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Abstract

This paper introduces a new method to build linear flows, by taking the exponential
of a linear transformation. This linear transformation does not need to be invertible
itself, and the exponential has the following desirable properties: it is guaranteed
to be invertible, its inverse is straightforward to compute and the log Jacobian
determinant is equal to the trace of the linear transformation. An important insight
is that the exponential can be computed implicitly, which allows the use of con-
volutional layers. Using this insight, we develop new invertible transformations
named convolution exponentials and graph convolution exponentials, which retain
the equivariance of their underlying transformations. In addition, we generalize
Sylvester Flows and propose Convolutional Sylvester Flows which are based on the
generalization and the convolution exponential as basis change. Empirically, we
show that the convolution exponential outperforms other linear transformations in
generative flows on CIFAR10 and the graph convolution exponential improves the
performance of graph normalizing flows. In addition, we show that Convolutional
Sylvester Flows improve performance over residual flows as a generative flow
model measured in log-likelihood.

1 Introduction

Deep generative models aim to learn a distribution pX(x) for a high-dimensional variable x. Flow-
based generative models (Dinh et al., 2015, 2017) are particularly attractive because they admit exact
likelihood optimization and straightforward sampling. Since normalizing flows are based on the
change of variable formula, they require the flow transformation to be invertible. In addition, the
Jacobian determinant needs to be tractable to compute the likelihood.

In practice, a flow is composed of multiple invertible layers. Since the Jacobian determinant is
required to compute the likelihood, many flow layers are triangular maps, as the determinant is then
the product of the diagonal elements. However, without other transformations, the composition of
triangular maps will remain triangular. For that reason, triangular flows are typically interleaved
with linear flows that mix the information over dimensions. Existing methods include permutations
(Dinh et al., 2015) and 1 ⇥ 1 convolutions (Kingma and Dhariwal, 2018) but these do not operate
over feature maps spatially. Alternatives are emerging convolutions (Hoogeboom et al., 2019a) and
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Figure 1: Visualization of the equivalent matrix exponential exp(M) where M represents a 2d
convolution on a 1⇥ 5⇥ 5 input (channel first). In this example the computation is explicit, however
in practice the exponential is computed implicit and the matrices M and exp(M) are never stored.

periodic convolutions (Finzi et al., 2019; Karami et al., 2019). However, periodicity is generally not a
good inductive bias for images, and emerging convolutions are autoregressive and their inverse is
solved iteratively over dimensions.

In this paper, we introduce a new method to construct invertible transformations, by taking the
exponential of any linear transformation. The exponential is always invertible, and computing the
inverse and Jacobian determinant is straightforward. Extending prior work Goliński et al. (2019), we
observe that the exponential can be computed implicitly. As a result, we can take the exponential
of linear operations for which the corresponding matrix multiplication would be intractable. The
canonical example of such a transformation is a convolutional layer, using which we develop a
new transformation named the convolution exponential. In addition we propose a new residual
transformation named Convolutional Sylvester Flow, a combination of a generalized formulation for
Sylvester Flows, and the convolution exponential as basis change. Code for our method can be found
at: https://github.com/ehoogeboom/convolution_exponential_and_sylvester

2 Background

Consider a variable x 2 Rd and an invertible function f : Rd ! Rd that maps each x to a unique
output z = f(x). In this case, the likelihood pX(x) can be expressed in terms of a base distribution
pZ and the Jacobian determinant of f :

pX(x) = pZ(z)

����
dz
dx

���� , (1)

where pZ is typically chosen to be a simple factorized distribution such as a Gaussian, and f is
a function with learnable parameters that is referred to as a flow. Drawing a sample x ⇠ pX is
equivalent to drawing a sample z ⇠ pZ and computing x = f�1(z).

2.1 The Matrix Exponential

The matrix exponential gives a method to construct an invertible matrix from any dimensionality
preserving linear transformation. For any square (possibly non-invertible) matrix M, the matrix
exponential is given by the power series:

exp(M) ⌘ I+
M
1!

