
A Finite-Time Analysis of Two Time-Scale
Actor-Critic Methods

Yue Wu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
ywu@cs.ucla.edu

Weitong Zhang
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

weightzero@cs.ucla.edu

Pan Xu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
panxu@cs.ucla.edu

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
qgu@cs.ucla.edu

Abstract

Actor-critic (AC) methods have exhibited great empirical success compared with
other reinforcement learning algorithms, where the actor uses the policy gradient
to improve the learning policy and the critic uses temporal difference learning to
estimate the policy gradient. Under the two time-scale learning rate schedule, the
asymptotic convergence of AC has been well studied in the literature. However, the
non-asymptotic convergence and finite sample complexity of actor-critic methods
are largely open. In this work, we provide a non-asymptotic analysis for two time-
scale actor-critic methods under non-i.i.d. setting. We prove that the actor-critic
method is guaranteed to find a first-order stationary point (i.e., ‖∇J(θ)‖22 ≤ ε) of
the non-concave performance function J(θ), with Õ(ε−2.5) sample complexity.
To the best of our knowledge, this is the first work providing finite-time analysis
and sample complexity bound for two time-scale actor-critic methods.

1 Introduction

Actor-Critic (AC) methods [2, 16] aim at combining the advantages of actor-only methods and
critic-only methods, and have achieved great empirical success in reinforcement learning [31, 1].
Specifically, actor-only methods, such as policy gradient [28] and trust region policy optimization [24],
utilize a parameterized policy function class and improve the policy by optimizing the parameters of
some performance function using gradient ascent, whose exact form is characterized by the Policy
Gradient Theorem [28]. Actor-only methods can be naturally applied to continuous setting but suffer
from high variance when estimating the policy gradient. On the other hand, critic-only methods, such
as temporal difference learning [26] and Q-learning [32], focus on learning a value function (expected
cumulative rewards), and determine the policy based on the value function, which is recursively
approximated based on the Bellman equation. Although the critic-only methods can efficiently learn
a satisfying policy under tabular setting [14], they can diverge with function approximation under
continuous setting [33]. Therefore, it is natural to combine actor and critic based methods to achieve
the best of both worlds. The principal idea behind actor-critic methods is simple: the critic tries
to learn the value function, given the policy from the actor, while the actor can estimate the policy
gradient based on the approximate value function provided by the critic.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

If the actor is fixed, the policy remains unchanged throughout the updates of the critic. Thus one
can use policy evaluation algorithm such as temporal difference (TD) learning [27] to estimate the
value function (critic). After many steps of the critic update, one can expect a good estimation of
the value function, which in turn enables an accurate estimation of the policy gradient for the actor.
A more favorable implementation is the so-called two time-scale actor-critic algorithm, where the
actor and the critic are updated simultaneously at each iteration except that the actor changes more
slowly (with a small step size) than the critic (with a large step size). In this way, one can hope the
critic will be well approximated even after one step of update. From the theoretical perspective, the
asymptotic analysis of two time-scale actor-critic methods has been established in [6, 16]. In specific,
under the assumption that the ratio of the two time-scales goes to infinity (i.e. limt→∞ βt/αt =∞),
the asymptotic convergence is guaranteed through the lens of the two time-scale ordinary differential
equations(ODE), where the slower component is fixed and the faster component converges to its
stationary point. This type of analysis was also applied in the context of generic two time-scale
stochastic approximation [5].

However, finite-time analysis (non-asymptotic analysis) of two-time scale actor-critic is still largely
missing in the literature, which is important because it can address the questions that how many
samples are needed for two time-scale actor-critic to converge, and how to appropriately choose
the different learning rates for the actor and the critic. Some recent work has attempted to provide
the finite-time analysis for the “decoupled” actor-critic methods [18, 23]. The term “decoupled”
means that before updating the actor at the t-th iteration, the critic starts from scratch to estimate
the state-value (or Q-value) function. At each iteration, the “decoupled” setting requires the critic to
perform multiple sampling and updating (often from another new sample trajectory). As we will see
in the later comparison, this setting is sample-inefficient or even impractical. Besides, their analyses
are based on either the i.i.d. assumption [18] or the partially i.i.d. assumption [23] (the actor receives
i.i.d. samples), which is unrealistic in practice. In this paper, we present the first finite-time analysis
on the convergence of the two time-scale actor-critic algorithm. We summarize our contributions as
follows:

• We prove that, the actor in the two time-scale actor critic algorithm converges to an ε-approximate
stationary point of the non-concave performance function J after accessing at most Õ(ε−2.5)
samples. Compared with existing finite-time analysis of actor-critic methods [18, 23], the algorithm
we analyzed is based on two time-scale update and therefore more practical and efficient than the
“decoupled” version. Moreover, we do not need any i.i.d. data assumptions in the convergence
analysis as required by Kumar et al. [18], Qiu et al. [23], which do not hold in real applications.

• From the technical viewpoint, we also present a new proof framework that can tightly characterize
the estimation error in two time-scale algorithms. Compared with the proof technique used in [38],
we remove the extra artificial factor O(tξ) in the convergence rate introduced by their “iterative
refinement” technique. Therefore, our new proof technique may be of independent interest for
analyzing the convergence of other two time-scale algorithms to get sharper rates.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such that an ≤ Cbn. We use Õ(·) to further
hide logarithm factors. Without other specification, ‖ · ‖ denotes the `2 norm of Euclidean vectors.
dTV (P,Q) is the total variation norm between two probability measure P and Q, which is defined as
dTV (P,Q) = 1/2

∫
X |P (dx)−Q(dx)|.

2 Related work

In this section, we briefly review and discuss existing work, which is mostly related to ours.

Stochastic bias characterization The main difficulty in analyzing reinforcement learning algorithms
under non-i.i.d. data assumptions is that the samples and the trainable parameters are correlated, which
makes the noise term biased. Bhandari et al. [3] used information-theoretical techniques to bound
the Markovian bias and provide a simple and explicit analysis for the temporal difference learning.
Similar techniques were also established in [25] through the lens of stochastic approximation methods.
Gupta et al. [12], Xu et al. [38] applied such methods to deriving the non-asymptotic convergence of
two time-scale temporal difference learning algorithms (TDC). Zou et al. [44], Chen et al. [10], Xu
and Gu [35] further applied these analysis methods to on-policy learning algorithms including SARSA

2

and Q-learning. In addition, Hu and Syed [13] formulated a family of TD learning algorithms as a
Markov jump linear systems and analyzed the evolution of the mean and covariance matrix of the
estimation error. Cai et al. [7] studied TD learning with neural network approximation, and proved
its global convergence.

Two time-scale reinforcement learning The two time-scale stochastic approximation can be seen
as a general framework for analyzing reinforcement learning [5, 29, 17]. Recently, the finite-time
analysis of two time-scale stochastic approximation has gained much interest. Dalal et al. [11] proved
convergence rate for the two time-scale linear stochastic approximation under i.i.d. assumption. Gupta
et al. [12] also provided finite-time analysis for the two time-scale linear stochastic approximation
algorithms. Both can be applied to analyze two time-scale TD methods like GTD, GTD2 and TDC.
Xu et al. [38] proved convergence rate and sample complexity for the TDC algorithm over Markovian
samples. [15] further improved the convergence rate of two time-scale linear stochastic approximation
and removed the projection step. However, since the update rule for the actor is generally not linear,
we cannot apply these results to the actor-critic algorithms.

Analysis for actor-critic methods The asymptotic analysis of actor-critic methods has been well
established. Konda and Tsitsiklis [16] proposed the actor-critic algorithm, and established the asymp-
totic convergence for the two time-scale actor-critic, with TD(λ) learning-based critic. Bhatnagar
et al. [4] proved the convergence result for the original actor-critic and natural actor-critic methods.
Castro and Meir [8] proposed a single time-scale actor-critic algorithm and proved its convergence.
Recently, [43] proved convergence of two time-scale off-policy actor-critic with function approxi-
mation. Recently, there has emerged some works concerning the finite-time behavior of actor-critic
methods. Yang et al. [41] studied the global convergence of actor-critic algorithms under the Linear
Quadratic Regulator. Yang et al. [40] analyzed the finite-sample performance of batched actor-critic,
where all samples are assumed i.i.d. and the critic performs several empirical risk minimization
(ERM) steps. Qiu et al. [23] treated the actor-critic algorithms as a bilevel optimization problem
and established a finite sample analysis under the “average-reward” setting, assuming that the actor
has access to independent samples. Similar result has also been established by Kumar et al. [18],
where they considered the sample complexity for the “decoupled” actor-critic methods under i.i.d.
assumption. Wang et al. [30] also proved the global convergence of actor-critic algorithms with both
actor and critic being approximated by overparameterized neural networks.

When we were preparing this work, we noticed that there is a concurrent and independent work [39]
which also analyzes the non-asymptotic convergence of two time-scale actor-critic algorithms and
achieves the same sample complexity, i.e., Õ(ε−2.5). However, there are two key differences between
their work and ours. First, the two time-scale algorithms analyzed in both papers are very different.
We analyze the classical two time-scale algorithm described in [27], where both actor and critic take
one step update in each iteration. It is very easy to implement and has been widely used in practice,
while the update rule in [39] for the critic needs to call a sub-algorithm, which involves generating
a fresh episode to estimate the Q-function. Second, the analysis in [39] relies on the compatible
function approximation [28], which requires the critic to be a specific linear function class, while our
analysis does not require such specific approximation, and therefore is more general. This makes our
analysis potentially extendable to non-linear function approximation such as neural networks [7].

3 Preliminaries

In this section, we present the background of the two time-scale actor-critic algorithm.

3.1 Markov decision processes

Reinforcement learning tasks can be modeled as a discrete-time Markov Decision Process (MDP)
M = {S,A,P, r}, where S and A are the state and action spaces respectively. In this work we
consider the finite action space |A| <∞. P(s′|s, a) is the transition probability that the agent transits
to state s′ after taking action a at state s. Function r : S ×A → [−Ur, Ur] emits a bounded reward
after the agent takes action a at state s, where Ur > 0 is a constant. A policy parameterized by θ at
state s is a probability function πθ(a|s) over action space A. µθ denotes the stationary distribution
induced by the policy πθ.

In this work we consider the “average reward” setting [28], where under the ergodicity assumption,
the average reward over time eventually converges to the expected reward under the stationary

3

distribution:

r(θ) := lim
N→∞

∑N
t=0 r(st, at)

N
= Es∼µθ,a∼πθ

[
r(s, a)

]
.

To evaluate the overall rewards given a starting state s0 and the behavior policy πθ, we define the
state-value function as

V πθ (·) := E
[∞∑
t=0

(
r(st, at)− r(θ)

)
|s0 = ·

]
,

where the action follows the policy at ∼ πθ(·|st) and the next state follows the transition probability
st+1 ∼ P(·|st, at). Another frequently used function is the state-action value function, also called
Q-value function:

Qπθ (s, a) : = E
[∞∑
t=0

(
r(st, at)− r(θ)

)
|s0 = s, a0 = a

]
= r(s, a)− r(θ) + E

[
V πθ (s′)

]
,

where the expectation is taken over s′ ∼ P(·|s, a).

Throughout this paper, we use O to denote the tuple O = (s, a, s′), some variants are like Ot =

(st, at, st+1) and Õt = (s̃t, ãt, s̃t+1).

3.2 Policy gradient theorem

We define the performance function associated with policy πθ naturally as the expected reward under
the stationary distribution µθ induced by πθ, which takes the form

J(θ) : = r(θ). (3.1)

To maximize the performance function with respect to the policy parameters, Sutton et al. [28] proved
the following policy gradient theorem.
Lemma 3.1 (Policy Gradient). Consider the performance function defined in (3.1), its gradient takes
the form

∇J(θ) = Es∼µθ(·)
[∑
a∈A

Qπθ (s, a)∇π(a|s)
]
.

