
Pruning Filter in Filter

Fanxu Meng1,2∗, Hao Cheng2∗,
Ke Li2, Huixiang Luo2, Xiaowei Guo2, Guangming Lu1†, Xing Sun2†

1 Harbin Institute of Technology, Shenzhen, China
2 Tencent Youtu Lab, Shanghai, China

18S151514@stu.hit.edu.cn, luguangm@hit.edu.cn

{louischeng, tristanli,huixiangluo,scorpioguo,winfredsun}@tencent.com

Abstract

Pruning has become a very powerful and effective technique to compress and
accelerate modern neural networks. Existing pruning methods can be grouped into
two categories: filter pruning (FP) and weight pruning (WP). FP wins at hardware
compatibility but loses at the compression ratio compared with WP. To converge
the strength of both methods, we propose to prune the filter in the filter. Specifically,
we treat a filter F ∈ RC×K×K as K ×K stripes, i.e., 1 × 1 filters ∈ RC , then
by pruning the stripes instead of the whole filter, we can achieve finer granularity
than traditional FP while being hardware friendly. We term our method as SWP
(Stripe-Wise Pruning). SWP is implemented by introducing a novel learnable
matrix called Filter Skeleton, whose values reflect the shape of each filter. As
some recent work has shown that the pruned architecture is more crucial than the
inherited important weights, we argue that the architecture of a single filter, i.e.,
the shape, also matters. Through extensive experiments, we demonstrate that SWP
is more effective compared to the previous FP-based methods and achieves the
state-of-art pruning ratio on CIFAR-10 and ImageNet datasets without obvious
accuracy drop. Code is available at this url.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable progress in many areas including speech
recognition [1], computer vision [2, 3], natural language processing [4], etc. However, model
deployment is sometimes costly due to the large number of parameters in DNNs. To relieve such a
problem, numerous approaches have been proposed to compress DNNs and reduce the amount of
computation. These methods can be classified into two main categories: weight pruning (WP) and
filter (channel) pruning (FP).

WP is a fine-grained pruning method that prunes the individual weights, e.g., whose value is nearly 0,
inside the network [5, 6], resulting in a sparse network without sacrificing prediction performance.
However, since the positions of non-zero weights are irregular and random, we need an extra record
of the weight position, and the sparse network pruned by WP can not be presented in a structured
fashion like FP due to the randomness inside the network, making WP unable to achieve acceleration
on general-purpose processors. By contrast, FP-based methods [7, 8, 9] prune filters or channels
within the convolution layers, thus the pruned network is still well organized in a structure fashion
and can easily achieve acceleration in general processors. A standard filter pruning pipeline is as
follows: 1) Train a larger model until convergence. 2) Prune the filters according to some criterions 3)
Fine-tune the pruned network. [10] observes that training the pruned model with random initialization

1In the author list, ∗ denotes that authors contribute equally; † denotes corresponding authors. The work is
conducted while Fanxu Meng works as an internship at Tencent Youtu Lab.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/fxmeng/Pruning-Filter-in-Filter

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

FC
 4

09
6

FC
 4

09
6

FC
 1

00
0

VG
G

-1
6

im
ag

e

Po
ol
，

/2

Po
ol
，

/2

Po
ol
，

/2

Po
ol
，

/2

Po
ol
，

/2

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 1
28

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

7x
7

co
nv

, 6
4,

 /
2

Re
sN

et
-1

8
im

ag
e

Po
ol
，

/2

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 1
28
，

/2

FC
 1

00
0

Av
gP

oo
l

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56

3x
3

co
nv

, 2
56
，

/2

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12

3x
3

co
nv

, 5
12
，

/2

Figure 1: The left figure shows two network structures. The right figure visualizes the average l1
norm of the filters along the channel dimension in a learned VGG16.