+
M2

2!
+ . . . =

1X

i=0

Mi

i!
. (2)

The matrix exponential is well-defined as the series always converges. Additionally, the matrix
exponential has two very useful properties: i) computing the inverse of the matrix exponential has
the same computational complexity as the exponential itself, and ii) the determinant of the matrix
exponential can be computed easily using the trace:

exp(M)�1 = exp(�M) and log det [exp(M)] = TrM. (3)

The matrix exponential has been largely used in the field of ODEs. Consider the linear ordinary
differential equation dx

dt = Mx. Given the initial condition x(t = 0) = x0, the solution for x(t)
at time t can be written using the matrix exponential: x(t) = exp(M · t) · x0. As a result we can
express the solution class of the matrix exponential: The matrix exponential can model any linear
transformation that is the solution to a linear ODE. Note that not all invertible matrices can be
expressed as an exponential, for instance matrices with negative determinant are not possible.
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2.2 Convolutions as Matrix Multiplications

Figure 2: A convolution of a signal x with
a kernel m (left) is equivalent to a matrix
multiplication using a matrix M and a vec-
torized signal ~x (right). In this example, x
has a single channel with spatial dimensions
5⇥ 5. The convolution is zero-padded with
one pixel on all sides. A white square indi-
cates its value is zero.

Convolutional layers in deep learning can be expressed as
matrix multiplications. Let m ? x denote a convolution1,
then there exists an equivalent matrix M such that the
convolution is equivalent to the matrix multiplication M~x,
where~· vectorizes x. An example is provided in Figure
2. In these examples we use zero-padded convolutions,
for periodic and reflective padded convolutions a slightly
different equivalent matrix exists. An important detail
to notice is that the equivalent matrix is typically unrea-
sonably large to store in memory, its dimensions grow
quadratically with the dimension of x. For example, for
2d signals it has size hwc⇥ hwc, where h is height, w is
width and c denotes number of channels. In practice the
equivalent matrix is never stored but instead, it is a useful
tool to utilize concepts from linear algebra.

3 The Convolution Exponential

We introduce a new method to build linear flows, by taking the exponential of a linear transformation.
As the main example we take the exponential of a convolutional layer, which we name the convolution
exponential. Since a convolutional is linear, it can be expressed as a matrix multiplication (section
2.2). For a convolution with a kernel m, there exists an associated equivalent matrix using the matrix
M such that m ? x and M · ~x are equivalent. We define the convolution exponential:

z = m ?e x, (4)

for a kernel m and signal x as the output of the matrix exponential of the equivalent matrix:
~z = exp(M) · ~x, where the difference between z and ~z is a vectorization or reshape operation
that can be easily inverted. Notice that although ? is a linear operation with respect to m and x,
the exponential operation ?e is only linear with respect to x. Using the properties of the matrix
exponential, the inverse is given by (�m) ?e x, and the log Jacobian determinant is the trace of M.
For a 2d convolutional layer the trace is hw ·

P
c mc,c,my,mx given the 4d kernel tensor m, where

height is h, width is w, the spatial center of the kernel is given by my,mx and c iterates over channels.
As an example, consider the convolution in Figure 2. The exponential of its equivalent matrix is
depicted in Figure 1. In contrast with a standard convolution, the convolution exponential guaranteed
to be invertible, and computing the Jacobian determinant is computationally cheap.

Implicit iterative computation
Due to the popularity of the matrix exponential as a solutions to ODEs, numerous methods to
compute the matrix exponential with high numerical precision exist (Arioli et al., 1996; Moler and
Van Loan, 2003). However, these methods typically rely on storing the matrix M in memory, which
is very expensive for transformations such as convolutional layers. Instead, we propose to solve the
exponential using matrix vector products M~x. The exponential matrix vector product exp(M)~x can

1In frameworks, convolutions are typically implemented as cross-correlations. We follow literature conven-
tion and refer to them as convolutions in text. In equations ? denotes a cross-correlation and ⇤ a convolution.