The policy gradient also admits a neat form in expectation:

∇J(θ) = Es∼µθ(·),a∼πθ(·|s)
[
Qπθ (s, a)∇ log πθ(a|s)

]
.

A typical way to estimate the policy gradient ∇J(θ) is by Monte Carlo method, namely using the
summed return along the trajectory as the estimated Q-value, which is known as the “REINFORCE”
method [34].
Remark 3.2. The problem formulation in this paper is what Sutton et al. [28] had defined as
“average-reward” formulation. An alternative formulation is the “start-state” formulation, which
avoids estimating the average reward, but gives a more complicated form for the policy-gradient
algorithm and the AC algorithm.

3.3 REINFORCE with a baseline

Note that for any function b(s) depending only on the state, which is usually called “baseline”
function, we have ∑

a∈A
b(s)∇πθ(a|s) = b(s)∇

(∑
a∈A

πθ(a|s)
)

= 0.

So we also have

∇J(θ) = E
[∑
a∈A

(
Qπθ (s, a)− b(s)

)
∇πθ(a|s)

]
.

4

A popular choice of b(s) is b(s) = V πθ (s) and ∆πθ (s, a) = Qπθ (s, a) − V πθ (s) is viewed as the
advantage of taking a specific action a, compared with the expected reward at state s. Also note that
the expectation form still holds:

∇J(θ) = Es,a
[
∆πθ (s, a)∇ log πθ(a|s)

]
.

Based on this fact, Williams [34] also proposed a corresponding policy gradient algorithm named
“REINFORCE with a baseline” which performs better due to the reduced variance.

In practice the policy gradient method could suffer from high variance. An alternative approach is
to introduce another trainable model to approximate the state-value function, which is called the
actor-critic methods.

3.4 The two time-scale actor-critic algorithm

In previous subsection, we have seen how the policy gradient theorem appears in the form of the
advantage value instead of the Q-value. Assume the critic uses linear function approximation
V̂ (·;ω) = φ>(·)ω, and is updated by TD(0) algorithm, then this gives rise to Algorithm 1 that we
are going to analyze.

Algorithm 1 has been proposed in many literature, and is clearly introduced in [27] as a classic
on-line one-step actor-critic algorithm. It uses the advantage (namely temporal difference error) to
update the critic and the actor simultaneously. Based on its on-line nature, this algorithm can be
implemented both under episodic and continuing setting. In practice, the asynchronous variant of
this algorithm, called Asynchronous Advantage Actor-Critic(A3C), is an empirically very successful
parallel actor-critic algorithm.

Sometimes, Algorithm 1 is also called Advantage Actor-Critic (A2C) because it is the synchronous
version of A3C and the name indicates its use of advantage instead of Q-value [20].

Algorithm 1 Two Time-Scale Actor-Critic
1: Input: initial actor parameter θ0, initial critic parameter ω0, initial average reward estimator η0,

step size αt for actor, βt for critic and γt for the average reward estimator.
2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, . . . do
4: Take the action at ∼ πθt(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and the reward rt = r(st, at)
6: δt = rt − ηt + φ(st+1)>ωt − φ(st)

>ωt
7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠRω

(
ωt + βtδtφ(st)

)
9: θt+1 = θt + αtδt∇θ log πθt(at|st)

10: end for

In Line 6 of Algorithm 1, the temporal difference error δt can be calculated based on the critic’s
estimation of the value function φ(·)>ωt, where ωt ∈ Rd and φ(·) : S → Rd is a known feature
mapping. Then the critic will be updated using the semi-gradient from TD(0) method. Line 8
in Algorithm 1 also contains a projection operator. This is required to control the algorithm’s
convergence which also appears in some other literature [3, 38]. The actor uses the advantage δt
(estimated by critic) and the samples to get an estimation of the policy gradient.

Algorithm 1 is more general and practical than the algorithms analyzed in many previous work
[23, 18]. In our algorithm, there is no need for independent samples or samples from the stationary
distribution. There is only one naturally generated sample path. Also, the critic inherits from last
iteration and continuously updates its parameter, without requiring a restarted sample path (or a new
episode).

4 Main theory

In this section, we first discuss on some standard assumptions used in the literature for deriving the
convergence of reinforcement learning algorithms and then present our theoretical results for two
time-scale actor-critic methods.

5

4.1 Assumptions and propositions

We consider the setting where the critic uses TD [27] with linear function approximation to estimate
the state-value function, namely V̂ (·;ω) = φ>(·)ω. We assume that the feature mapping has
bounded norm ‖φ(·)‖ ≤ 1. Denote by ω∗(θ) the limiting point of TD(0) algorithms under the
behavior policy πθ, and define A and b as:

A := Es,a,s′
[
φ(s)

(
φ(s′)− φ(s)

)>]
,

b := Es,a,s′ [(r(s, a)− r(θ))φ(s)],

where s ∼ µθ(·), a ∼ πθ(·|s), s′ ∼ P(·|s, a). It is known that the TD limiting point satisfies:

Aω∗(θ) + b = 0.

In the sequel, when there is no confusion, we will use a shorthand notation ω∗ to denote ω∗(θ).
Based on the complexity of the feature mapping, the approximation error of this function class can
vary. The approximation error of the linear function class is defined as follows:

εapp(θ) :=

√
Es∼µθ

(
φ(s)>ω∗(θ)− V πθ (s)

)2
.

Throughout this paper, we assume the approximation error for all potential policies is uniformly
bounded,

∀θ, εapp(θ) ≤ εapp,

for some constant εapp ≥ 0.

In the analysis of TD learning, the following assumption is often made to ensure the uniqueness of
the limiting point of TD and the problem’s solvability.
Assumption 4.1. For all potential policy parameters θ, the matrix A defined above is negative
definite and has the maximum eigenvalues as −λ.

Assumption 4.1 is often made to guarantee the problem’s solvability [3, 44, 38]. Note that Algorithm 1
contains a projection step at Line 8. To guarantee convergence it is required all ω∗ lie within this
projection radius Rω. Assumption 4.1 indicates that a sufficient condition is to set Rω = 2Ur/λ
because ‖b‖ ≤ 2Ur and ‖A−1‖ ≤ λ−1.

The next assumption, first adopted by Bhandari et al. [3] in TD learning, addresses the issue of
Markovian noise.
Assumption 4.2 (Uniform ergodicity). For a fixed θ, denote µθ(·) as the stationary distribution
induced by the policy πθ(·|s) and the transition probability measure P(·|s, a). Consider a Markov
chain generated by the rule at ∼ πθ(·|st), st+1 ∼ P(·|st, at). Then there existsm > 0 and ρ ∈ (0, 1)
such that:

dTV
(
P(sτ ∈ ·|s0 = s), µθ(·)

)
≤ mρτ ,∀τ ≥ 0,∀s ∈ S.

We also need some regularity assumptions on the policy.
Assumption 4.3. Let πθ(a|s) be a policy parameterized by θ. There exist constants L,B,Ll > 0
such that for all given state s and action a it holds

(a)
∥∥∇ log πθ(a|s)

∥∥ ≤ B, ∀θ ∈ Rd,

(b)
∥∥∇ log πθ1(a|s)−∇ log πθ2(a|s)

∥∥ ≤ Ll‖θ1 − θ2‖, ∀θ1,θ2 ∈ Rd,

(c)
∣∣πθ1(a|s)− πθ2(a|s)

∣∣ ≤ L‖θ1 − θ2‖, ∀θ1,θ2 ∈ Rd.

The first two inequalities are regularity conditions to guarantee actor’s convergence in the literature
of policy gradient [22, 42, 18, 36, 37]. The last inequality in Assumption 4.3 is also adopted by Zou
et al. [44] when analyzing SARSA.

An important fact arises from our assumptions is that the limiting point ω∗ of TD(0) , which can be
viewed as a mapping of the policy’s parameter θ, is Lipschitz.

6

Proposition 4.4. Under Assumptions 4.1 and 4.2, there exists a constant L∗ > 0 such that∥∥ω∗(θ1)− ω∗(θ2)
∥∥ ≤ L∗‖θ1 − θ2‖,∀θ1,θ2 ∈ Rd.

Proposition 4.4 states that the target point ω∗ moves slowly compared with the actor’s update on θ.
This is an observation pivotal to the two time-scale analysis. Specifically, the two time-scale analysis
can be informally described as “the actor moves slowly while the critic chases the slowly moving
target determined by the actor”.

Now we are ready to present the convergence result of two time-scale actor-critic methods. We first
define an integer that depends on the learning rates αt and βt.

τt := min
{
i ≥ 0|mρi−1 ≤ min{αt, βt}

}
, (4.1)

where m, ρ are defined as in Assumption 4.2. By definition, τt is a mixing time of an ergodic Markov
chain. We will use τt to control the Markovian noise encountered in the training process.

4.2 Convergence of the actor

At the k-th iteration of the actor’s update, ωk is the critic parameter estimated by Line 7 of Algorithm
1 and ω∗k is the unknown parameter of value function V πθk (·) defined in Assumption 4.1. The
following theorem gives the convergence rate of the actor when the averaged mean squared error
between ωk and ω∗k and the error between ηk and r(θk) from k = τt to k = t are small.

Theorem 4.5. Suppose Assumptions 4.1-4.3 hold and we choose αt = cα/(1 + t)σ in Algorithm 1,
where σ ∈ (0, 1) and cα > 0 are constants. If we assume at the t-th iteration, the critic satisfies

8

t

t∑
k=1

E‖ωk − ω∗k‖2 +
2

t

t∑
k=1

E
(
ηk − r(θk)

)2
= E(t), (4.2)

where E(t) is a bounded sequence, then we have

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2 = O(εapp) +O
(

1

t1−σ

)
+O

(
log2 t

tσ

)
+O

(
E(t)

)
,

where O(·) hides constants, whose exact forms can be found in the detailed proof in Appendix C.1.

Note that E(t) in Theorem 4.5 is the averaged estimation error made by the critic throughout the
learning process, which will be bounded in the next Theorem 4.7.

Remark 4.6. Theorem 4.5 recovers the results for the decoupled case [23, 18] by setting σ = 1/2.
Nevertheless, we are considering a much more practical and challenging case where the actor and
critic are simultaneously updated under Markovian noises. It is worth noting that the non-i.i.d. data
assumption leads to an additional logarithm term, which is also observed in [3, 44, 25, 10].

4.3 Convergence of the critic

The condition in (4.2) is guaranteed by the following theorem that characterizes the convergence of
the critic.

Theorem 4.7. Suppose Assumptions 4.1-4.3 hold and we choose αt = cα/(1 + t)σ and βt =
cβ/(1 + t)ν in Algorithm 1, where 0 < ν < σ < 1, cα and cβ ≤ λ−1 are positive constants. Then
we have

1

1 + t− τt

t∑
k=τt

E‖ωk − ω∗k‖2 = O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
, (4.3)

1

1 + t− τt

t∑
k=τt

E
(
ηk − r(θk)

)2
= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
, (4.4)

where O(·) hides constants, whose exact forms can be found in the detailed proof in Appendix C.2
and C.3.

7

Remark 4.8. The first term O(tν−1) on the right hand side of (4.3) and (4.4) comes from loosely
bounding the error’s norm, and can be removed by applying the “iterative refinement” technique used
in Xu et al. [38]. Using this technique, we can obtain a bound (also holds for ηt) E‖ωt − ω∗t ‖2 =
O(log t/tν) +O(1/t2(σ−ν)−ξ), where ξ > 0 is an arbitrarily small constant. The constant ξ is an
artifact due to the the “iterative refinement” technique. Similar simplification can be done for (4.4).
Nevertheless, if we plug (4.3) and (4.4) (after some transformation) into the result of Theorem 4.5, it
is easy to see that the term O(1/t1−ν) is actually dominated by the term O(1/t1−σ). Thus this term
makes no difference in the total sample complexity of Algorithm 1 and we choose not to complicate
the proof or introduce the extra artificial parameter ξ in the result of Theorem 4.7.