can also achieve high performance. Thus it is the network architecture, rather than trained weights
that matters. In this paper, we suggest that not only the architecture of the network but the architecture
of the filter itself is also important. [11, 12] also draw similar arguments that the filter with a larger
kernel size may lead to better performance. However, the computation cost is expensive. Thus for a
given input feature map, [11, 12] uses filters with different kernel sizes (e.g., 1× 1, 3× 3, and 5× 5)
to perform convolution and concatenate all the output feature map. But the kernel size of each filter is
manually set. It needs professional experience and knowledge to design an efficient network structure.
We wonder what if we can learn the optimal kernel size of each filter by pruning. Our intuition
is illustrated in Figure 1. We know that the structure of deep nets matters for learning tasks. For
example, the residual net is easier to optimize and exhibits better performance than VGG. However,
we find that there is another structure hidden inside the network, which we call ‘the shape of the
filters’. From Figure 1, not all the stripes in a filter contribute equally [13]. Some stripes have a very
low l1 norm indicating that such stripes can be removed from the network. The optimal shape of the
filter is the filter with minimal stripes that maintains the function of the filter. To capture the ‘filter
shape’ alongside the filter weights, we propose ‘Filter Skeleton (FS)’ to learn this ’shape’ property
and use FS to guide efficient pruning (i.e. learn optimal shape) (See Section 3). Compared to the
traditional FP-based pruning, this pruning paradigm achieves finer granularity since we operate with
stripes rather than the whole filter.

Similarly, group-wise pruning, introduced in [14, 15, 16] also achieves finer granularity than fil-
ter/channel pruning, which removes the weights located in the same position among all the filters in a
certain layer. However, group-wise pruning breaks the independent assumption on the filters. For
example, the invalid positions of weights in each filter may be different. By regularizing the network
using group-wise pruning, the network may lose representation ability under a large pruning ratio
(see Section 4.2). In this paper, we also offer a comparison to group-wise pruning in the experiment.
In contrast, SWP keeps each filter independent with each other which does not break the independent
assumption among the filters. Throughout the experiments, SWP achieves a higher pruning ratio
compared to the filter-wise, channel-wise, and group-wise pruning methods. We summarize our main
contributions below:

• We propose a new pruning paradigm called SWP. SWP achieves a finer granular than
traditional filter pruning and the pruned network can still be inferred efficiently.

• We introduce Filter Skeleton (FS) to efficiently learn the shape of each filter and deeply
analyze the working mechanism of FS. Using FS, we achieve the state-of-art pruning ratio
on CIFAR-10 and ImageNet datasets without obvious accuracy drop.

2 Related Work

Weight pruning: Weight pruning (WP) dates back to optimal brain damage and optimal brain
surgeon [17, 18], which prune weights based on the Hessian of the loss function. [5] prunes the
network weights based on the l1 norm criterion and retrain the network to restore the performance and
this technique can be incorporated into the deep compression pipeline through pruning, quantization,
and Huffman coding [6]. [19] reduces the network complexity by making on-the-fly connection

2

Filter-wise Channel-wise Stripe-wise

N

C

𝑯𝑯𝒌𝒌

𝑾𝑾𝒌𝒌

Group-wise

Figure 2: The visualization of different types of pruning.

pruning, which incorporates connection splicing into the whole process to avoid incorrect pruning
and make it as continual network maintenance. [20] removes connections at each DNN layer by
solving a convex optimization program. This program seeks a sparse set of weights at each layer
that keeps the layer inputs and outputs consistent with the originally trained model. [21] proposes a
frequency-domain dynamic pruning scheme to exploit the spatial correlations on CNN. The frequency-
domain coefficients are pruned dynamically in each iteration and different frequency bands are pruned
discriminatively, given their different importance on accuracy. [22] divides each stripe into multiple
groups, and prune weights in each group. However, one drawback of these unstructured pruning
methods is that the resulting weight matrices are sparse, which cannot lead to compression and
speedup without dedicated hardware/libraries [23].