Algorithm 1 Implicit matrix exponential
Inputs: M, x
Output: z
let ⇡  x, z x
for i = 1, . . . , T do
⇡  M · ⇡/i
z z+ ⇡

end for

Algorithm 2 General linear exponential
Inputs: x, linear function L : X ! X
Output: z
let ⇡  x, z x
for i = 1, . . . , T do
⇡  L(⇡)/i
z z+ ⇡

end for
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(a) Forward computation z = m ?e x.

(b) Reverse computation x = �m ?e z.

Figure 3: Visualization of the feature maps in the convolution exponential with the edge filter m =
[0.6, 0,�0.6]. Note that the notation w ?2 x simply means w ? (w ? x), that is two subsequent convolu-
tions on x. Similarly for any n the expression w ?n x = w ? (w ?n�1 x).

be computed implicitly using the power series, multiplied by any vector ~x using only matrix-vector
multiplications:

exp(M) · ~x = ~x+
M · ~x
1!

+
M2 · ~x

2!
+ . . . =

1X

i=0

Mi · ~x
i!

, (5)

where the term M2 · x can be expressed as two matrix vector multiplications M(M · x). Further,
computation from previous terms can be efficiently re-used as described in Algorithm 1. Using this
fact, the convolution exponential can be directly computed using the series:

m ?e x = x+
m ? x
1!

+
m ? (m ? x)

2!
+ . . . , (6)

which can be done efficiently by simply setting L(x) = m ? x in Algorithm 2. A visual example of
the implicit computation is presented in Figure 3.

Figure 4: Upper bound of the norm of a term in
the power series ||Mix||p/i! at iteration i, relative
to the size of the input ||x||p given a matrix norm.

Power series convergence
Even though the exponential can be solved implicitly,
it is uncertain how many terms of the series will need
to be expanded for accurate results. Moreover, it is
also uncertain whether the series can be computed
with high numerical precision. To resolve both issues,
we constrain the induced matrix norm of the linear
transformation. Given the p-norm on the matrix M, a
theoretical upper bound for the size of the terms in the
power series can be computed using the inequality:
||Mi x||p  ||M||ip||x||p. Hence, an upper bound
for relative size of the norm of a term at iteration i,
is given by ||M||ip/i!. Notice that the factorial term
in the denominator causes the exponential series to
converges very fast, which is depicted in Figure 4.

In our experiments we constrain M using spectral normalization (Miyato et al., 2018; Gouk et al.,
2018), which constrains the `2 norm of the matrix (p = 2) and can be computed efficiently for
convolutional layers and standard linear layers. Even though the algorithm approximates the `2 norm,
in practice the bound is sufficiently close to produce convergence behaviour as shown in Figure 4.
Moreover, the figure depicts worst-case behaviour given the norm, and typically the series converges
far more rapidly. In experiments we normalize the convolutional layer using a `2 coefficient of
0.9 and we find that expanding around 6 terms of the series is generally sufficient. An interesting
byproduct is that the transformations that can be learned by the exponential will be limited to linear
ODEs that are Lipschitz constraint. In cases where it is useful to be able to learn permutations over
channels, this limitation can be relieved by combining the exponential with cheap (Housholder) 1⇥ 1
convolutional layers.
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3.1 Graph Convolution Exponential

In this section we extend the Convolution Exponential to graph structured data. Given a graph
G = (V, E) with nodes v 2 V and edges e 2 E . We define a matrix of nodes ⇥ features X 2 RN⇥nf ,
an adjacency matrix A 2 RN⇥N and a degree matrix Dii =

P
j Aij . Employing a similar notation

as Kipf and Welling (2016), a linear graph convolutional layer GCL : RN⇥nf ! RN⇥nf can be
defined as:

GCL✓(X) = IX✓0 +D� 1
2AD� 1

2X✓1, (7)

where ✓0,✓1 2 Rnf⇥nf are free parameters. Since the output in the graph convolution linearly de-
pends on its inputs, it can also be expressed as a product of some equivalent matrix M 2 RN ·nf⇥N ·nf

with a vectorized signal ~X 2 RN ·nf . Note that the trace of this equivalent matrix Tr M is is equal
to the trace of ✓0, multiplied by the number of nodes, i.e. Tr M = N Tr ✓0. This is because the
adjacency matrix A contains zeros on its diagonal and all self-connections are parametrized by ✓0.
The proofs to obtain M from equation 7 and its trace Tr M are shown in Appendix B.