The second term in both (4.3) and (4.4) comes from the Markovian noise and the variance of the
semi-gradient. The third term in these two equations comes from the slow drift of the actor. These
two terms together can be interpreted as follows: if the actor moves much slower than the critic (i.e.,
σ − ν � ν), then the error is dominated by the Markovian noise and gradient variance; if the actor
moves not too slowly compared with the critic (i.e. σ − ν � ν), then the critic’s error is dominated
by the slowly drifting effect of the actor.

4.4 Convergence rate and sample complexity

Combining Theorems 4.5 and 4.7 leads to the following convergence rate and sample complexity for
Algorithm 1. Detailed proof is in Appendix C.4.
Corollary 4.9. Under the same assumptions of Theorems 4.5 and 4.7, we have

min
0≤k≤t

E‖∇J(θk)‖2 = O(εapp) +O
(

1

t1−σ

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

If we set σ = 3/5, ν = 2/5, leading to the actor step size αt = O(1/t3/5) and the critic step size
βt = O(1/t2/5), Algorithm 1 can find an ε-approximate stationary point of J(·) within T steps,
namely,

min
0≤k≤T

E
∥∥∇J(θk)

∥∥2 ≤ O(εapp) + ε,

where T = Õ(ε−2.5) is the total iteration number.

Corollary 4.9 combines the results of Theorems 4.5 and 4.7 and shows that the convergence rate of
Algorithm 1 is Õ(t−2/5). Since the per iteration sample is 1, the sample complexity of two time-scale
actor-critic is Õ(ε−2.5).
Remark 4.10. We compare our results with existing results on the sample complexity of actor-critic
methods in the literature. Kumar et al. [18] provided a general result that after T = O(ε−2) updates
for the actor, the algorithm can achieve min0≤k≤T E‖∇J(θk)‖2 ≤ ε , as long as the estimation
error of the critic can be bounded by O(t−1/2) at the t-th actor’s update. However, to ensure such a
condition on the critic, they need to draw t samples to estimate the critic at the t-th actor’s update.
Therefore, the total number of samples drawn from the whole training process by the actor-critic
algorithm in [18] is O(T 2), yielding a O(ε−4) sample complexity. Under the similar setting, Qiu
et al. [23] proved the same sample complexity Õ(ε−4) when TD(0) is used for estimating the critic.
Thus Corollary 4.9 suggests that the sample complexity of Algorithm 1 is significantly better than the
sample complexity presented in [18, 23] by a factor of O(ε−1.5).
Remark 4.11. The gap between the “decoupled” actor-critic and the two time-scale actor-critic
seems huge. Intuitively, this is due to the inefficient usage of the samples. At each iteration, the
critic in the “decoupled” algorithm starts over to evaluate the policy’s value function and discards
the history information, regardless of the fact that the policy might only changed slightly. The two
time-scale actor-critic keeps the critic’s parameter and thus takes full advantage of each samples in
the trajectory.
Remark 4.12. According to [22], the sample complexity of policy gradient methods such as RE-
INFORCE is O(ε−2). As a comparison, if the critic converges faster than O(t−1/2), namely
E(t) = O(t−1/2), then Theorem 4.5 combined with Corollary 4.9 implies that the complexity
of two time-scale actor-critic is Õ(ε−2), which matches the result of policy gradient methods [22]
up to logarithmic factors. Nevertheless, as we have discussed in the previous remarks, a smaller

8

estimation error for critic often comes at the cost of more samples needed for the critic update [23, 18],
which eventually increases the total sample complexity. Therefore, the Õ(ε−2.5) sample complexity
in Corollary 4.9 is indeed the lowest we can achieve so far for classic two time-scale actor-critic
methods. However, it is possible to further improve the sample complexity by using policy evaluation
algorithms better than vanilla TD(0), such as GTD and TDC methods.

5 Conclusion and discussion

In this paper, we provided the first finite-time analysis of the two time-scale actor-critic methods, with
non-i.i.d. Markovian samples and linear function approximation. The algorithm we analyzed is an
on-line, one-step actor-critic algorithm which is practical and efficient. We proved its non-asymptotic
convergence rate as well as its sample complexity. Our proof technique can be potentially extended
to analyze other two time-scale reinforcement learning algorithms.

As one of the anonymous reviewers suggested, the compatible features are useful tools to address the
function approximation error of the critic [16]. This can leads to finite-time analysis for the natural
actor-critic algorithm [39], which also relates to the more general natural policy gradient methods
[9]. Another possible improvement is to use regularization(e.g. ridge) for the critic to ensure the
boundedness of the critic and remove the assumption on the maximum eigenvalue. The analysis can
also be applied to the infinite-horizon discounted MDP, where the framework of analysis essentially
remains the same.

Broader impact

This work could positively impact the industrial application of actor-critic algorithms and other
reinforcement learning algorithms. The theorem exhibits the sample complexity of actor-critic
algorithms, which could be used to estimate required training time of reinforcement learning models.
Another direct application of our result is to set the learning rate according to the finite-time bound,
by optimizing the constant factors of the dominant terms. In this sense, the result could potentially
reduce the overhead of hyper-parameter tuning, thus saving both human and computational resources.
Moreover, the new analysis in this paper can potentially help people in different fields to understand
the broader class of two-time scale algorithms, in addition to actor-critic methods. To our knowledge,
this algorithm and theory studied in our paper do not have any ethical issues.

Acknowledgement

We would like to thank the anonymous reviewers for their helpful comments. This research was
sponsored in part by the National Science Foundation IIS-1904183 and Adobe Data Science Research
Award. The views and conclusions contained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

References

[1] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,
Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv
preprint arXiv:1607.07086, 2016.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(5):834–846, 1983.

[3] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

[4] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor–critic algorithms. Automatica, 45(11):2471–2482, 2009.

[5] Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29
(5):291–294, 1997.

9

[6] Vivek S Borkar and Vijaymohan R Konda. The actor-critic algorithm as multi-time-scale
stochastic approximation. Sadhana, 22(4):525–543, 1997.

[7] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy
optimization. arXiv preprint arXiv:1912.05830, 2019.

[8] Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm.
Journal of Machine Learning Research, 11(Jan):367–410, 2010.

[9] Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence of
natural policy gradient methods with entropy regularization. arXiv preprint arXiv:2007.06558,
2020.

[10] Zaiwei Chen, Sheng Zhang, Thinh T Doan, Siva Theja Maguluri, and John-Paul Clarke.
Performance of q-learning with linear function approximation: Stability and finite-time analysis.
arXiv preprint arXiv: 1905.11425, 2019.

[11] Gal Dalal, Balazs Szorenyi, Gugan Thoppe, and Shie Mannor. Finite sample analysis of two-
timescale stochastic approximation with applications to reinforcement learning. arXiv preprint
arXiv:1703.05376, 2017.

[12] Harsh Gupta, R Srikant, and Lei Ying. Finite-time performance bounds and adaptive learning
rate selection for two time-scale reinforcement learning. In Advances in Neural Information
Processing Systems, pages 4706–4715, 2019.

[13] Bin Hu and Usman Syed. Characterizing the exact behaviors of temporal difference learning
algorithms using markov jump linear system theory. In Advances in Neural Information
Processing Systems, pages 8477–8488, 2019.

[14] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

[15] Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, and Hoi-To Wai. Finite time
analysis of linear two-timescale stochastic approximation with markovian noise. arXiv preprint
arXiv:2002.01268, 2020.

[16] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, pages 1008–1014, 2000.

[17] Vijay R Konda, John N Tsitsiklis, et al. Convergence rate of linear two-time-scale stochastic
approximation. The Annals of Applied Probability, 14(2):796–819, 2004.

[18] Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-
critic method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019.

[19] A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. Journal
of Applied Probability, 42(4):1003–1014, 2005.

[20] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[21] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[22] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In International Conference on Machine Learning,
pages 4023–4032, 2018.

[23] Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time convergence
of actor-critic algorithm. NeurIPS 2019 Optimization Foundations of Reinforcement Learning
Workshop, 2019.

10

[24] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning, volume 37,
pages 1889–1897, 2015.

[25] R Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation andtd
learning. In Conference on Learning Theory, pages 2803–2830, 2019.

[26] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[28] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[29] Vladislav B Tadic and Sean P Meyn. Asymptotic properties of two time-scale stochastic
approximation algorithms with constant step sizes. In Proceedings of the 2003 American
Control Conference, 2003., volume 5, pages 4426–4431. IEEE, 2003.

[30] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient meth-
ods: Global optimality and rates of convergence. In International Conference on Learning
Representations, 2020.

[31] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

[32] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[33] Marco A Wiering. Convergence and divergence in standard and averaging reinforcement
learning. In European Conference on Machine Learning, pages 477–488. Springer, 2004.

[34] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3-4):229–256, 1992.

[35] Pan Xu and Quanquan Gu. A finite-time analysis of q-learning with neural network function
approximation. arXiv preprint arXiv:1912.04511, 2019.

[36] Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic
variance-reduced policy gradient. In International Conference on Uncertainty in Artificial
Intelligence, 2019.

[37] Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient methods with recursive
variance reduction. In International Conference on Learning Representations, 2020.

[38] Tengyu Xu, Shaofeng Zou, and Yingbin Liang. Two time-scale off-policy td learning: Non-
asymptotic analysis over markovian samples. In Advances in Neural Information Processing
Systems, pages 10633–10643, 2019.

[39] Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two
time-scale (natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020.

[40] Zhuoran Yang, Kaiqing Zhang, Mingyi Hong, and Tamer Başar. A finite sample analysis of
the actor-critic algorithm. In 2018 IEEE Conference on Decision and Control (CDC), pages
2759–2764. IEEE, 2018.

[41] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. On the global convergence
of actor-critic: A case for linear quadratic regulator with ergodic cost. In Advances in Neural
Information Processing Systems, 2019.

[42] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient
methods to (almost) locally optimal policies. arXiv preprint arXiv:1906.08383, 2019.

11

[43] Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent
two-timescale off-policy actor-critic with function approximation. arXiv, pages arXiv–1911,
2019.

[44] Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear
function approximation. In Advances in Neural Information Processing Systems, pages 8665–
8675, 2019.

12

A Proof Sketch

In this section, we provide the proof roadmap of the main theory. Detailed proofs can be found in
Appendix C.

A.1 Proof Sketch of Theorem 4.5

The following lemma is important in that it enables the analysis of policy gradient method:
Lemma A.1 ([42]). For the performance function defined in (3.1), there exists a constant LJ > 0
such that for all θ1,θ2 ∈ Rd, it holds that∥∥∇J(θ1)−∇J(θ2)

∥∥ ≤ LJ‖θ1 − θ2‖,
which by the definition of smoothness [21] is also equivalent to

J(θ2) ≥ J(θ1) +
〈
∇J(θ1),θ2 − θ1

〉
− LJ

2
‖θ1 − θ2‖2.

This lemma enables us to perform a gradient ascent style analysis on the non-concave function J(θ):

J(θt+1) ≥ J(θt) + αt
〈
∇J(θt), δt∇ log πθt(at|st)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
+ αt

〈
∇J(θt),∆h

′(Ot,θt)
〉

+ αtΓ(Ot,θt) + αt
∥∥∇J(θt)

∥∥2 − LJα2
t

∥∥δt∇ log πθt(at|st)
∥∥2, (A.1)

where Ot = (st, at, st+1) is a tuple of observations. The second term ∆h(Ot,ωt,θt) on the right
hand side of (A.1) is the bias introduced by the critic. The third term ∆h′(Ot,θt) is from the linear
approximation error. The fourth term Γ(Ot,θt) is due to the Markovian noise. The last term can be
viewed as the variance of the stochastic gradient update. Please refer to (C.1) for the definition of
each notation.

Now we bound each term’s expectation in (A.1) respectively.