Filter/Channel Pruning: Filter/Channel Pruning (FP) prunes at the level of filter, channel, or even
layer. Since the original convolution structure is still preserved, no dedicated hardware/libraries are
required to realize the benefits. Similar to weight pruning [5], [7] also adopts l1 norm criterion that
prunes unimportant filters. Instead of pruning filters, [8] proposed to prune channels through LASSO
regression-based channel selection and least square reconstruction. [9] optimizes the scaling factor γ
in the BN layer as a channel selection indicator to decide which channel is unimportant and can be
removed. [24] introduces ThiNet that formally establish filter pruning as an optimization problem,
and reveal that we need to prune filters based on statistics information computed from its next layer,
not the current layer. Similarly, [25] optimizes the reconstruction error of the final response layer and
propagates an ‘importance score’ for each channel. [26] first proposes that utilize AutoML for Model
Compression which leverages reinforcement learning to provide the model compression policy. [27]
proposes an effective structured pruning approach that jointly prunes filters as well as other structures
in an end-to-end manner. Specifically, the authors introduce a soft mask to scale the output of these
structures by defining a new objective function with sparsity regularization to align the output of
the baseline and network with this mask. [28] introduces a budgeted regularized pruning framework
for deep CNNs that naturally fit into traditional neural network training. The framework consists
of a learnable masking layer, a novel budget-aware objective function, and the use of knowledge
distillation. [29] proposes a global filter pruning algorithm called Gate Decorator, which transforms
a vanilla CNN module by multiplying its output by the channel-wise scaling factors, i.e. gate, and
achieves state-of-art results on CIFAR dataset. [30, 10] deeply analyze how initialization affects
pruning through extensive experimental results.

Group-wise Pruning: [14, 15] introduces group-wise pruning, that learns a structured sparsity in
neural networks using group lasso regularization. The group-wise pruning can still be efficiently
processed using ‘im2col’ implementation as filter-wise and channel-wise pruning. [31] further
explores a complete range of pruning granularity and evaluate how it affects the prediction accuracy.
[16] improves the group-wise pruning by proposing a dynamic regularization method. However,
group-wise pruning removes the weights located in the same position among all the filters in a certain
layer. Since invalid positions of each filter may be different, group-wise pruning may cause the
network to lose valid information. In a contrast, our approach keeps each filter independent with each
other, thus can lead to a more efficient network structure. Different types of pruning are illustrated in
Figure 2.

3

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟐𝟐𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏

⨂
𝒙𝒙𝑪𝑪𝒍𝒍

C

N

⊙

⊙

⊙

⊙

Optimizing Weight and FS of filters

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟐𝟐𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏

⨂
𝒙𝒙𝑪𝑪𝒍𝒍

C

N

FS

Multiplying FS back to the Weight

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

Figure 3: Traing and inference with Filter Skeleton (FS).

Table 1: Test accuracy of each network that only learns the ‘shape’ of the filters.

Dataset Backbone Test accuracy
VGG16 79.83

CIFAR-10 ResNet56 83.82
MobileNetV2 83.52

Mask in Pruning: Using a (soft) mask to represent the importance of component in network has
been thoroughly studied in the work of pruning [32, 33, 34, 35, 27, 36, 37, 9, 8]. However, most work
design the masks in terms of the filter or channels, few works pay attention to stripes. Also, Filter
Skeleton (FS) is not just a mask, we consider each filter has two properties: weight and shape. FS is
to learn the ‘shape’ property. From Section 3.1 in the paper, the network still has a good performance
by only learning the ‘shape’ of the filters, keeping the filter weight randomly initialized.

3 The proposed Method

3.1 Filter Skeleton (FS)

FS is introduced to learn another important property of filters alongside their weight: shape, which is
a matrix related to the stripes of the filter. Suppose the l-th convolutional layer’s weight W l is of size
RN×C×K×K , where N is the number of the filters, C is the channel dimension and K is the kernel
size. Then the size of FS in this layer is RN×K×K . I.e., each value in FS corresponds to a strip in
the filter. FS in each layer is firstly initialized with all-one matrix. During training, We multiply the
filters’ weights with FS. Mathematically, the loss is represented by:

L =
∑
(x,y)

loss(f(x,W � I), y) (1)

, where I represents the FS, � denotes dot product. With I , the forward process is:

X l+1
n,h,w =

C∑
c

K∑
i

K∑
j

I ln,i,j ×W l
n,c,i,j ×X l

n,h+i−K+1
2 ,w+j−K+1

2

(2)

. The gradient with regard to W and I is:

grad(W l
n,c,i,j) = I ln,i,j ×

MH∑
h

MW∑
w

∂L

∂X l+1
n,h,w

×X l
c,h+i−K+1

2 ,w+j−K+1
2

(3)

grad(I ln,i,j) =

C∑
c

(W l
n,c,i,j ×

MH∑
h

MW∑
w

∂L

∂X l+1
n,h,w

×X l
c,h+i−K+1

2 ,w+j−K+1
2

) (4)

, where MH , MW represent the height and width of the feature map respectively. X l
c,p,q = 0 when

p < 1 or p > MH or q < 1 or q > MW (this corresponds to the padding and shifting[38, 39]
procedures).