The graph convolution exponential can be computed by replacing L with the function GCL in
Algorithm 2. Since the size and structure of graphs may vary, the norm ||M|| changes depending on
this structure even if the parameters ✓0 and ✓1 remain unchanged. As a rule of thumb we find that the
graph convolution exponential converges quickly when the norm ||✓0||2 is constrained to one divided
by the maximum number of neighbours, and ||✓1||2 to one (as it is already normalized via D).

3.2 General Linear Exponentials and Equivariance

In the previous section we generalized the exponential to convolutions and graph convolutions.
Although these convolutional layers themselves are equivariant transformations (Cohen and Welling,
2016; Dieleman et al., 2016), it is unclear whether the exponentiation retains this property. In other
words: do exponentiation and equivariance commute?

Equivariance under K is defined as [K,M ] = KM �MK = 0 where M is a general transformation
that maps one layer of the neural network to the next layer, which is in this case a convolutional
layer. It states that first performing the map M and then the symmetry transform K is equal to
first transforming with K and then with M , or concisely KM = MK. Although the symmetry
transformation in the input layer and the activation layer are the same (this is less general than the
usual equivariance constraint which is of the form K1M = MK2), this definition is however still
very general and encompasses group convolutions (Cohen and Welling, 2016; Dieleman et al., 2016)
and permutation equivariant graph convolutions (Maron et al., 2019). Below we show that indeed,
the exponentation retains this form of equivariance.

Theorem 1: Let M be a dimensionality preserving linear transformation. If M is equivariant with
respect to K such that [K,M ] = 0, then the exponential of M is also equivariant with respect to K,
meaning that [K, expM ] = 0.

Proof. Since [K,M ] = 0, we have that:

[K,MM ] = KMM �MMK = KMM �MKM +MKM �MMK

= [K,M ]M +M [K,M ] = 0.
(8)

From symmetry of the operator [..., ...] and induction it follows that [Kn,Mm] = 0 for positive powers
n,m. Moreover, any linear combination of any collection of powers commutes as well. To show
that the exponential is equivariant, we define expn M as the truncated exponential taking only the
first n terms of the series. Then [K, expM ] = [K, limn!1 expn M ] = limn!1[K, expn M ] = 0,
because each [K, expn M ] = 0 for any positive integer n and [..., ...] is continuous and thus preserves
limits. This answers our question that indeed [K, expM ] = 0 and thus the exponentiation of M is
also equivariant. For the interested reader, this result can also be more directly obtained from the
relationship between Lie algebras and Lie groups.

4 Generalized Sylvester Flows

Sylvester Normalizing Flows (SNF) (van den Berg et al., 2018) takes advantage of the Sylvester
identity det (I+AB) = det (I+BA) that allows to calculate a determinant of the transformation
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z = x+Ah(Bx+ b) in an efficient manner. Specifically, van den Berg et al. (2018) parametrize
A and B using a composition of a shared orthogonal matrix Q and triangular matrices R, R̃ such
that A = QTR̃ and B = RQ. However, the original Sylvester flows utilize fully connected
parametrizations, and not convolutional ones. We introduce an extension of Sylvester flows which we
call generalized Sylvester flows. The transformation is described by:

z = x+W�1fAR (Wx) , (9)
where W can be any invertible matrix and fAR is a smooth autoregressive function. In this case the
determinant can be computed using:

det
⇣ dz
dx

⌘
= det

�
I+ JfAR(Wx)WW�1� = det (I+ JfAR(Wx)) , (10)

where JfAR(Wx) denotes the Jacobian of fAR, which is triangular because fAR is autoregressive.
We can show that 1) generalized Sylvester flows are invertible and 2) that they generalize the original
Sylvester flows.