First, we have

E
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
≥ −B

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t],

where zt := ωt − ω∗t and yt := ηt − η∗t , and the inequality is due to Cauchy inequality and
Lemma C.2.

Second, taking expectation over the approximation error term containing ∆h′, we have

E
〈
∇J(θt),∆h

′(Ot,θt)
〉
≥ −Gθ

√
E
∥∥∆h′(Ot,θt)

∥∥2
≥ −Gθ · 2B

√
E
(
φ(s)>ω∗t − V πθt (s)

)2
≥ −2BGθεapp,

Third, we have

E[Γ(Ot,θt)] ≥ −Gθ
(
D1(τ + 1)

t∑
k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1
)
,

≥ −Gθ
(
D1(τ + 1)Gθ

t−1∑
k=t−τ+1

αk +D2mρ
τ−1
)
,

where the first inequality is due to Lemma C.3, and the second inequality is due to∥∥δt∇ log πθt(at|st)
∥∥ ≤ Gθ by Lemma C.3.

Taking the expectation of (C.2), plugging the above terms back into it and rearranging give

E
∥∥∇J(θt)

∥∥2 ≤ 1

αt

(
E[J(θt+1)]− E[J(θt)]

)
+B

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+D1G
2
θ(τ + 1)

t−1∑
k=t−τ

αk +D2Gθmρ
τ−1 + LJG

2
θαt.

13

Setting τ = τt and summing over each term, and further dividing (1 + t − τt) at both sides and
assuming t > 2τt − 1, we can express the result as

1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θt)

∥∥2 ≤ O(1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp)

+
2B

1 + t− τt

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t] (A.2)

By Cauchy-Schwartz inequality, we have

1

1 + t− τt

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

≤
(

1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θt)

∥∥2) 1
2
(

1

1 + t− τt

t∑
k=τt

(
8E‖zt‖2 + 2E[y2t]

)) 1
2

.

Now, denote F (t) := 1/(1 + t − τt)
∑t
k=τt

E‖∇J(θk)‖2 and Z(t) := 1/(1 + t −
τt)
∑t
k=τt

(
8E‖zt‖2 + 2E[y2t]

)
, and putting them back to (A.2) (O-notation for simplicity):

F (t) ≤ O
(

1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) + 2B

√
F (t) ·

√
Z(t),

which further gives

(√
F (t)−B

√
Z(t)

)2 ≤ O(1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) +B2Z(t).

Note that for a general function H(t) = A(t) +B(t)(with each positive), we have

H2(t) = O
(
A2(t)

)
+O

(
B2(t)

)
,√

H(t) = O
(√

A(t)
)

+O
(√

B(t)
)
.

This means

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2 ≤ 1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θk)

∥∥2
= O

(
1

t1−σ

)
+O

(
1

tσ

)
+O(εapp) +O

(
E(t)

)
.

A.2 Proof Sketch of Theorem 4.7

The proof of Theorem 4.7 can be divided into the following two parts.

A.2.1 Estimating the Average Reward ηk

We denote yk := ηk − r(θk). First, we shall mention that many components in this step is uses the
same framework and partial result as the proof regarding ωt in the next part. Also, part of the proof
is intriguingly similar with the proof of Theorem 4.5. For simplicity, here we only present the final
result regarding ηk. Please refer to Section C.2 for the detailed proof. By setting γk = (1 + t)−ν , we
have that

t∑
k=τt

E[y2k] = O(tν) +O(log t · t1−ν) +O(t1−2(σ−ν)).

14

A.2.2 Approximating the TD Fixed Point

Step 1: decomposition of the estimation error. For simplicity, we denote zt := ωt − ω∗t , where
the ω∗t denotes the exact parameter under policy πθt . By the critic update in Line 7 of Algorithm 1,
we have

‖zt+1‖2 = ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2〈zt,ω∗t − ω∗t+1〉+

∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)
∥∥2.
(A.3)

where Ot := (st, at, st+1) is a tuple of observations, g(Ot,ωt) and ḡ(θt,ωt) are the estimated
gradient and the true gradient respectively. Λ(Ot,ωt,θt) := 〈ωt − ω∗t , g(Ot,ωt)− ḡ(θt,ωt)〉 can
be seen as the error induced by the Markovian noise. Please refer to (C.7) for formal definition of
each notation.

The second term on the right hand side of (A.3) can be bounded by −2λβt‖zt‖2 due to Assumption
4.1. The third term is a bias term caused by the Markovian noise. The fourth term ∆g(Ot, ηt,θt) is
another bias term caused by inaccurate average reward estimator ηt. The fifth term is caused by the
slowly drifting policy parameter θt. And the last term can be considered as the variance term.

Rewriting (A.3) and telescoping from τ = τt to t, we have

2λ

t∑
k=τt

E‖zk‖2 ≤
t∑

k=τt

1

βk

(
E‖zk‖2 − E‖zk+1‖2

)
︸ ︷︷ ︸

I1

+2

t∑
k=τt

EΛ(θk,ωk, Ok)︸ ︷︷ ︸
I2

+ 2L∗Gθ

t∑
k=τt

αk
βk

√
E‖zk‖︸ ︷︷ ︸

I3

+

t∑
k=τt

√
E[y2k] ·

√
E‖zk‖︸ ︷︷ ︸

I4

+Cq

t∑
k=τt

βk︸ ︷︷ ︸
I5

. (A.4)

We will see that the Markovian noise I2, the “slowly drifting policy" term I3 and the estimation bias
I4 from ηt are significant, and bounding the Markovian term is another challenge.

Step 2: bounding the Markovian bias. We first decompose Λ(θt,ωt, Ot) as follows.

Λ(θt,ωt, Ot) =
(
Λ(θt,ωt, Ot)− Λ(θt−τ ,ωt, Ot)

)
+
(
Λ(θt−τ ,ωt, Ot)− Λ(θt−τ ,ωt−τ , Ot)

)
+
(
Λ(θt−τ ,ωt−τ , Ot)− Λ(θt−τ ,ωt−τ , Õt)

)
+ Λ(θt−τ ,ωt−τ , Õt). (A.5)

The motivation is to employ the uniform ergodicity defined by Assumption 4.2. This technique was
first introduced by Bhandari et al. [3] to address the Markovian noise in policy evaluation. Zou et al.
[44] extended to the Q-learning setting where the parameter itself both keeps updated and determines
the behavior policy. In this work we take one step further to consider that the policy parameter θt is
changing, and the evaluation parameter ωt is updated. The analysis relies on the auxiliary Markov
chain constructed by Zou et al. [44], which is obtained by repeatedly applying policy πθt−τ :

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2

P−→ · · · P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.

For reference, recall that the original Markov chain is given by:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2

P−→ · · · P−→ st
θt−→ at

P−→ st+1.

By Lipschitz conditions, we can bound the first two terms in (A.5). The third term will be bounded
by the total variation between sk and s̃k, which is achieved by recursively bounding total variation
between sk−1 and s̃k−1.

In fact, the Markovian noise Γ(Ot,θt) in Section C.1 is obtained in a similar way. Due to the space
limit, we only present how to bound the more complicated Λ(θt,ωt, Ot).
We have the final form as:

Λ(θt,ωt, Ot) ≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖, (A.6)

where C1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗, C2 = 2U2
δ , C3 = 4Uδ are constants.

15

Step 3: integrating the results. By some calculation, terms I1, I2 and I4 can be respectively bounded
as follows (set τ = τt defined in (4.1)). The detailed derivation can be found in Appendix C.3,

I1 = 4R2
ω

1

βt
= O(tν),

I2 ≤ C1Gθ(τt + 1)2
t−τt∑
k=0

αk + C2(t− τt + 1)αt + C3Uδτt

t−τt∑
k=0

βk

= O
(
(log t)2t1−σ

)
+O(t1−σ) +O

(
(log t)t1−ν

)
= O

(
(log t)t1−ν

)
,

I5 =

t−τt∑
k=0

βk = O(t1−ν).

The log t comes from τt = O(log t). Performing the same technique on I3 as in Step 3 in the proof
sketch of Theorem 4.5, we have

I3 ≤
(t−τt∑
k=0

α2
k

β2
k

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

,

I4 ≤
(t∑
k=τt

E[y2k]

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

.

After plugging each term into (A.4), we have that

2λ

t∑
k=τt

E‖zk‖2 ≤ O(tν) +O
(
(log t)t1−ν

)
+ 2L∗Gθ

(t−τt∑
k=0

α2
k

β2
k

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

+

(t−τt∑
k=0

E[y2k]

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

.

This inequality actually resembles (A.2). Following the same procedure as the proof of Theorem 4.5,
starting from (A.2), we can finally get

1

1 + t− τt

t∑
k=τt

E‖zk‖2 = O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

Note that this requires the step sizes γt and βt should be of the same order O(t−ν).

B Preliminary Lemmas

These useful lemmas are frequently applied throughout the proof.

B.1 Probabilistic Lemmas

The first two statements in the following lemma come from Zou et al. [44].
Lemma B.1. For any θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ |A|L
(
dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ |A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P) ≤ |A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖.

Proof. The proof of the first two inequality is exactly the same as Lemma A.3 in Zou et al. [44],
which mainly depends on Theorem 3.1 in Mitrophanov [19]. Here we provide the proof of the third

16

inequality. Note that

dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P)

=
1

2

∫
S

∑
A

∫
S

∣∣µθ1(ds)πθ1(a|s)P(ds′|s, a)− µθ2(ds)πθ2(a|s)P(ds′|s, a)
∣∣

=
1

2

∫
S

∑
A

∫
S
P(ds′|s, a)

∣∣µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)
∣∣

=
1

2

∫
S

∑
A

∣∣µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)
∣∣

= dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2), (B.1)

so it has the same upper bound as the second inequality.

Lemma B.2. Given time indexes t and τ such that t ≥ τ > 0, consider the auxiliary Markov chain
starting from st−τ . Conditioning on st−τ+1 and θt−τ , the Markov chain is obtained by repeatedly
applying policy πθt−τ .

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2

P−→ · · · P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.

For reference, recall that the original Markov chain is given as:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2

P−→ · · · P−→ st
θt−→ at

P−→ st+1.

Throughout this lemma, we always condition the expectation on st−τ+1 and θt−τ and omit this in
order to simplify the presentation. Under the setting introduced above, we have:

dTV
(
P(st+1 ∈ ·),P(s̃t+1 ∈ ·)

)
≤ dTV

(
P(Ot ∈ ·),P(Õt ∈ ·)

)
, (B.2)

dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)
= dTV

(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
, (B.3)

dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
≤ dTV

(
P(st ∈ ·),P((s̃t ∈ ·)

)
+

1

2
|A|LE

[
‖θt − θt−τ‖

]
.

(B.4)

Proof of (B.2). By the Law of Total Probability,

P(st+1 ∈ ·) =

∫
S

∑
A

P(st = ds, at = a, st+1 ∈ ·),

and a similar argument also holds for Õt. Then we have

2dTV
(
P(st+1 ∈ ·),P(s̃t+1 ∈ ·)

)
=

∫
S

∣∣∣∣ ∫
S

∑
A

P(st = ds, at = a, st+1 = ds′)−
∫
S

∑
A

P(st = ds, at = a, st+1 = ds′)

∣∣∣∣
≤
∫
S

∫
S

∑
A

∣∣P(st = ds, at = a, st+1 = ds′)− P(st = ds, at = a, st+1 = ds′)
∣∣

=

∫
S

∫
S

∑
A

∣∣P(Ot = (ds, a, ds′))− P(Õt = (ds, a, ds′))
∣∣

= 2dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)
.

The last equality requires exchange of integral, which should be guaranteed by the regularity.

17

Proof of (B.3).

2dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)
=

∫
S

∑
A

∫
S

∣∣P(Ot = (ds, a, ds′))− P(Õt = (ds, a, ds′))
∣∣

=

∫
S

∑
A

∫
S

∣∣P(ds′|s, a)P((st, at) = (ds, a))− P(ds′|s, a)P((s̃t, ãt) = (ds, a))
∣∣

=

∫
S

∑
A

∫
S
P(ds′|s, a)

∣∣P((st, at) = (ds, a))− P((s̃t, ãt) = (ds, a))
∣∣

=

∫
S

∑
A

∣∣P((st, at) = (ds, a))− P((s̃t, ãt) = (ds, a))
∣∣

= 2dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
.

Proof of (B.4). Because θt is also dependent on st, we make it clear here that

P
(
(st, at) = (ds, a)

)
=

∫
θ∈Rd

P(st = ds)P(θt = dθ|st = ds)P(at = a|st = ds,θt = dθ)

=

∫
θ∈Rd

P(st = ds)P(θt = dθ|st = ds)πθt(a|ds)

= P(st = ds)

∫
θ∈Rd

P(θt = dθ|st = ds)πθt(a|ds)

= P(st = ds)E
[
πθt(a|ds)|st = ds

]
.

Therefore, the total variance can be bounded as

2dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
=

∫
S

∑
A

∣∣P(st = ds)E[πθt(a|ds)|st = ds]− P(s̃t = ds)πθt−τ (a|ds)
∣∣

=

∫
S

∑
A

∣∣P(st = ds)E[πθt(a|ds)|st = ds]− P(st = ds)πθt−τ (a|ds)
∣∣

+

∫
S

∑
A

∣∣P(st = ds)πθt−τ (a|ds)− P(s̃t = ds)πθt−τ (a|ds)
∣∣

=

∫
S
P(st = ds)

∑
A

∣∣E[πθt(a|ds)|st = ds]− πθt−τ (a|ds)
∣∣

+ 2dTV
(
P(st ∈ ·),P((s̃t ∈ ·)

)
≤ |A|LE

[
‖θt − θt−τ‖

]
+ 2dTV

(
P(st ∈ ·),P((s̃t ∈ ·)

)
,

where the inequality holds due to the Lipschitz continuity of the policy as in Assumption 4.3.

B.2 Lipschitzness of the Optimal Parameter

This section is used to present the proof of Proposition 4.4.

Proof of Proposition 4.4. Sutton and Barto [27] has proved in Chapter 9 the fact that the linear TD(0)
will converge to the optimal point (w.r.t. Mean Square Projected Bellman Error) which satisfies

Aiω
∗(θi) = bi,

where Ai := E[φ(s)(φ(s)−φ(s′))>] and bi := E[(r(s, a)− r(θi))φ(s)]. The expectation is taken
over the stationary distribution s ∼ µθi , the action a ∼ πθi(·|s) and the transition probability matrix
s′ ∼ P(·|s, a).

18

Now we denote ω∗1 ,ω
∗
2 , ω̂1 as the unique solutions of the following equations respectively:

A1ω
∗
1 = b1,

A2ω̂1 = b1,

A2ω
∗
2 = b2.

First we bound ‖ω∗1 − ω̂1‖. By definition, we have
‖ω∗1 − ω̂1‖ ≤ ‖A−11 −A−12 ‖‖b1‖.

It can be easily shown that
A−11 −A−12 = A−11 (A2 −A1)A−12 ,

which further gives
‖ω∗1 − ω̂1‖ ≤ ‖A−11 ‖‖A1 −A2‖‖A−12 ‖‖b1‖.

Then we bound ‖ω̂1 − ω∗2‖,
‖ω̂1 − ω∗2‖ ≤ ‖A−12 ‖‖b1 − b2‖.

By Assumption 4.1, the eigenvalues of Ai are bounded from below by λ > 0, therefore ‖A−1i ‖ ≤
λ−1. Also ‖b1‖ ≤ Ur due to the assumption that |r(s, a)| ≤ Ur and ‖φ(s)‖ ≤ 1. To bound
‖A1 −A2‖ and ‖b1 − b2‖, we first note that
‖A1 −A2‖2 ≤ sup

s,s′∈S

∥∥φ(s)(φ(s)− φ(s′))>
∥∥
2
· 2dTV

(
P(O1 ∈ ·),P(O2 ∈ ·)

)
,

≤ 4dTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)
‖b1 − b2‖ ≤

∥∥E[r(s1, a1)φ(s1)]− E[r(s2, a2)φ(s2)]
∥∥+

∥∥r(θ1)E[φ(s1)]− r(θ2)E[φ(s2)]
∥∥

≤ 6UrdTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)
,

where Oi is the tuple obtained by si ∼ µθi(·), ai ∼ πθi(·|si) and (s′)i ∼ P(·|si, ai). And the total
variation norm can be bounded by Lemma B.1 as:

dTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)
≤ |A|L

(
1 + dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖.

Collecting the results above gives
‖ω∗1 − ω∗2‖ ≤ ‖ω∗1 − ω̂1‖+ ‖ω̂1 − ω∗2‖

≤ (2λ−2Ur + 3λ−1Ur)|A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖,

and we set L∗ := (2λ−2Ur + 3λ−1Ur)|A|L(1 + dlogρm
−1e + 1/(1 − ρ)) to obtain the final

result.

B.3 Asymptotic Equivalence

Lemma B.3. Suppose {ai} is a non-negative, bounded sequence, τ := C1 +C2 log t(C2 > 0), then
for any large enough t such that t ≥ τ > 0, we have:

1

1 + t− τ

t∑
k=τ

ai = O
(

1

t

t∑
k=1

ai

)
,

1

t

t∑
k=1

ai = O
(

log t

t

)
+O

(
1

1 + t− τ

t∑
k=τ

ai

)
.

Proof. We know that τ = O(log t) and the sequence is bounded: 0 < ai < B. For the first equation,
we have

1

1 + t− τ

t∑
k=τ

ai ≤
1

1 + t− τ

t∑
k=1

ai ≤
t

1 + t− τ
· 1

t

t∑
k=1

ai ≤ O
(

1

t

t∑
k=1

ai

)
,

and further assuming t ≥ 2τ − 2 gives a constant 2. For the second equation, we have

1

t

t∑
k=1

ai ≤
1

t

(
(τ − 1)B +

t∑
k=τ

ai

)
=
τ − 1

t
B +

1

t

t∑
k=τ

ai = O
(

log t

t

)
+O

(
1

1 + t− τ

t∑
k=τ

ai

)
.

19

C Proof of Main Theorems and Propositions

C.1 Proof of Theorem 4.5

We first define several notations to clarify the dependence:

Ot : = (st, at, st+1),

η∗ : = η(θ) = Es∼µθ,a∼πθ(·|s)[r(s, a)]

∆h(O, η,ω,θ) : =
(
η(θ)− η +

(
φ(s′)− φ(s)

)>
(ω − ω∗)

)
∇ log πθ(a|s),

∆h′(O,θ) : =
((
φ(s′)>ω∗ − V πθ (s′)

)
−
(
φ(s)>ω∗ − V πθ (s)

))
∇ log πθ(a|s),

h(O,θ) : =
(
r(s, a)− η(θ) + V πθ (s′)− V πθ (s)

)
∇ log πθ(a|s),

Γ(O,θ) : =
〈
∇J(θ), h(O,θ)−∇J(θ)

〉
. (C.1)

Note that ∆h, ∆h′ and h together gives a decomposition of the actual gradient. They each correspond
to the error caused by the critic ωt, the approximation error of the linear class and the stochastic
policy gradient.

There are several lemmas that will be used in the proof.
Lemma C.1. For the performance function defined in (3.1), there exists a constant LJ > 0 such that
for all θ1,θ2 ∈ Rd, it holds that∥∥∇J(θ1)−∇J(θ2)

∥∥ ≤ LJ‖θ1 − θ2‖,
which by the definition of smoothness [21] implies

J(θ2) ≥ J(θ1) +
〈
∇J(θ1),θ2 − θ1

〉
− LJ

2
‖θ1 − θ2‖2.

The following two lemmas characterize the bias introduced by the critic’s approximation and the
Markovian noise.
Lemma C.2. For any t ≥ 0,∥∥∆h(Ot, ηt,ωt,θt)

∥∥2 ≤ B2
(
8‖ωt − ω∗t ‖2 + 2(ηt − η∗t)2

)
.

Lemma C.3. For any θ ∈ Rd, we have ‖δ∇ log πθ(a|s)‖ ≤ Gθ := Uδ ·B, where Uδ = 2Ur+2Rω .
Furthermore, for any t ≥ 0, it holds that

E
[
Γ(Ot,θt)

]
≥ −Gθ

(
D1(τ + 1)

t∑
k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1),

where D1 = max{(UδLl + 2L∗B + 3LJ), 2UδB|A|L} and D2 = 4UδB.

Proof of Theorem 4.5. Under the update rule of Algorithm 1, we have by Lemma C.1

J(θt+1) ≥ J(θt) + αt
〈
∇J(θt), δt∇ log πθt(at|st)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
+ αt

〈
∇J(θt),∆h

′(Ot,θt)
〉

+ αt
〈
∇J(θt), h(Ot,θt)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
+ αt

〈
∇J(θt),∆h

′(Ot,θt)
〉

+ αtΓ(Ot,θt) + αt
∥∥∇J(θt)

∥∥2 − LJα2
t

∥∥δt∇ log πθt(at|st)
∥∥2. (C.2)

We will bound the expectation of each term on the right hand side of (C.2) as follows. First, we have

E
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
≥ −B

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t],

where zt := ωt − ω∗t and yt := ηt − η∗t , and the inequality is due to Cauchy inequality and
Lemma C.2.

20

Second, we have

E[Γ(Ot,θt)] ≥ −Gθ
(
D1(τ + 1)

t∑
k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1
)
,

≥ −Gθ
(
D1(τ + 1)Gθ

t−1∑
k=t−τ+1

αk +D2mρ
τ−1
)
,

where the first inequality is due to Lemma C.3, and the second inequality is due to∥∥δt∇ log πθt(at|st)
∥∥ ≤ Gθ by Lemma C.3.

Third, taking expectation over the approximation error term containing ∆h′, we have

E
〈
∇J(θt),∆h

′(Ot,θt)
〉
≥ −Gθ

√
E
∥∥∆h′(Ot,θt)

∥∥2
≥ −Gθ · 2B

√
E
(
φ(s)>ω∗t − V πθt (s)

)2
≥ −2BGθεapp,

Taking the expectation of (C.2) and plugging the above terms back into it gives

E[J(θt+1)] ≥ E[J(θt)]− αtB
√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]− 2BGθεappαt

− αtGθ
(
D1(τ + 1)Gθ

t−1∑
k=t−τ

αk +D2mρ
τ−1
)

+ αtE‖∇J(θt)‖2 − LJG2
θα

2
t .

Rearranging the above inequality gives

E
∥∥∇J(θt)

∥∥2 ≤ 1

αt

(
E[J(θt+1)]− E[J(θt)]

)
+B

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+D1G
2
θ(τ + 1)

t−1∑
k=t−τ

αk +D2Gθmρ
τ−1 + LJG

2
θαt.

By setting τ = τt, we get

E
∥∥∇J(θt)

∥∥2 ≤ 1

αt

(
E
[
J(θt+1)

]
− E

[
J(θt)

])
+B

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+ 2BGθεapp +D1G
2
θ(τt + 1)2αt−τt +D2Gθαt + LJG

2
θαt.

Summing over k from τt to t gives
t∑

k=τt

E
∥∥∇J(θt)

∥∥2 ≤ t∑
k=τt

1

αk

(
E[J(θk+1)]− E[J(θk)]

)
︸ ︷︷ ︸

I1

+B

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+

t∑
k=τt

D1G
2
θ(τt + 1)2αk−τt +

t∑
k=τt

(D2Gθ + LJG
2
θ)αk︸ ︷︷ ︸

I2

+2BGθεapp(t− τt + 1).

