
A Hessian for minibatches

To confirm that the loss-surface is locally well-approximated by a quadratic function, we plotted
the summed minibatch loss for 10 different minibatches (colors) for 20 different randomly chosen
directions in parameter space (plots; Fig. A1) for a ResNet trained for 10 epochs. Subtracting the
minimum, we find that the loss-functions for different minibatches have a similar shape, and hence
have a similar Hessian (Fig. A2). This is expected, because the Hessian for a minibatch is the average
of the Hessians for individual datapoints, so as the minibatch size increases, the minibatch Hessian
will converge on its expectation. Further, we provide a local quadratic fit, indicating that the minibatch
losses are well-approximated by a quadratic (black line; Fig. A2), and hence that the full batch loss
is well-approximated by a quadratic. Finally, we plotted the Hessian against the variance of the
minibatch gradient, showing a high correlation (Fig. A3)

B Gaussianity of minibatch gradients

To confirm the Gaussianity of minibatched gradients, we plotted probability and cumulative density
for the minibatch gradients for one element of each weight-matrix and bias. We used minibatches of
100, which is less than the 128 we used in our main experiments, so the minibatched gradients used
in the main text should be at least as Gaussian as those displayed here. Further, we standardised the
gradients by subtracting the mean and dividing by the standard deviation. We began with a fixed but
untrained network, and plotted the empirical histogram of gradients against the probability density
for a Gaussian (Fig. A4), and a quantile-quantile plot (the empirical cdf vs the standard Gaussian
cdf; Fig. A5). Then, we considered the probability density (Fig. A6) and the quantile-quantile plot
(Fig. A7) for a single ResNet trained for 10 epochs. All of these plots indicate that minibatch gradients
are well-approximated by a Gaussian distribution.

C Mean square normalizer in Ollivier (2017)

In our framework, we can encode the multiplication by the forgetting factor in the computation of
σ2

prior(t+ 1) from σ2
post(t),

1

σ2
prior(t+ 1)

=
1− λ

σ2
post(t)

, (27)

and the equivalent process noise is,

η2 =
λ

1− λ
σ2

post(t). (28)

To understand the typical learning rates in this model we perform a fixed-point analysis by substituting
Eq. (27) into Eq. (17a),

1

σ2
post(t+ 1)

=
1− λ

σ2
post(t)

+ g2(t). (29)

Solving for the fixed point, σ2
post = σ2

post(t) = σ2
post(t + 1), this choice of process noise gives a

mean-squre normalizer,

σ2
post =

λ

〈g2〉
. (30)

D Kalman filter

The log-posterior (Eq. 15b) is the sum of the log-prior (Eq. 15a) and the log-likelihood (Eq. 11). As
such,

− 1
2σ2

post
(w∗

i − µpost)
2
= − 1

2σ2

prior

(w∗

i − µprior)
2
− 1

2Hii

(gi −Hii (w
∗

i − µprior))
2
. (31)

The quadratic terms allow us to identify σ2
post,

− 1
2σ2

post
w∗2

i = − 1
2σ2

prior

w∗2
i − 1

2Hiiw
∗2
i , (32)
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Figure A1: Loss function along 20 random directions (plots) for 10 different minibatches (colors).
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Figure A2: Loss function along 20 random directions (plots) for 10 different minibatches (colors),
with constant offset, and quadratic fitted to all data (black line).
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Figure A3: Hessian (based on quadratic fits to full batch loss) plotted against minibatch gradient
variance, evaluated at zero perturbation.

so,

1

σ2
post

=
1

σ2
prior

+Hii. (33)

or,

σ2
post =

1
1

σ2

prior

+Hii

. (34)

And the linear terms allow us to identify µpost,

µpost

σ2

post
w∗

i =
µprior

σ2

prior

w∗

i + giw
∗

i +Hiiµpriorw
∗

i (35)

so,

µpost = σ2
post

((

1
σ2

prior

+Hii

)

µprior + gi

)

(36)

identifing 1/σ2
post,

µpost = µprior + σ2
postgi. (37)