Theorem 2: Let W be an invertible matrix. Let fAR : Rd ! Rd be a smooth autoregressive function
(i.e., @fAR(x)i

@xj
= 0 if j > i). Additionally, constrain @fAR(x)i

@xi
> �1. Then the transformation given

by (9) is invertible.

Proof. The vectors of matrix W form a basis change for x. Since the basis change is invertible, it
suffices to show that the transformation in the new basis is invertible. Multiplying Equation 9 by W
from the left gives:

Wz|{z}
v

= Wx|{z}
u

+fAR

�
Wx|{z}

u

�
, (11)

The transformation v = u+ fAR(u) combines an identity function with an autoregressive function
for which the diagonal of the Jacobian is strictly larger than �1. As a result, the entire transformation
from u to v has a triangular Jacobian with diagonal values strictly larger than 0 and is thus invertible
(for a more detailed treatment see (Papamakarios et al., 2019). Since the transformation in the new
basis from u to v is invertible, the transformation from x to z given in (9) is indeed also invertible.

Theorem 3: The original Sylvester flow z = x + QT R̃h(RQx + b), is a special case of the
generalized Sylvester flow (9). Proof: see Appendix A.

In summary, Theorem 2 demonstrates that the generalized Sylvester Flow is invertible and Theorem 3
shows that the original Sylvester Flows can be modelled as a special case by this new transformation.
The generalization admits the use of any invertible linear transformation for W, such as a convolution
exponential. In addition, it allows the use of general autoregressive functions.

4.1 Inverting Sylvester Flows

Recall that we require that the diagonal values of JfAR are greater than �1. If we additionally
constrain the maximum of this diagonal to +1, then the function becomes a one-dimensional
contraction, given that the other dimensions are fixed. Using this, the inverse of Sylvester flows can
be easily computed using a fixed point iteration. Firstly, compute v = Wz and let u(0) = v. At this
point the triangular system v = u+ fAR(u) can be solved for u using the fixed-point iteration:

u(t) = v � fAR(u
(t�1)). (12)

Subsequently, x can be obtained by computing x = W�1u. This procedure is valid both for our
method and the original Sylvester flows. Although the fixed-point iteration is identical to (Behrmann
et al., 2019), the reason that Sylvester flows converge is because i) the function fAR is a contraction
in one dimension, ii) the function is autoregressive (for a proof see Appendix A). The entire function
fAR does not need to be a contraction. Solving an autoregressive inverse using fixed-point iteration
is generally faster than solving the system iteratively (Song et al., 2020; Wiggers and Hoogeboom,
2020).

Specifically, we choose that fAR(u) = � · s2(u) � tanh
�
u � s1(u) + t1(u)

�
+ t2(u), where

s1, s2, t1, t2 are strictly autoregressive functions parametrized by neural networks with a shared
representation. Also s1, s2 utilize a final tanh function so that their output is in (�1, 1) and
0 < � < 1, which we set to 0.5. This transformation is somewhat similar to the construction of the
original Sylvester flows (van den Berg et al., 2018), with the important difference that s1, s2, t1, t2
can now be modelled by any strictly autoregressive function.
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4.2 Convolutional Sylvester Flows

Generalized Sylvester flows and the convolution exponential can be naturally combined to obtain
Convolutional Sylvester Flows (CSFs). In Equation 9 we let W = exp(M)Q, where M is the
equivalent matrix of a convolution with filter m. In addition Q is an orthogonal 1⇥ 1 convolution
modeled by Householder reflections (Tomczak and Welling, 2016; Hoogeboom et al., 2019a):

z = x+QT
⇣
(�m) ?e fAR (m ?e Qx)

⌘
, (13)

where the function fAR is modelled using autoregressive convolutions (Germain et al., 2015; Kingma
et al., 2016). For this transformation the determinant det

�
dz
dx

�
= det (I+ JfAR (m ?e Qx)), which

is straightforward to compute as JfAR is triangular.

