo control blackjack simulation: here we show the visualisations of belief maps
and proxy action-reward map when player sum = 10, dealer card = 7 with no usable ace.

Figure 2: Q-learning: visualisations of ground truth Q-table and recovered Q-table from learned
belief.

4



Figure 3: Monte Carlo control: visualisations of ground truth Q-table and recovered Q-table from
learned belief.

(a) (b)

Figure 4: Monte Carlo control, blackjack simulation: contrastive explanation when player sum = 10,
dealer card = 7 with no usable ace. Figure 4a shows that hitting would grant access to various future
states. This is reflected in the figure 4b, as the red block (consequence of sticking) indicates sticking
is undesirable since the action is more likely to generate −1 reward.

(a) (b)

Figure 5: Monte Carlo control, blackjack simulation: contrastive explanation when player sum = 17,
dealer card = 9 with no usable ace. In contrast to figure 4a, hitting is more likely to yield a more
negative consequnce than twisting, as evidenced by 5a that the red block (consequence of hitting) at
(1,−1) clearly outweights the cumulative sum of blue blocks (consequence of sticking).

5



(a) Belief map

(b) Forward Simulation

Figure 6: Monte Carlo control, cartpole simulation: belief map and trajectory visualisations.

Figure 7: Monte Carlo control, cartpole simulation: Q-table and recovered Q-table from learned
beliefs. Each value is numerically identical except for floating-point errors.

Figure 8: Q-learning, cartpole simulation: Q-table and recovered Q-table from learned beliefs. Each
value is numerically identical except for floating-point errors.

Figure 9: Monte Carlo control, cartpole simulation: selected contrastive explanations at state 79. We
can intuitively reason and justify the agent’s decision of moving to the right since it offers a greater
stability. Moving to the left risks heading towards the edges highlighted by the red blocks.

6



Figure 10: Q-learning, cartpole simulation: selected contrastive explanations at state 79. The figure
shows that moving to the right is undesirable since it will lead the agent to visit states which can
cause possible failure, whereas moving to the left can offer more guarantee of staying in the middle.

(a) Value ambiguity. a0: move south, a1: move west. Q(s, a0) = 14.9908, Q(s, a1) = 14.9858.

(b) Bounce back. a0: move south, a1: move west. Q(s, a0) = 17.9323, Q(s, a1) = 15.9981.

Figure 11: DQN, taxi simulation: contrastive explanations of taxi DQN agent. Refer to Figure 7 in
main text for descriptions of each subplot.

7



References
[1] Hado V Hasselt. Double q-learning. In Advances in neural information processing systems,

pages 2613–2621, 2010.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

8


	Double Q-learning
	Agent Description
	Further Results