Based on Eq. (11) and Appendix A, as Hii is unknown, we use,

Hii ≈ g2i (t). (38)

E Fixed point variance

For the fixed-point covariance, it is slightly more convenient to work with the inverse variance,

λpost =
1

σ2
post

, (39)

though the same results can be obtained through either route. Substituting Eq. (16b) into Eq. (17a)
and taking η2/σ2 ≪ 1, we obtain an update from λpost(t) to λpost(t+ 1),

λpost(t+ 1) =
1

1−η2/σ2

λpost(t)
+ η2

+ g2(t) (40)

assuming λpost has reached fixed-point, we have λpost = λpost(t) = λpost(t+ 1),

λpost =
1

1−η2/σ2

λpost
+ η2

+ 〈g2〉. (41)
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Figure A4: Empirical histogram of standardised minibatch gradients compared to the probability
density function of the standard normal for an untrained network.
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Figure A5: Empirical cumulative density of gradients compared to the cumulative density for a
standard normal for an untrained network.
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Figure A6: Empirical histogram of standardised minibatch gradients compared to the probability
density function of the standard normal for a network trained for 10 epochs.
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Figure A7: Empirical cumulative density compared to the cumulative density for a standard normal
for a network trained for 10 epochs.
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Rearranging,

λpost =
λpost

1− η2/σ2 + η2λpost

+ 〈g2〉. (42)

Assuming that the magnitude of the update to λpost is small, we can take a first-order Taylor of the
first term,

λpost ≈ λpost

(

1 +
η2

σ2
− η2λpost

)

+ 〈g2〉. (43)

cancelling,

0 ≈ η2λ2
post −

η2

σ2
λpost − 〈g2〉, (44)

and rearranging,

0 ≈ σ2λ2
post − λpost −

〈g2〉σ2

η2
, (45)

and finally substituting for λpost gives the expression in the main text.

F Additional data figures

Here, we replot Fig. 4 to clarify particular comparisons. In particular, we compare AdaBayes(-FP)
with standard baselines (Fig. A8), Adam AdamW and AdaBayes-FP (Fig. A9), AdaBayes(-FP) and
Ada/AMSBound (Fig. A10), and Ada/AMSBound and SGD (Fig. A11). Finally, we plot the training
error and loss for all methods (Fig. A12; note the loss does not include the regularizer, so it may go
up without this being evidence of overfitting).
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Figure A8: Test loss and classification error for CIFAR-10 and CIFAR-100 for a Resnet-34 and a
DenseNet-121, comparing our methods (AdaBayes and AdaBayes-FP) with standard baselines (SGD,
Adam, AdaGrad and AMSGrad (Reddi et al., 2018)).
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Figure A9: Test loss and classification error for CIFAR-10 and CIFAR-100 for a Resnet-34 and a
DenseNet-121, comparing Adam, AdamW and AdaBayes-FP.
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Figure A10: Test loss and classification error for CIFAR-10 and CIFAR-100 for a Resnet-34 and a
DenseNet-121, comparing our methods (AdaBayes and AdaBayes-FP) with AdaBound/AMSBound
Luo et al. (2019).

22



5.0

7.5

10.0

12.5

15.0

17.5
CI

FA
R-

10
 te

st
 e

rro
r (

%
)

ResNet
AdaBound
AMSBound
SGD

DenseNet

0.2

0.3

0.4

0.5

CI
FA

R-
10

 te
st

 lo
ss

25

30

35

40

45

CI
FA

R-
10

0 
te

st
 e

rro
r (

%
)

0 100 200 300
epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

CI
FA

R-
10

0 
te

st
 lo

ss

0 100 200 300
epoch

Figure A11: Test loss and classification error for CIFAR-10 and CIFAR-100 for a Resnet-34 and a
DenseNet-121, comparing AdaBound/AMSBound Luo et al. (2019) and SGD.
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Figure A12: Train loss and classification error for CIFAR-10 and CIFAR-100 for a Resnet-34 and a
DenseNet-121, for all methods in Fig. 4.
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