5 Related Work

Deep generative models can be broadly divided in likelihood based model such as autoregressive
models (ARMs) (Germain et al., 2015), Variational AutoEncoders (VAEs) (Kingma and Welling,
2014), Normalizing flows (Rezende and Mohamed, 2015), and adversarial methods (Goodfellow et al.,
2014). Normalizing flows are particularly attractive because they admit exact likelihood estimation
and can be designed for fast sampling. Several works have studied equivariance in flow-based models
Köhler et al. (2019); Rezende et al. (2019).

Linear flows are generally used to mix information in-between triangular maps. Existing transfor-
mations in literature are permutations (Dinh et al., 2017), orthogonal transformations Tomczak and
Welling (2016); Goliński et al. (2019), 1 ⇥ 1 convolutions (Kingma and Dhariwal, 2018), low-rank
Woodbury transformations (Lu and Huang, 2020), emerging convolutions (Hoogeboom et al., 2019a),
and periodic convolutions (Finzi et al., 2019; Karami et al., 2019; Hoogeboom et al., 2019a). From
these transformations only periodic and emerging convolutions have a convolutional parametriza-
tion. However, periodicity is generally not a good inductive bias for images, and since emerging
convolutions are autoregressive, their inverse requires the solution to an iterative problem. Notice
that Goliński et al. (2019) utilize the matrix exponential to construct orthogonal transformations.
However, their method cannot be utilized for convolutional transformations since they compute the
exponential matrix explicitly. Our linear exponential can also be seen as a linear neural ODE (Chen
et al., 2018), but the methods are used for different purposes and are computed differently. In Li
et al. (2019) learn approximately orthogonal convolutional layers to prevent Lipschitz attenuation,
but these cannot be straightforwardly applied to normalizing flows without stricter guarantees on the
approximation.

There exist many triangular flows in the literature such as coupling layers (Dinh et al., 2015, 2017),
autoregressive flows (Germain et al., 2015; Kingma et al., 2016; Papamakarios et al., 2017; Chen et al.,
2018; De Cao et al., 2019; Song et al., 2019; Nielsen and Winther, 2020), spline flows (Durkan et al.,
2019b,a) and polynomial flows (Jaini et al., 2019). Other flows such as Sylvester Flows (van den Berg
et al., 2018) and Residual Flows (Behrmann et al., 2019; Chen et al., 2019) learn invertible residual
transformations. Sylvester Flows ensure invertibility by orthogonal basis changes and constraints on
triangular matrices. Our interpretation connects Sylvester Flows to more general triangular functions,
such as the ones described above. Residual Flows ensure invertibility by constraining the Lipschitz
continuity of the residual function. A disadvantage of residual flows is that computing the log
determinant is not exact and the power series converges at a slower rate than the exponential.

6 Experiments

Because image data needs to be dequantized Theis et al. (2016); Ho et al. (2019), we optimize
the expected lowerbound (ELBO) of the log-likelihood. The performance is compared in terms of
negative ELBO and negative log-likelihood (NLL) which is approximated with 1000 importance
weighting samples. Values are reported in bits per dimension on CIFAR10. The underlying matrix
for the exponential is initialized with unusually small values such that the initial exponent will
approximately yield an identity transformation. See Appendix A for a comparison of Sylvester flows
when used to model the variational distribution in VAEs.
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6.1 Mixing for generative flows

In this experiment the convolution exponential is utilized as a linear layer in-between affine coupling
layers. For a fair comparison, all the methods are implemented in the same framework, and are
optimized using the same procedure. For details regarding architecture and optimization see Appendix
C. The convolution exponential is compared to other linear mixing layers from literature: 1 ⇥ 1
convolutions (Kingma and Dhariwal, 2018), emerging convolutions (Hoogeboom et al., 2019a),
and Woodbury transformations Lu and Huang (2020). The number of intermediate channels in the
coupling layers are adjusted slightly such that each method has an approximately equal parameter
budget. The experiments show that our method outperforms all other methods measured in negative
ELBO and log-likelihood (see Table 1). The timing experiments are run using four NVIDIA GTX
1080Ti GPUs for training and a single GPU for sampling. Interestingly, even though emerging convo-
lutions also have a convolutional parametrization, their performance is worse than the convolution
exponential. This indicates that the autoregressive factorization of emerging convolutions somewhat
limits their flexibility, and the exponential parametrization works better.