4

0 20 40 60
mean:-0.012871,var:0.228740

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 20 40 60
mean:-0.063645,var:0.343004

−2

−1

0

1

2

0 20 40 60
mean:0.033908,var:0.149871

−1.0

−0.5

0.0

0.5

1.0

0 20 40 60
mean:0.000851,var:0.749585

−2

−1

0

1

2

3

4

0 20 40 60
mean:-0.099938,var:1.895194

−6

−4

−2

0

2

4

6

0 20 40 60
mean:0.013026,var:0.587771

−3

−2

−1

0

1

2

0 20 40 60
mean:-0.019799,var:0.342657

−3

−2

−1

0

1

2

0 20 40 60
mean:-0.064954,var:0.422483

−3

−2

−1

0

1

2

0 20 40 60
mean:0.021918,var:0.226618

−1.5

−1.0

−0.5

0.0

0.5

1.0

Baseline

0 20 40 60
mean:0.025226,var:0.062223

−0.5

0.0

0.5

1.0

0 20 40 60
mean:0.028001,var:0.204299

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60
mean:0.000670,var:0.041479

−1.5

−1.0

−0.5

0.0

0.5

0 20 40 60
mean:0.058370,var:0.277828

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60
mean:-0.063369,var:0.422924

−2

−1

0

1

2

3

0 20 40 60
mean:0.055507,var:0.257177

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 20 40 60
mean:-0.043574,var:0.073832

−1.0

−0.5

0.0

0.5

0 20 40 60
mean:-0.036842,var:0.213330

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 20 40 60
mean:0.000547,var:0.014911

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Filter Skeleton

Figure 4: This left and the right figure shows the distribution of the weights of baseline and FS on the
first convolution layer, respectively. In this layer, each filter has 9 strips. Each mini-figure shows the
summation (y-axis) of the stripes located in the same position of all the filters (x-axis). The mean and
std are also reported.

From (1), the filter weights and FS are jointly optimized during training. After training, we merge I
onto the filter weights W (I.e., W ←W � I), and only use W during evaluating. Thus no additional
cost is brought to the network when applying inference. The whole process is illustrated in Figure 3.
To further show the importance of the ‘shape’ property, we conduct an experiment where the filters’
weights are fixed, only FS can be optimized during training. The results are shown on Table 1. It
can be seen that without updating the filters’ weights, the network still gets decent results. We also
find that with Filter Skeleton, the weights of the network become more stable. Figure 4 displays the
distribution of the weights of the baseline network and network trained by Filter Skeleton (FS). It can
be seen that the weights trained by FS are sparse and smooth, which have a low variance to input
images, leading to stable outputs. Thus the network is robust to the variation of the input data or
features.

3.2 Stripe-wise pruning with FS

From Figure 1, not all the stripes contribute equally in the network. To build a compact and highly
pruned network, the Filter Skeleton (FS) needs to be sparse. I.e., when some values in FS is close to
0, the corresponding stripes can be pruned. Therefore, when training the network with FS, we impose
regularization on FS to make it sparse:

L =
∑
(x,y)

loss(f(x,W � I), y) + αg(I) (5)

, where α controls the magnitude of regularization, g(I) indicates l1 norm penalty on I , which is
commonly used in many pruning approaches [7, 8, 9]. Specifically, g(I) is written as:

g(I) =

L∑
l=1

g(I l) =

L∑
l=1

(

N∑
n=1

K∑
i=1

K∑
j=1

|I ln,i,j |). (6)

From (5), FS implicitly learns the optimal shape of each filter. In Section 4.4, we visualize the shape
of filters to further show this phenomenon. To lead efficient pruning, we set a threshold δ, the stripes
whose corresponding values in FS are smaller than δ will not be updated during training and can be
pruned afterwards. It is worth noticing that when performing inference on the pruned network, we
can not directly use the filter as a whole to perform convolution on the input feature map since the
filter is broken. Instead, we need to use each stripe independently to perform convolution and sum the
feature map produced by each stripe, as shown in Figure 5. Mathematically, the convolution process