For the term I1, we have,
t∑

k=τt

1

αk

(
J(θk+1)− J(θk)

)
=

t∑
k=τt

(
1

αk−1
− 1

αk

)
E[J(θk)]− 1

ατt−1
E[J(θτt)] +

1

αt
E[J(θt+1)]

≤
t∑

k=τt

(
1

αk
− 1

αk−1

)
Ur +

1

ατt−1
Ur +

1

αt
Ur

= Ur

[t∑
k=τt

(
1

αk
− 1

αk−1

)
+

1

ατt−1
+

1

αt

]
= 2Urα

−1
t ,

21

where the inequality holds due to |E[J(θ)]| ≤ Ur.
For the term I2, we have

t∑
k=τt

D1G
2
θ(τt + 1)2αk−τt = D1G

2
θ(τt + 1)2

t∑
k=τt

αk−τt

= D1G
2
θ(τt + 1)2

t−τt∑
k=0

αk

= D1G
2
θ(τt + 1)2cα

t−τt∑
k=0

1

(1 + k)σ
,

and
t∑

k=τt

(D2Gθ + LJG
2
θ)αk = (D2Gθ + LJG

2
θ)

t∑
k=τt

αk

≤ (D2Gθ + LJG
2
θ)

t−τt∑
k=0

αk

= (D2Gθ + LJG
2
θ)cα

t−τt∑
k=0

1

(1 + k)σ
.

Note that both upper bounds rely on the summation
∑t−τt
k=0 1/(1 + k)σ ≤

∫ t−τt+1

0
x−σdx =

1/(1− σ)(t− τt + 1)1−σ . Combining the results for terms I1 and I2, we have

t∑
k=τt

E
∥∥∇J(θt)

∥∥2 ≤ 2Ur
cα

(1 + t)σ

+
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) cα
1− σ

(t− τt + 1)1−σ

+B

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+ 2BGθεapp(t− τt + 1).

Dividing (1 + t− τt) at both sides and assuming t > 2τt − 1, we can express the result as

1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θt)

∥∥2 ≤ 4Ur
cα

1

(t+ 1)1−σ

+
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) cα
1− σ

1

(t− τt + 1)σ

+
2B

1 + t− τt

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

+ 2BGθεapp. (C.3)

By Cauchy-Schwartz inequality, we have

1

1 + t− τt

t∑
k=τt

√
E
∥∥∇J(θt)

∥∥2√8E‖zt‖2 + 2E[y2t]

≤
(

1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θt)

∥∥2) 1
2
(

1

1 + t− τt

t∑
k=τt

(
8E‖zt‖2 + 2E[y2t]

)) 1
2

.

22

Now, denote F (t) := 1/(1 + t − τt)
∑t
k=τt

E‖∇J(θk)‖2 and Z(t) := 1/(1 + t −
τt)
∑t
k=τt

(
8E‖zt‖2 + 2E[y2t]

)
, and putting them back to (C.3) (O-notation for simplicity):

F (t) ≤ O
(

1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) + 2B

√
F (t) ·

√
Z(t),

which further gives(√
F (t)−B

√
Z(t)

)2 ≤ O(1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) +B2Z(t). (C.4)

Note that for a general function H(t) ≤ A(t) +B(t)(with each positive), we have

H2(t) ≤ 2A2(t) + 2B2(t),√
H(t) ≤

√
A(t) +

√
B(t).

This means (C.4) implies √
F (t)−B

√
Z(t) ≤

√
A(t) +B

√
Z(t),√

F (t) ≤
√
A(t) + 2B

√
Z(t),

F (t) ≤ 2A(t) + 8B2Z(t).

By Lemma B.3, assuming t ≥ 2τt − 1, it holds that

Z(t) =
1

1 + t− τt

t∑
k=τt

8E‖zk‖2 + 2E[y2t] ≤ 2

t

t∑
k=1

8E‖zk‖2 + 2E[y2t] = 2E(t).

And finally, we have

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2 ≤ 1

1 + t− τt

t∑
k=τt

E
∥∥∇J(θk)

∥∥2
≤ 8Ur

cα

1

(t+ 1)1−σ

+
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) 2cα
1− σ

1

(t− τt + 1)σ

+ 4BGθεapp

+ 16B2E(t)

= O
(

1

t1−σ

)
+O

(
1

tσ

)
+O(εapp) +O

(
E(t)

)
.

C.2 Proof of Theorem 4.7: Estimating the Average Reward

The two time-scale analysis with Markovian noise and moving behavior policy can be complicated,
so we define some useful notations here that could hopefully clarify the probabilistic dependency.

Ot : = (st, at, st+1),

η∗t : = η∗(θt) = J(θt),

yt : = ηt − η∗t ,
Ξ(O, η,θ) : = yt(rt − η∗t).

(C.5)

We also write J(θt) = r(θt) sometimes in the proof.
Lemma C.4. For any θ1,θ2, we have∣∣J(θ1)− J(θ2)

∣∣ ≤ CJ‖θ1 − θ2‖,
where CJ = 2Ur|A|L(1 + dlogρm

−1e+ 1/(1− ρ)).

23

Lemma C.5. Given the definition of Ξ(Ot, ηt,θt), for any t > 0, we have

E[Ξ(Ot, ηt,θt)] ≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|L

t∑
i=t−τ

E‖θi − θt−τ‖.+ 4U2
rmρ

τ−1.

Proof. From the definition, ηt is the average reward estimator, η∗t = J(θt) = E[r(s, a)] is the
average reward under the stationary distribution µθt ⊗ πθt , and yt = ηt − η∗t . From the algorithm we
have the update rule as

ηt+1 := ηt + γt
(
r(st, at)− ηt

)
,

where we leave the step size γt unspecified for now. Unrolling the recursive definition we have

y2t+1 =
(
yt + η∗t − η∗t+1 + γt(rt − ηt)

)2
≤ y2t + 2γtyt(rt − ηt) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2t (rt − ηt)2

= (1− 2γt)y
2
t + 2γtyt(rt − η∗t) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2t (rt − ηt)2

= (1− 2γt)y
2
t + 2γtΞ(Ok, ηk,θk) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2t (rt − ηt)2.

Rearranging and summing from τt to t, we have

t∑
k=τt

E[y2k] ≤
t∑

k=τt

1

2γk
E(y2k − y2k+1)︸ ︷︷ ︸
I1

+

t∑
k=τt

E[Ξ(Ok, ηk,θk)]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

γk
E[yk(η∗k − η∗k+1)]︸ ︷︷ ︸

I3

+

t∑
k=τt

1

γk
E[(η∗k − η∗k+1)2]︸ ︷︷ ︸

I4

+

t∑
k=τt

γkE[(rk − ηk)2]︸ ︷︷ ︸
I5

.

For I1, following the Abel summation formula, we have

I1 =

t∑
k=τt

1

2γk
(y2k − y2k+1)

=

t∑
k=τt

(
1

2γk
− 1

2γk−1

)
y2k +

1

2γτt−1
y2τt −

1

2γt
y2t+1

≤ 2U2
r

γt
.

For I2, from Lemma C.5, we have

E[Ξ(Ot, ηt,θt)] ≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|L

t∑
i=t−τ

E‖θi − θt−τ‖.+ 4U2
rmρ

τ−1

≤ 4UrCJGθταt−τ + 4U2
r τγt−τ + 2U2

r |A|Lτ(τ + 1)Gθαt−τ + 4U2
rmρ

τ−1

≤ C1τ
2αt−τ + C2τγt−τ + C3mρ

τ−1.

By the choice of τt, we have

I2 =

t∑
k=τt

E[Ξ(Ok, ηk,θk)] ≤ (C1τ
2
t + C3)

t∑
k=τt

αk + C2τt

t∑
k=τt

γk.

For I3, we have

I3 ≤
(t∑
k=τt

E[y2k]

)1/2(
C2
JG

2
θ

t∑
k=τt

α2
k

γ2k

)1/2

,

24

which is because by Lemma C.4, (η∗k − η∗k+1) can be linearly bounded by ‖θk − θk+1‖ ≤ Gθ · αk.
For I4, by the same argument it holds that

I4 =

t∑
k=τt

1

γk
E[(η∗k − η∗k+1)2]

=

t∑
k=τt

1

γk
E
[(
J(θk)− J(θk+1)

)2]
≤

t∑
k=τt

1

γk
C2
J‖θk − θk+1‖2

≤
t∑

k=τt

1

γk
C2
JG

2
θα

2
k

= O
(t∑
k=τt

α2
k

γk

)
.

For I5, we have

I5 =

t∑
k=τt

γkE[(rk − ηk)2]

≤
t∑

k=τt

4U2
r γk

= O
(t∑
k=τt

γk

)
,

by bounding the expectation uniformly.

Now, we set γk = 1/(1 + t)ν and combine all the terms together to get

t∑
k=τt

E[y2k] ≤ 2U2
r (1 + t)ν + (C1τ

2
t + C3)cα

t∑
k=τt

(1 + k)−σ + C2τt

t∑
k=τt

(1 + k)−ν

+ CJGθcα

(t∑
k=τt

E[y2k]

)1/2(t∑
k=τt

(1 + k)−2(σ−ν)
)1/2

+ C2
JG

2
θc

2
α

t∑
k=τt

(1 + k)ν−2σ + 4U2
r

t∑
k=τt

(1 + k)−ν

≤ 2U2
r (1 + t)ν +

[
(C1τ

2 + C3)cα + C2τt + C2
JG

2
θc

2
α + 4U2

r

] t∑
k=τt

(1 + k)−ν

+ CJGθcα

(t∑
k=τt

E[y2k]

)1/2(t∑
k=τt

(1 + k)−2(σ−ν)
)1/2

≤ 2U2
r (1 + t)ν +

[
(C1τ

2 + C3)cα + C2τt + C2
JG

2
θc

2
α + 4U2

r

] (1 + t− τt)1−ν

1− ν

+ CJGθcα

(t∑
k=τt

E[y2k]

)1/2(
(1 + t− τt)1−2(σ−ν)

1− 2(σ − ν)

)1/2

25

By applying the squaring technique already stated in the proof of Theorem 4.5, we have that
t∑

k=τt

E[y2k] ≤ 4U2
r (1 + t)ν + 2

[
(C1τ

2
t + C3)cα + C2τt + C2

JG
2
θc

2
α + 4U2

r

] (1 + t− τt)1−ν

1− ν

+ 8C2
JG

2
θc

2
α

(1 + t− τt)1−2(σ−ν)

1− 2(σ − ν)
(C.6)

= O(tν) +O(log2 t · t1−ν) +O(t1−2(σ−ν)).

C.3 Proof of Theorem 4.7: Approximating the TD Fixed Point

Now we deal with the critic’s parameter ωt. The two time-scale analysis with Markovian noise and
moving behavior policy can be complicated, so we define some useful notations here that could
hopefully clarify the probabilistic dependency.

Ot : = (st, at, st+1),

g(O,ω,θ) : = [r(s, a)− J(θ) + (φ(s′)− φ(s))>ω]φ(s),

∆g(O, η,θ) : = [J(θ)− η]φ(s),

ḡ(ω,θ) : = Es∼µθ,a∼πθ,s′∼P
[[
r(s, a)− J(θ) +

(
φ(s′)− φ(s)

)>
ω
]
φ(s)

]
,

ω∗t : = ω∗(θt),

η∗t : = η∗(θt) = J(θt)

Λ(O,ω,θ) : =
〈
ω − ω∗(θ), g(O,ω,θ)− ḡ(ω,θ)

〉
,

zt : = ωt − ω∗t
yt : = ηt − η∗t . (C.7)

A bounded lemma is used frequently in this section.
Lemma C.6. Under Assumption 4.3, for any θ, ω, O = (s, a, s′) such that ‖ω‖ ≤ Rω ,∥∥g(O,ω,θ)

∥∥ ≤ Uδ := 2Ur + 2Rω,∥∥∆g(O, η,θ)
∥∥ ≤ 2Ur,∣∣Λ(O,ω,θ)
∣∣ ≤ 2Rω · 2Uδ ≤ 2U2

δ .