Table 1: Generative modelling performance with a generative flow. Results computed using log2
averaged over dimensions, i.e. bits per dimension. Results were obtained by re-implementing the
relevant method in the same framework for a fair comparison. Models have an approximately equal
parameter budget.

Mixing type CIFAR10 Runtime (%)
-ELBO NLL Training Sampling

1⇥ 1 (Kingma and Dhariwal, 2018) 3.285± 0.008 3.266± 0.007 100.0% 100.0%
Emerging (Hoogeboom et al., 2019a) 3.245± 0.002 3.226± 0.002 103.2% 1223.5%
Woodbury (Lu and Huang, 2020) 3.247± 0.003 3.228± 0.003 133.2% 135.4%
Convolution Exponential 3.237± 0.002 3.218± 0.003 104.6% 115.8%

6.2 Density modelling using residual transformations

Figure 5: Samples from a generative
Convolutional Sylvester flow trained on
CIFAR10.

Since Sylvester Flows are designed to have a residual connec-
tion, it is natural to compare their performance to invertible
residual networks (Behrmann et al., 2019) which were improved
to have unbiased log determinant estimates, and subsequently
named residual flows (Chen et al., 2019). For a fair comparison,
we run the code from (Chen et al., 2019) inside our framework
using the same architecture and number of optimizer steps. For
reference we also train a typical coupling-based flow with the
same architecture. For more details please refer to Appendix C.
Note that a direct comparison to the results in Table 1 may not
be fair, as the network architectures are structurally different.
The results show that Sylvester flows considerably outperform
residual networks in image density estimation. Additionally, the
memory footprint during training of residual blocks is roughly
twice of the other models, due to the the Jacobian determinant
estimation. When correcting for this, the equal memory budget
result is obtained. In this case, the residual block flow is even
outperformed by a coupling flow. We hypothesize that this is caused by the strict Lipschitz continuity
that has to be enforced for residual flows. The ablation study in Table 3 shows the effect of using

Table 2: Invertible Residual Networks as density model. Results
for residual flows were obtained by running the residual block
code from (Chen et al., 2019) in our framework.

Model Unif. deq. Var. deq.
-ELBO NLL -ELBO NLL

Baseline Coupling Flow 3.38 3.35 3.27 3.25
Residual Block Flows 3.37 - 3.26 -

with equal memory budget 3.44 - 3.35 -
Convolutional Sylvester Flows 3.32 3.29 3.21 3.19

Table 3: Ablation studies: a study
of the effect of the generalization,
and the basis change.

Model CIFAR10
-ELBO NLL

Conv. Sylvester 3.21 3.19
without fAR 3.44 3.42
without basis 3.27 3.25
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non-generalized Sylvester Flows, and the effect of not doing the basis change. Since the original
Sylvester Flows (van den Berg et al., 2018) are not convolutional, it is difficult to directly compare
these methods. The ablation result without the generalization using fAR, is the closest to a convolu-
tional interpretation of the original Sylvester flows, although it already has the added benefit of the
exponential basis change. Even so, our Convolutional Sylvester flows considerably outperform this
non-generalized Sylvester flow.