5

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

7 8 9
4 5 6
1 2 3

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟐𝟐𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏

⨂
𝒙𝒙𝑪𝑪𝒍𝒍

C

N

9
8
7
6
5
4
3
2
1

⨂
𝒙𝒙𝑪𝑪𝒍𝒍

9
8
7
6
5
4
3
2
1

9
8
7
6
5
4
3
2
1

9
8
7
6
5
4
3
2
1

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏

𝒙𝒙𝟐𝟐𝒍𝒍+𝟏𝟏

C

9N

+

+

+

+

Pruning Invalid StripesFilter-wise to Stripe-wise
6
5
4

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏
4
2
1
9

⨂
𝒙𝒙𝑪𝑪𝒍𝒍

+

+

+

𝒙𝒙𝟏𝟏𝒍𝒍+𝟏𝟏

𝒙𝒙𝟑𝟑𝒍𝒍+𝟏𝟏

𝒙𝒙N𝒍𝒍+𝟏𝟏

𝒙𝒙𝟐𝟐𝒍𝒍+𝟏𝟏

+

+

+

+

Figure 5: Pruning process in SWP.

in SWP is written as:

Xl+1
n,h,w =

C∑
c

K∑
i

K∑
j

W l
n,c,i,j ×Xl

n,h+i−K+1
2

,w+j−K+1
2

standard convolution

=
K∑
i

K∑
j

(

C∑
c

W l
n,c,i,j ×Xl

n,h+i−K+1
2

,w+j−K+1
2

) stripe wise convolution

(7)

, where X l+1
n,h,w is one point of the feature map in the l+1-th layer. From (7), SWP only modifies the

calculation order in the conventional convolution process, thus no additional operations (Flops) are
added to the network. It is worth noting that, since each stripe has its own position in the filter. SWP
needs to record the indexes of all the stripes. However, it costs little compared to the whole network
parameters. Suppose the l-th convolutional layer’s weight W l is of size RN×C×K×K . For SWP,
we need to record N ×K ×K indexes. Compared to the individual weight pruning which records
N ×C ×K ×K indexes, we reduce the weight pruning’s indexes by C times. Also, we do not need
to record the indexes of the filter if all the stripes in such filter are removed from the network, and
SWP degenerates to conventional filter-wise pruning. For a fair comparison with traditional FP-based
methods, we add the number of indexes when calculating the number of network parameters.

There is two advantage of SWP compared to the traditional FP-based pruning:

• Suppose the kernel size isK×K, then SWP achievesK2× finer granularity than traditional
FP-based pruning, which leads to a higher pruning ratio.

• For certain datasets, e.g., CIFAR-10, the network pruned by SWP keeps high performance
even without a fine-tuning process. This separates SWP from many other FP-based pruning
methods that require multiple fine-tuning procedures. The reason is that FS learns an
optimal shape for each filter. By pruning unimportant stripes, the filter does not lose much
useful information. In contrast, FP pruning directly removes filters which may damage the
information learned by the network.

4 Experiments

This section arranges as follows: In Section 4.1, we introduce the implementation details in the paper;
in Section 4.2, we compare SWP with group-wise pruning; in Section 4.3, we show SWP achieves
state-of-art pruning ratio on CIFAR-10 and ImageNet datasets compared to filter-wise, channel-wise
or shape-wise pruning; in Section 4.4, we visualize the pruned filters; in Section 4.5, we perform
ablation studies to study how hyper-parameters influence SWP.

4.1 Implementation Details

Datasets and Models: CIFAR-10 [40] and ImageNet [41] are two popular datastes and are adopted
in our experiments. CIFAR-10 dataset contains 50K training images and 10K test images for 10
classes. ImageNet contains 1.28 million training images and 50K test images for 1000 classes. On
CIFAR-10, we evaluated our method on two popular network structures: VGG16 [42], ResNet56
[43]. On ImageNet dataset, we adopt ResNet18.