The following lemma is used to control the bias due to Markovian noise.
Lemma C.7. Given the definition of Λ(θt,ωt, Ot), for any 0 ≤ τ ≤ t, we have

E[Λ(Ot,ωt,θt)] ≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗, C2 = 2U2
δ , C3 = 4Uδ are constants.

Proof of Theorem 4.7. By the updating rule of ωt in Algorithm 1, unrolling and decomposing the
squared error gives

‖zt+1‖2 =
∥∥zt + βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)

∥∥2
= ‖zt‖2 + 2βt

〈
zt, g(Ot,ωt,θt)

〉
+ 2βt

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2〈zt,ω∗t − ω∗t+1〉+

∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)
∥∥2

= ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2〈zt,ω∗t − ω∗t+1〉+

∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)
∥∥2

≤ ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2〈zt,ω∗t − ω∗t+1〉+ 2β2

t

∥∥g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)
∥∥2 + 2‖ω∗t − ω∗t+1‖2

≤ ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2〈zt,ω∗t − ω∗t+1〉+ 2U2

δ β
2
t + 2‖ω∗t − ω∗t+1‖2,

26

where the first inequality is due to ‖x+y‖2 ≤ 2‖x‖2+2‖y‖2 and the second is due to ‖g(Ot,ωt,θt)+
∆g(Ot, ηt,θt)‖ ≤ Uδ . First, note that due to Assumption 4.1, we have〈

zt, ḡ(ωt,θt)
〉

=
〈
zt, ḡ(ωt,θt)− ḡ(ω∗t ,θt)

〉
=
〈
zt,E

[(
φ(s′)− φ(s)

)>
(ωt − ω∗t)φ(s)

]〉
= z>t E

[
φ(s)

(
φ(s′)− φ(s)

)>]
zt

= z>t Azt

≤ −λ‖zt‖2,

where the first equation is due to the fact that ḡ(ω∗,θ) = 0 [27]. Taking expectation up to st+1, we
have

E‖zt+1‖2 ≤ E‖zt‖2 + 2βtE
〈
zt, ḡ(ωt,θt)

〉
+ 2βtEΛ(Ot,ωt,θt) + 2βtE

〈
zt,∆g(Ot, ηt,θt)

〉
+ 2E〈zt,ω∗t − ω∗t+1〉+ 2U2

δ β
2
t + 2E‖ω∗t − ω∗t+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE
〈
zt,∆g(Ot, ηt,θt)

〉
+ 2E〈zt,ω∗t − ω∗t+1〉+ 2U2

δ β
2
t + 2E‖ω∗t − ω∗t+1‖2.

Based on the result above, we can further rewrite it as:

E‖zt+1‖2 ≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|
+ 2L∗E‖zt‖ · ‖θt − θt+1‖+ 2U2

δ β
2
t + 2L2

∗E‖θt − θt+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|
+ 2L∗GθαtE‖zt‖+ 2U2

δ β
2
t + 2L2

∗G
2
θα

2
t

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|

+ 2L∗GθαtE‖zt‖+

(
2U2

δ + 2L2
∗G

2
θ

(
max
t

αt
βt

)2)
β2
t

= (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|+ 2L∗GθαtE‖zt‖+ Cqβ
2
t ,

where we denote the constant coefficient before the quadratic stepsize β2
t as Cq at the last step. The

first inequality is due to Proposition 4.4 and Cauchy-Schwartz inequality. The second inequality is
due to the update of θt is bounded by Gθαt. The third inequality is from employing the fact that
σ > ν so αt/βt is bounded. Rearranging the inequality yields

2λE‖zt‖2 ≤
1

βt

(
E‖zt‖2 − E‖zt+1‖2

)
+ 2EΛ(Ot,ωt,θt) + E‖zt‖ · |yt|+ 2L∗Gθ

αt
βt

E‖zt‖+ Cqβt

≤ 1

βt

(
E‖zt‖2 − E‖zt+1‖2

)
+ 2EΛ(Ot,ωt,θt) +

√
Ey2t ·

√
E‖zt‖2 + 2L∗Gθ

αt
βt

√
E‖zt‖2 + Cqβt,

where the second inequality is due to the concavity of square root function. Telescoping from τt to t
gives:

2λ

t∑
k=τt

E‖zk‖2 ≤
t∑

k=τt

1

βk

(
E‖zk‖2 − E‖zk+1‖2

)
︸ ︷︷ ︸

I1

+2

t∑
k=τt

EΛ(θk,ωk, Ok)︸ ︷︷ ︸
I2

+ 2L∗Gθ

t∑
k=τt

αk
βk

√
E‖zk‖2︸ ︷︷ ︸

I3

+

t∑
k=τt

√
Ey2k ·

√
E‖zk‖2︸ ︷︷ ︸

I4

+Cq

t∑
k=τt

βk︸ ︷︷ ︸
I5

. (C.8)

27

From (C.8), we can see the proof of the critic again shares the same spirit with the proof of Theorem
4.5. For term I1, we have

I1 :=

t∑
k=τt

1

βk
(E‖zk‖2 − E‖zk+1‖2)

=

t∑
k=τt

(
1

βk
− 1

βk−1

)
E‖zk‖2 +

1

βτt−1
E‖zτt‖2 −

1

βt
E‖zt+1‖2

≤
t∑

k=τt

(
1

βk
− 1

βk−1

)
E‖zk‖2 +

1

βτt−1
E‖zτt‖2

≤ 4R2
ω

(t∑
k=τt

(
1

βk
− 1

βk−1

)
+

1

βτt−1

)
= 4R2

ω

1

βt

= 4R2
ω(1 + t)ν = O(tν),

where the first inequality is due to discarding the last term, and the second inequality is due to
E‖zk‖2 ≤ (Rω +Rω)2.
For term I2, note that due to Lemma C.7, we actually have

Λ(Ok,ωk,θk) ≤ C1(τt + 1)‖θk − θk−τt‖+ C2mρ
τt−1 + C3‖ωk − ωk−τt‖

≤ C1(τt + 1)

k−1∑
i=k−τt

Gθαi + C2mρ
τt−1 + C3

k−1∑
i=k−τt

Uδβi

≤ C1Gθ(τt + 1)2αk−τt + C2αt + C3Uδτtβk,

and the summation is

I2 :=

t∑
k=τt

EΛ(Ok,ωk,θk)

≤ C1Gθ(τt + 1)2
t∑

k=τt

αk−τt + C2

t∑
k=τt

αt + C3Uδτt

t∑
k=τt

βk

≤ C1Gθ(τt + 1)2
t−τt∑
k=0

αk + C2(t− τt + 1)αt + C3Uδτt

t−τt∑
k=0

βk

≤ C1Gθ(τt + 1)2cα
(1 + t− τt)1−σ

1− σ
+ C2(t− τt + 1)cα(1 + t)−σ + C3Uδτt

(1 + t− τt)1−ν

1− ν

≤
[
C1Gθ(τt + 1)2cα

1− σ
+ C2cα +

C3Uδτt
1− ν

]
(1 + t)1−ν

= O
(
(log t)2t1−ν

)
,

where the second inequality is due to the monotonicity of αk and βk. The O(·) comes from that
τ = O(log t) and

∑
k−ν = O(t1−ν).

For term I3 and I4, we will instead show it can be bounded in a different form. Using Cauchy-
Schwartz inequality we have

I3 :=

t∑
k=τt

αk
βk

√
E‖zk‖2 ≤

(t∑
k=τt

α2
k

β2
k

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

≤
(t−τt∑
k=0

α2
k

β2
k

) 1
2
(t∑
k=τt

E‖zk‖2
) 1

2

,

I4 :=

t∑
k=τt

√
Ey2k ·

√
E‖zk‖2 ≤

(t∑
k=τt

Ey2k
) 1

2
(t∑
k=τt

E‖zk‖2
) 1

2

≤
(t−τt∑
k=0

Ey2k
) 1

2
(t∑
k=τt

E‖zk‖2
) 1

2

.

28

For term I5, simply bound it as
∑t−τt
k=0 βk ≤ (1 + t)1−ν/(1− ν).

Collecting the upper bounds of the above five terms, and writing them using O(·) notation give

2λ

t∑
k=τt

E‖zk‖2 ≤ 4R2
ω(1 + t)ν + 2

[
C1Gθ(τt + 1)2cα

1− σ
+ C2cα +

C3Uδτt + Cq
1− ν

]
(1 + t)1−ν

+ 2L∗Gθ

(t−τt∑
k=0

α2
k

β2
k

) 1
2 (t∑

k=τt

E‖zk‖2
) 1

2

+

(t−τt∑
k=0

Ey2k
) 1

2
(t∑
k=τt

E‖zk‖2
) 1

2

. (C.9)

Now, we first divide both sides by (1 + t− τt), and denote

Z(t) : =
1

1 + t− τt

t∑
k=τt

E‖zk‖2,

F (t) : =
1

1 + t− τt

t−τt∑
k=0

α2
k

β2
k

≤ t−2(σ−ν)

1− 2(σ − ν)
= O(t−2(σ−ν)),

G(t) : =
1

1 + t− τt

t−τt∑
k=0

E[y2k] = O(tν−1) +O(log t · t−ν) +O(t−2(σ−ν)),

and the rest as A(t) = O(tν) +O(t1−ν). G(t)’s constants appear at (C.6) in exact form.

This simplification leads to

2λ
(√

Z(t)− L∗Gθ
2λ

·
√
F (t)− 1

4λ

√
G(t)

)2
≤ A(t) + 2λ

(
L∗Gθ

2λ

√
F (t) +

1

4λ

√
G(t)

)2

,

which further gives

Z(t) ≤ A(t)/λ+ 16F (t) + 16G(t).

This is again a similar reasoning as in the end of the proof of Theorem 4.5. We actually show that

1

1 + t− τt

t∑
k=τt

E‖ωk − ω∗k‖2 = O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

This completes the proof. To obtain the exact constant, please refer to (C.6) and (C.9).

C.4 Proof of Corollary 4.9

Proof of Corollary 4.9. By Theorem 4.7, we have

1

1 + t− τt

t∑
k=τt

E‖ωk − ω∗k‖2 = O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

By Lemma B.3, E(t) in Theorem 4.5 is of the equivalent order:

E1(t) =
1

t

t∑
k=1

E‖ωk − ω∗k‖2

= O
(

1

1 + t− τt

t∑
k=τt

E‖ωk − ω∗k‖2
)

+O
(

log t

t

)
= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
+O

(
log t

t

)
= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

29

The same reasoning also applies to

E2(t) =
1

t

t∑
k=1

E(ηk − r(θk))2

= O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

Plugging the above results into Theorem 4.5, and optimizing over the choice of σ and ν (which gives
σ = 3/5 and ν = 2/5), we have

min
0≤k≤t

E‖∇J(θk)‖2 = O
(

1

t1−σ

)
+O

(
log2 t

tσ

)
+O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
+O(εapp)

= O
(

1

t1−σ

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
+O(εapp)

= O
(

log t

t2/5

)
+O(εapp).

Therefore, in order to obtain an ε-approximate(ignoring the approximation error) stationary point of
J , namely,

min
0≤k≤T

E
∥∥∇J(θk)

∥∥2 = O
(

log T

T 2/5

)
+O(εapp) ≤ O(εapp) + ε,

we need to set T = Õ(ε−2.5).

D Proof of Technical Lemmas

D.1 Proof of Lemma C.1

Proof of Lemma C.1. The first inequality comes from Lemma 3.2 in Zhang et al. [42].

The second inequality is well known as a partial result of [−L,L]-smoothness of non-convex functions.

D.2 Proof of Lemma C.2

Proof of Lemma C.2. Applying the definition of ∆h() and Cauchy-Schwartz inequality immediately
yields the result.