6.3 Graph Normalizing Flows

In this section we compare our Graph Convolution Exponential with other methods from the literature.
As a first baseline we use a baseline coupling flow Dinh et al. (2017) that does not exploit the
graph structure of the data. The second baseline is a Graph Normalizing Flows that uses graph
coupling layers as described in (Liu et al., 2019). Since normalizing flows for edges of the graph
is an open problem, following Liu et al. (2019) we assume a fully connected adjacency matrix.
Our method then adds a graph convolution exponential layer preceding every coupling layer. For
further implementation details refer to Appendix B. Following Liu et al. (2019) we test the methods
on the graph datasets Mixture of Gaussian (MoG) and Mixture of Gaussians Ring (MoG-Ring),
which are essentially mixtures of permutation of Gaussians. The original MoG dataset considers 4
Gaussians, which we extend to 9 and 16 Gaussians obtaining two new datasets MoG-9 and MoG-16
to study performance when the number of nodes increase. The MoG-Ring entropy is estimated using
importance weighting to marginalize over the rotation. Results are presented in Table 4. Adding
the graph convolution exponential improves the performance in all four datasets. The improvement
becomes larger as the number of nodes increases (e.g. MoG-9 and MoG-16), which is coherent with
the intuition that our Graph Convolution Exponential propagates information among nodes in the
mixing layer.

Table 4: Benchmark over different models for synthetic graph datasets. Per-node Negative Log
Likelihood (NLL) is reported in nats.

Model MoG-4 MoG-9 MoG-16 MoG-Ring

Dataset entropy 3.63 ±0.000 4.26 ±0.013 - 4.05 ±0.001

Baseline Coupling Flow 3.89 ±0.012 6.14 ±0.012 7.20 ±0.021 4.35 ±0.023
Graph Normalizing Flow 3.69 ±0.016 4.60 ±0.067 5.38 ±0.048 4.22 ±0.025

with Graph Convolution Exponential 3.68 ±0.017 4.52 ±0.047 5.26 ±0.047 4.19 ±0.036

7 Conclusion

In this paper we introduced a new simple method to construct invertible transformations, by taking
the exponential of any linear transformation. Unlike prior work, we observe that the exponential can
be computed implicitly. Using this we developed new invertible transformations named convolution
exponentials and graph convolution exponentials, and showed that they retain their equivariance prop-
erties under exponentiation. In addition, we generalize Sylvester Flows and propose Convolutional
Sylvester Flows.

Broader Impact

This paper discusses methods to improve the flexibility of normalizing flows, a method to learn
high-dimensional distributions. Methods based on our work could potentially be used to generate
realistic looking photographs. On the other hand, distribution modelling could also be used for fraud
detection via outlier detection, which could help detect generated media. In summary, we believe this
method may be somewhat distant from direct applications, but a future derived method could be used
in the above mentioned scenarios.

Funding Disclosure

There are no additional sources of funding to disclose.

9



References
Arioli, M., Codenotti, B., and Fassino, C. (1996). The padé method for computing the matrix

exponential. Linear Algebra and its Applications, 240:111 – 130.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud, D., and Jacobsen, J. (2019). Invertible
residual networks. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 573–582. PMLR.

Chen, T. Q., Behrmann, J., Duvenaud, D., and Jacobsen, J. (2019). Residual flows for invertible gen-
erative modeling. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver,
BC, Canada, pages 9913–9923.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pages 6572–6583.

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In Proceedings of
the 33nd International Conference on Machine Learning, ICML, volume 48, pages 2990–2999.
JMLR.org.

De Cao, N., Aziz, W., and Titov, I. (2019). Block neural autoregressive flow. In Proceedings of the
Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI, page 511.

Dieleman, S., Fauw, J. D., and Kavukcuoglu, K. (2016). Exploiting cyclic symmetry in convolutional
neural networks. In Balcan, M. and Weinberger, K. Q., editors, Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 1889–1898.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE: Non-linear independent components estimation.
3rd International Conference on Learning Representations, ICLR, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using Real NVP. 5th
International Conference on Learning Representations, ICLR.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019a). Cubic-spline flows. CoRR,
abs/1906.02145.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019b). Neural spline flows. In Advances
in Neural Information Processing Systems, pages 7509–7520.

Finzi, M., Izmailov, P., Maddox, W., Kirichenko, P., and Wilson, A. G. (2019). Invertible convolutional
networks. Workshop on Invertible Neural Nets and Normalizing Flows.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pages 881–889.
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