6

77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5
Pruned Ratio of Parameters(%)

93.0

93.2

93.4

93.6

93.8

Ac
cu

ra
cy

(%
)

Stripe Wise
Group Wise

50 55 60 65 70 75 80 85
Pruned Ratio of Floaps(%)

93.0

93.2

93.4

93.6

93.8

Ac
cu

ra
cy

(%
)

Stripe Wise
Group Wise

Figure 6: Comparing SWP with group-wise pruning on CIFAR-10. The backbone is VGG16.

Baseline Setting: Our baseline setting is consistent with [9]. For CIFAR-10, the model was trained
for 160 epochs with a batch size of 64. The initial learning rate is set to 0.1 and divide it by 10 at the
epoch 80 and 120. The simple data augmentation (random crop and random horizontal flip) is used
for training images. For ImageNet, we follow the official PyTorch implementation 1 that train the
model for 90 epochs with a batch size of 256. The initial learning rate is set to 0.1 and divide it by 10
every 30 epochs. Images are resized to 256× 256, then randomly crop a 224× 224 area from the
original image for training. The testing is on the center crop of 224× 224 pixels.

SWP setting: The basic hyper-parameters setting is consistent with the baseline. α is set to 1e-5 in
(5) and the threshold δ is set to 0.05. For CIFAR-10, we do not fine-tune the network after stripe
selection. For ImageNet, we perform a one-time fine-tuning after pruning.

4.2 Group-wise pruning vs stripe-wise pruning

Since group-wise pruning can also be implemented via Skeleton, we perform group-wise pruning and
SWP both based on the Skeleton. Figure 6 shows the results. We can see under the same number of
parameters or Flops, SWP achieves a higher performance compared to group-wise pruning. We also
find that in group-wise pruning, layer2.7.conv1 and layer2.7.conv2 will be identified as invalid
(i.e., all the weights in such layer will be pruned by the algorithm) when the pruning ratio reaches
76.64%. However, this phenomenon does not appear at stripe-wise pruning even with an 87.36%
pruning ratio, which further verifies our hypothesis that group-wise pruning breaks the independent
assumption on the filters and may easily lose representation ability. In contrast, SWP keeps each filter
independent of each other, thus can achieve a higher pruning ratio.

4.3 Comparing SWP with state-of-art methods

We compare SWP with recent state-of-arts pruning methods. Table 2 and Table 3 lists the comparison
on CIFAR-10 and ImageNet, respectively. In Table 2, IR [16] is group-wise pruning method, the
others except SWP are filter-wise or channel-wise methods. We can see GBN [29] even outperforms
the shape-wise pruning method. From our analysis, group-wise pruning regularizes the network’s
weights in the same positions among all the filters, which may cause the network to lose useful
information. Thus group-wise pruning may not be the best choice. However, SWP outperforms other
methods by a large margin. For example, when pruning VGG16, SWP can reduce the number of
parameters by 92.66% and the number of Flops by 71.16% without losing network performance.
On ImageNet, SWP could also achieve better performance than recent benchmark approaches. For
example, SWP can reduce the FLOPs by 54.58% without an obvious accuracy drop. We want
to emphasize that even though SWP brings indexes of strips, the cost is little. When performing
calculation on the number of parameters, We have added these indexes in the calculation on Table 2
and Table 3. The pruning ratio of SWP is still significant and achieves state-of-art results.

1https://github.com/pytorch/examples/tree/master/imagenet

7

Table 2: Comparing SWP with state-of-arts FP-based methods on CIFAR-10 dataset. The baseline
accuracy of ResNet56 is 93.1% [29], while VGG16’s baseline accuracy is 93.25% [7].

Backbone Metrics Params(%)↓ FLOPS(%)↓ Accuracy(%)↓
L1[7] (ICLR 2017) 64 34.3 -0.15

ThiNet[24] (ICCV 2017) 63.95 64.02 2.49
SSS[44] (ECCV 2018) 73.8 41.6 0.23

VGG16 SFP[45] (IJCAI 2018) 63.95 63.91 1.17
GAL[27] (CVPR 2019) 77.6 39.6 1.22
Hinge[46] (CVPR 2020) 80.05 39.07 -0.34
HRank[47] (CVPR 2020) 82.9 53.5 -0.18

Ours 92.66 71.16 -0.4
L1[7] (ICLR 2017) 13.7 27.6 -0.02
CP[8] (ICCV 2017) - 50 1.00

