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Abstract

Symmetry transformations induce invariances which are frequently described with
deep latent variable models. In many complex domains, such as the chemical space,
invariances can be observed, yet the corresponding symmetry transformation cannot
be formulated analytically. We propose to learn the symmetry transformation with
a model consisting of two latent subspaces, where the first subspace captures the
target and the second subspace the remaining invariant information. Our approach is
based on the deep information bottleneck in combination with a continuous mutual
information regulariser. Unlike previous methods, we focus on the challenging task
of minimising mutual information in continuous domains. To this end, we base
the calculation of mutual information on correlation matrices in combination with
a bijective variable transformation. Extensive experiments demonstrate that our
model outperforms state-of-the-art methods on artificial and molecular datasets.

1 Introduction

In physics, symmetries are used to model quantities which are retained after applying a certain class
of transformations. From the mathematical perspective, symmetry can be seen as an invariance
property of mappings, where such mappings leave a variable unchanged. Consider the example of
rotational invariance from Figure[Ta] We first observe the 3D representation of a specific molecule
m. The molecule is then rotated. For any rotation g, we calculate the distance matrix D between the
atoms of the rotated molecule g(m) with a predefined function f. Note that a rotation is a simple
transformation which admits a straightforward analytical form. As g induces an invariance class, we
obtain the same distance matrix for every rotation g, i.e. f(m) = f(g(m)) for any rotation g.

Now, consider highly complex domains e.g. the chemical space, where analytical forms of symmetry
transformations g are difficult or impossible to find (Figure [Ib). The task of discovering novel
molecules for the design of organic solar cells in material science is an example of such a domain.
Here, all molecules must possess specific properties, e.g. a bandgap energy of exactly 1.4 eV [37]], in
order to adequately generate electricity from the solar spectrum. In such scenarios, no predefined
symmetry transformation (such as rotation) is known or can be assumed. For example, there exist
various discrete molecular graphs with different atom and bond composition that result in the
equivalent band gap energy. The only available data defining our invariance class are the {m, e}"
numeric point-wise samples from the function f where n is the number of samples, m the molecule
and e = f(m) the bandgap energy. Therefore, no analytical form of a symmetry transformation g
which alters the molecule m and leaves the bandgap energy e unchanged can be assumed.

The goal of our model is thus to learn the class of symmetry transformations g which result in a
symmetry property f of the modelled system. To this end, we learn a continuous data representation
and the corresponding continuous symmetry transformation in an inverse fashion from data samples
{m, e}"™ only. To do so, we introduce the Symmetry-Transformation Information Bottleneck (STIB)
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(a) Rotational symmetry transformation. (b) Unknown symmetry transformation.

Figure 1: Left: a molecule is rotated by g admitting an analytical form. The distance matrix D
between atoms is calculated by a known function f and remains unchanged for all rotations. Right:
n samples {m, e}"™ where m is the molecule and e the bandgap energy. These samples approximate
the function f whereas the class of functions g leading to the same bandgap energy is unknown.

where we encode the input X (e.g. a molecule) into a latent space Z and subsequently decode it to X
and a preselected target property Y (e.g. the bandgap energy). Specifically, we divide the latent space
into two subspaces Zy and Z; to explore the variations of the data with respect to a specific target.
Here, Z; is the subspace that contains information about input and target, while 7 is the subspace
that is invariant to the target. In doing so, we capture symmetry transformations not affecting the
target Y in the isolated latent space Z.

The central element of STIB is minimising the information about continuous Y (e.g. bandgap
energy) present in Zy by employing adversarial learning. In contrast, cognate models have to the
best of our knowledge solely focused on discrete Y. The potential reason is that naively using the
negative log-likelihood (NLL) as done for maximising mutual information in other deep information
bottleneck models leads to critical problems in continuous domains. This stems from the fact that
fundamental properties of mutual information, such as invariance to one-to-one transformations,
are not captured by this mutual information estimator. Simple alternatives such as employing a
coarse-grained discretisation approach as proposed in [35] are not feasible in our complex domain.
The main reason is that we want to consider multiple properties at once, every one of which might
require a high-resolution. Simultaneous high-resolutional discretisation of multiple targets would
result in an intractable classification problem.

To overcome the aforementioned issues, we propose a new loss function based on Gaussian mutual
information with a bijective variable transformation as an addition to our modelling approach. In
contrast to using the NLL, this enables the calculation of the full mutual information on the basis of
correlations. Thus, we ensure mutual information estimation that is invariant against linear one-to-one
transformations. In summary, we make the following contributions:

1. We introduce a deep information bottleneck model that learns a continuous low-dimensional
representation of the input data. We augment it with an adversarial training mechanism and
a partitioned latent space to learn symmetry transformations based on this representation.

2. We further propose a continuous mutual information regulation approach based on correla-
tion matrices. This makes it possible to address the issue of one-to-one transformations in
the continuous domain.

3. Experiments on an artificial as well as two molecular datasets demonstrate that the proposed
model learns both pre-defined and arbitrary symmetry transformations and outperforms
state-of-the-art methods.

2 Related Work

Information Bottleneck and its connections. The Information Bottleneck (IB) method [40] de-
scribes an information theoretic approach to compressing a random variable X with respect to a



	Introduction
	Related Work
	Preliminaries
	Deep Information Bottleneck
	Adversarial Information Elimination

	Symmetry-Invariant Information Bottleneck
	Experiments
	Artificial Experiments
	Real Experiment: Small Organic Molecules

	Conclusion
	Broader Impact