NISP[25] (CVPR 2018) 42.6 43.6 0.03
DCP[48] (NeurIPS 2018) 70.3 47.1 -0.01

ResNet56 IR[16] (IJCNN 2019) - 67.7 0.4
C-SGD[49] (CVPR 2019) - 60.8 -0.23
GBN [29] (NeurIPS 2019) 66.7 70.3 0.03
HRank[47] (CVPR 2020) 68.1 74.1 2.38

Ours 77.7 75.6 0.12

Table 3: Comparing SWP with state-of-arts pruning methods on ImageNet dataset. All the methods
use ResNet18 as the backbone and the baseline top-1 and top-5 accuracy are 69.76% and 89.08%,
respectively.

Backbone Metrics FLOPS(%)↓ Top-1(%)↓ Top-5(%)↓
LCCL[50] (CVPR 2017) 35.57 3.43 2.14

SFP[45] (IJCAI 2018) 42.72 2.66 1.3
FPGM[51] (CVPR 2019) 42.72 1.35 0.6

ResNet18 TAS[52] (NeurIPS 2019) 43.47 0.61 -0.11
DMCP[53] (CVPR 2020) 42.81 0.56 -

Ours (α = 5e− 6) 50.48 -0.23 -0.22
Ours (α = 2e− 5) 54.58 0.17 0.04

4.4 Visualizing the pruned filters

We visualize the filters of VGG19 to show what the sparse network look like after pruning by SWP.
The kernel size of VGG19 is R3×3, thus there are 9 strips in each filter. Each filter has 29 forms
since each strip can be removed or preserved. We display the filters of each layer according to
their frequency of each form. Figure 7 shows the visualization results. There are some interesting
phenomenons:

• For each layer, most filters are directly pruned with all the strips.

• In the middle layers, most preserved filters only have one strip. However, in the layers that
close to input, most preserved layers have multiple strips. Suggesting the redundancy most
happens in the middle layers.

We believe this visualization may towards a better understanding of CNNs. In the past, we always
regard filter as the smallest unit in CNN. However, from our experiment, the architecture of the filter
itself is also important and can be learned by pruning. More visualization results can be found in the
supplementary material.

8

to
p

1
to

p
2

to
p

3
to

p
4

to
p

5
to

p
6

to
p

7
to

p
8

to
p

9

layer 0

to
p

10

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 layer 15

Figure 7: The visualization of the VGG19 filters pruned by SWP. From top to bottom, we display the
filters according to their frequency in such layer. White color denotes the corresponding strip in the
filter is removed by SWP.

Table 4: This table shows how α and δ affects SWP results. The experiment is conducted on
CIFAR-10. The network is ResNet56.

α 0.8e-5 1.2e-5 1.4e-5 1e-5
δ 0.05 0.01 0.03 0.05 0.07 0.09

Params (M) 0.25 0.21 0.2 0.45 0.34 0.21 0.16 0.12
Flops (M) 61.16 47.71 41.23 111.68 74.83 56.10 41.59 29.72

Accuracy(%) 92.73 92.43 92.12 93.25 92.82 92.98 92.43 91.83

4.5 Ablation Study

In this section, we study how different hyper-parameters affect pruning results. We mainly study the
weighting coefficient α in (1) and the pruning threshold δ. Table 4 shows the experimental results.
We find α = 1e− 5 and δ = 0.05 gives the acceptable pruning ratio and test accuracy.

5 Conclusion

In this paper, we propose a new pruning paradigm called SWP. Instead of pruning the whole filter,
SWP regards each filter as a combination of multiple stripes (i.e., 1× 1 filters), and performs pruning
on the stripes. We also introduce Filter Skeleton (FS) to efficiently learn the optimal shape of the
filters for pruning. Through extensive experiments and analyses, we demonstrate the effectiveness
of the SWP framework. Future work can be done to develop a more efficient regularizer to further
optimize DNNs.

Acknowledgements: This work was supported in part by the Guangdong Basic and Applied Basic
Research Foundation under Grant 2019Bl515120055, in part by the Shenzhen Fundamental Research
Fund under Grant JCYJ20180306172023949, in part by the Open Project Fund AC01202005018
from Shenzhen Institute of Artificial Intelligence and Robotics for Society, and in part by the Medical
Biometrics Perception and Analysis Engineering Laboratory, Shenzhen, China.

9

Broader Impact

Advantage of our project:

• Training deep neural networks require a huge amount of time and resources. Pruning can
reduce the network to a small size, thus resulting in reducing the cost of training. More
importantly, our method does not need retraining (fine-tuning) which is more efficient in
training deep neural networks.

We are not aware of a negative impact on our society. However, the pruned network may lose
performance compared to an untouched state. Thus some hyper-parameters may need to be tuned
very carefully.

References
[1] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent

neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[3] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video prediction
and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

[4] Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint arXiv:1502.01710, 2015.

[5] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[6] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[7] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

[8] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[9] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2736–2744, 2017.

[10] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[13] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong Han. Acnet: Strengthening the kernel skeletons
for powerful cnn via asymmetric convolution blocks. 2019.

[14] Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2554–2564, 2016.

[15] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in neural information processing systems, pages 2074–2082, 2016.

[16] Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji Hu. Structured pruning for efficient convnets
via incremental regularization. In 2019 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019.

10

[17] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[18] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In Advances in neural information processing systems, pages 164–171, 1993.

[19] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances in
neural information processing systems, pages 1379–1387, 2016.

[20] Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin Romberg. Net-trim: Convex pruning of deep neural
networks with performance guarantee. In Advances in Neural Information Processing Systems, pages
3177–3186, 2017.

[21] Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. Frequency-domain dynamic pruning for
convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1043–1053,
2018.

[22] Hyeong-Ju Kang. Accelerator-aware pruning for convolutional neural networks. CoRR, abs/1804.09862,
2018.

[23] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural network. ACM SIGARCH Computer Architecture
News, 44(3):243–254, 2016.

[24] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international conference on computer vision, pages 5058–5066,
2017.

[25] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao, Ching-
Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score propagation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9194–9203,
2018.

[26] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 784–800, 2018.

[27] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang,
and David Doermann. Towards optimal structured cnn pruning via generative adversarial learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2790–2799,
2019.

[28] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured pruning of neural networks with
budget-aware regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9108–9116, 2019.

[29] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 2130–2141, 2019.

[30] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[31] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring
the granularity of sparsity in convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 13–20, 2017.

[32] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. ECCV,
2018.

[33] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade,
and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In Proceedings of the
International Conference on Machine Learning, July 2020.

[34] Aditya Kusupati, V. Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham M. Kakade, and
Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. ArXiv, abs/2002.03231, 2020.

[35] Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Dacheng Tao, and Chang Xu. Full-stack filters to build
minimum viable cnns. arXiv preprint arXiv:1908.02023, 2019.

11

[36] Ting Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model compression
via learned global ranking. arXiv, 2019.

[37] Carl Lemaire, Andrew Achkar, and Pierre Marc Jodoin. Structured pruning of neural networks with
budget-aware regularization. 2018.

[38] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,
Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9127–9135,
2018.

[39] Yao Lu, G. Lu, Bob Zhang, Yuanrong Xu, and Jinxing Li. Super sparse convolutional neural networks. In
AAAI, 2019.

[40] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[41] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[44] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

[45] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep
convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

[46] Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge
between filter pruning and decomposition for network compression. arXiv preprint arXiv:2003.08935,
2020.

[47] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao.
Hrank: Filter pruning using high-rank feature map. arXiv preprint arXiv:2002.10179, 2020.

[48] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In Advances in Neural
Information Processing Systems, pages 875–886, 2018.

[49] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4943–4953, 2019.

[50] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated network
with less inference complexity. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5840–5848, 2017.

[51] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep
convolutional neural networks acceleration. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4340–4349, 2019.

[52] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In Advances in Neural
Information Processing Systems, pages 759–770, 2019.

[53] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov channel pruning
for neural networks. arXiv preprint arXiv:2005.03354, 2020.

12

	Introduction
	Related Work
	The proposed Method
	Filter Skeleton (FS)
	Stripe-wise pruning with FS

	Experiments
	Implementation Details
	Group-wise pruning vs stripe-wise pruning
	Comparing SWP with state-of-art methods
	Visualizing the pruned filters
	Ablation Study

	Conclusion