D.3 Proof of Lemma C.3

The proof of Lemma C.3 will be built on the following supporting lemmas.
Lemma D.1. For any t ≥ 0,∣∣Γ(Ot,θt)− Γ(Ot,θt−τ)

∣∣ ≤ Gθ(UδLl + 2L∗B + 3LJ)‖θt − θt−τ‖.
Lemma D.2. For any t ≥ 0,∣∣E[Γ(Ot,θt−τ)− Γ(Õt,θt−τ)]

∣∣ ≤ 2UδBGθ|A|L
t∑

i=t−τ
‖θi − θt−τ‖.

Lemma D.3. For any t ≥ 0,∣∣E[Γ(Õt,θt−τ)− Γ(O′t,θt−τ)]
∣∣ ≤ 4UδBGθmρ

τ−1.

Proof of Lemma C.3. First note that

δ =
∣∣r(s, a)− J(θ) + φ>(s′)ω − φ>(s)ω

∣∣
≤
∣∣r(s, a)

∣∣+
∣∣J(θ)

∣∣+
∣∣φ>(s′)ω

∣∣+
∣∣φ>(s)ω

∣∣
= 2Ur + 2Rω
=: Uδ,

30

which immediately implies∥∥δ∇ log πθ(a|s)
∥∥ ≤ |δ| · ∥∥∇ log πθ(a|s)

∥∥ ≤ Uδ ·B,
where the last inequality is due to Assumption 4.3. We decompose the Markovian bias as

E[Γ(Ot,θt)] = E[Γ(Ot,θt)− Γ(Ot,θt−τ)] + E[Γ(Ot,θt−τ)− Γ(Õt,θt−τ)]

+ E[Γ(Õt,θt−τ)− Γ(O′t,θt−τ)] + E[Γ(O′t,θt−τ)],

where Õt is from the auxiliary Markovian chain and O′t is from the stationary distribution which
actually satisfy E[Γ(O′t,θt−τ)] = 0. By collecting the corresponding bounds from Lemmas D.1, D.2
and D.3, we have that

E[Γ(Ot,θt)] ≥ −Gθ(UδLl + 2L∗B + 3LJ)E‖θt − θt−τ‖ − 2UδBGθ|A|L
t∑

i=t−τ
E‖θi − θt−τ‖

− 4UδBGθmρ
τ−1

≥ −Gθ(UδLl + 2L∗B + 3LJ)

t∑
i=t−τ+1

E‖θi − θi−1‖

− 2UδBGθ|A|L
t∑

i=t−τ+1

i∑
j=t−τ+1

E‖θj − θj−1‖ − 4UδBGθmρ
τ−1

≥ −Gθ(UδLl + 2L∗B + 3LJ)

t∑
i=t−τ+1

E‖θi − θi−1‖

− 2UδBGθ|A|Lτ
t∑

j=t−τ+1

E‖θj − θj−1‖ − 4UδBGθmρ
τ−1

≥ −Gθ
(
D1(τ + 1)

t∑
k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1
)
,

where D1 := max{(UδLl + 2L∗B + 3LJ), 2UδB|A|L} and D2 := 4UδB, which completes the
proof.

D.4 Proof of Lemma C.4

Proof of Lemma C.4. By definition, we have

J(θ1)− J(θ2) = E[r(s(1), a(1))− r(s(2), a(2))],

where s(i) ∼ µθi , a(i) ∼ πθi . Therefore, it holds that

J(θ1)− J(θ2) = E[r(s(1), a(1))− r(s(2), a(2))]
≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2Ur|A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖

= CJ‖θ1 − θ2‖.

D.5 Proof of Lemma C.5

The proof of this lemma depends on several auxiliary lemmas as follows.
Lemma D.4. For any θ1,θ2, eta,O = (s, a, s′), we have∣∣Ξ(O, η,θ1)− Ξ(O, η,θ2)

∣∣ ≤ 4UrCJ‖θ1 − θ2‖.

31

Lemma D.5. For any θ, η1, η2, O, we have∣∣Ξ(O, η1,θ)− Ξ(O, η2,θ)
∣∣ ≤ 2Ur|η1 − η2|.

Lemma D.6. Consider original tuples Ot = (st, at, st+1) and the auxiliary tuples Õt =
(s̃t, ãt, s̃t+1). Conditioned on st−τ+1 and θt−τ , we have∣∣E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)]

∣∣ ≤ 2U2
r |A|L

t∑
i=t−τ

E‖θi − θt−τ‖.

Lemma D.7. Conditioned on st−τ+1 and θt−τ , we have

E[Ξ(Õt, ηt−τ ,θt−τ)] ≤ 4U2
rmρ

τ−1.

Proof. By the Lemma D.4, D.5, D.6 and D.7, we can collect the corresponding term and get the
bound

E[Ξ(Ot, ηt,θt)] = E[Ξ(Ot, ηt,θt)− Ξ(Ot, ηt,θt−τ)] + E[Ξ(Ot, ηt,θt−τ)− Ξ(Ot, ηt−τ ,θt−τ)]

+ E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)] + E[Ξ(Õt, ηt−τ ,θt−τ)]

≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|L

t∑
i=t−τ

E‖θi − θt−τ‖+ 4U2
rmρ

τ−1.

D.6 Proof of Lemma C.6

Proof of Lemma C.6. For the first inequality, apply the property of norm and the Cauchy-Schwartz
inequality:∥∥g(O,ω,θ)

∥∥ =
∥∥(r(s, a)− J(θ) + φ>(s′)ω − φ>(s)ω)φ(s)

∥∥
≤
∣∣r(s, a)

∣∣+
∥∥J(θ)

∥∥+
∣∣φ>(s′)ω

∣∣ · ∥∥φ>(s)
∥∥+

∣∣φ>(s)ω
∣∣ · ∥∥φ>(s)

∥∥
= Ur + Ur +Rω +Rω ≤ 2Ur + 2Rω.

For the second inequality, we can directly apply Cauchy-Schwartz inequality and obtain the result.
For the third inequality, apply Cauchy-Schwartz inequality as we have∣∣Λ(O,ω,θ)

∣∣ =
∣∣∣〈ω − ω∗, g(O,ω,θ)− ḡ(ω,θ)

〉∣∣∣
≤ ‖ω − ω∗‖ ·

∥∥g(O,ω,θ)− ḡ(ω,θ)
∥∥

≤ 2Rω · 2Uδ ≤ 2U2
δ ,

which completes the proof.

D.7 Proof of Lemma C.7

This Lemma is actually a combination of several auxiliary lemmas listed here:
Lemma D.8. For any θ1,θ2, ω and tuple O = (s, a, s′),∣∣Λ(O,ω,θ1)− Λ(O,ω,θ2)

∣∣ ≤ K1‖θ1 − θ2‖,

where K1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗.

Lemma D.9. For any θ, ω1,ω2 and tuple O = (s, a, s′),∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)
∣∣ ≤ 6Uδ‖ω1 − ω2‖.

Lemma D.10. Consider original tuples Ot = (st, at, st+1) and the auxiliary tuples Õt =
(s̃t, ãt, s̃t+1). Conditioned on st−τ+1 and θt−τ , we have

E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] ≤ U2
δ |A|L

t∑
i=t−τ

E‖θi − θt−τ‖ (D.1)

32

Lemma D.11. Conditioned on st−τ+1 and θt−τ ,

E[Λ(Õt,ωt−τ ,θt−τ)] ≤ 2U2
δmρ

τ−1.

Proof of Lemma C.7. By the Lemma D.8, D.9, D.10 and D.11, we can collect the corresponding
term and get the bound
E[Λ(Ot,ωt,θt)] = E[Λ(Ot,ωt,θt)− Λ(Ot,ωt,θt−τ)] + E[Λ(Ot,ωt,θt−τ)− Λ(Ot,ωt−τ ,θt−τ)]

+ E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] + E[Λ(Õt,ωt−τ ,θt−τ)]

≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗, C2 = 2U2
δ , C3 = 4Uδ .

E Proof of Auxiliary Lemmas

E.1 Proof of Lemma D.1

Proof of Lemma D.1. Let δ(Ot,θ) := r(st, at)+(φ(st+1)−φ(st))
>ω∗−r(θ) and it can be shown

that δ(Ot,θ1)− δ(Ot,θ2) = (φ(st+1)− φ(st))
>(ω∗1 − ω∗2)− (r(θ1)− r(θ2)).∥∥h(Ot,θt)− h(Ot,θt−τ)

∥∥ =
∥∥δ(Ot,θt)∇ log πθt(at|st)− δ(Ot,θt−τ)∇ log πθt−τ (at|st)

∥∥
≤
∥∥δ(Ot,θt)∇ log πθt(at|st)− δ(Ot,θt)∇ log πθt−τ (at|st)

∥∥
+
∥∥δ(Ot,θt)∇ log πθt−τ (at|st)− δ(Ot,θt−τ)∇ log πθt−τ (at|st)

∥∥
≤ UδLl‖θt − θt−τ‖+ 2L∗B‖θt − θt−τ‖.

By triangle inequality, we have∣∣Γ(Ot,θt)− Γ(Ot,θt−τ)
∣∣ ≤ Gθ∥∥h(Ot,θt)− h(Ot,θt−τ)

∥∥+ 3Gθ
∥∥∇J(θt)−∇J(θt−τ)

∥∥
≤ Gθ(UδLl + 2L∗B + 3LJ)‖θt − θt−τ‖.

E.2 Proof of Lemma D.2

Proof of Lemma D.2. By the definition of in (C.1),

E
[
Γ(Ot,θt−τ)− Γ(Õt,θt−τ)

]
= E

[〈
∇J(θt−τ), h(Ot,θt−τ)− h(Õt,θt−τ)

〉]
= E

[〈
∇J(θt−τ), h(Ot,θt−τ)

〉
−
〈
∇J(θt−τ), h(Õt,θt−τ)

〉]
≤ 4UδBGθdTV

(
P(Ot = ·|st−τ+1,θt−τ),P(Õt = ·|st−τ+1,θt−τ)

)
,

(E.1)
where the inequality is by the definition of total variation. By Lemma B.2 we have

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
= dTV

(
P((st, at) ∈ ·|st−τ+1,θt−τ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ)

)
≤ dTV

(
P(st ∈ ·|st−τ+1,θt−τ),P(s̃t ∈ ·|st−τ+1,θt−τ)

)
+

1

2
|A|LE‖θt − θt−τ‖

≤ dTV
(
P(Ot−1 ∈ ·|st−τ+1,θt−τ),P(Õt−1 ∈ ·|st−τ+1,θt−τ)

)
+

1

2
|A|LE‖θt − θt−τ‖.

Repeat the inequality above over t to t− τ + 1 we have

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑
i=t−τ

E‖θi − θt−τ‖. (E.2)

Plugging (E.2) into (E.1) we get

E
[
Γ(Ot,θt−τ)− Γ(Õt,θt−τ)

]
≤ 2UδBGθ|A|L

t∑
i=t−τ

‖θi − θt−τ‖.

33

E.3 Proof of Lemma D.3

Proof of Lemma D.3.

E
[
Γ
(
Õt,θt−τ

)
− Γ(O′t,θt−τ)

]
≤ 4UδBGθdTV

(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)
≤ 4UδBGθmρ

τ−1.

The first inequality is by the definition of total variation norm and the second inequality is shown in
Lemma D.11.

E.4 Proof of Lemma D.4

Proof of Lemma D.4. By the definition of Ξ(O, η,θ) in (C.5), we have∣∣Ξ(O, η,θ1)− Ξ(O, η,θ2)
∣∣ =

∣∣(η − η∗1)(r − η∗1)− (η − η∗2)(r − η∗2)
∣∣

≤
∣∣(η − η∗1)(r − η∗1)− (η − η∗1)(r − η∗2)

∣∣
+
∣∣(η − η∗1)(r − η∗2)− (η − η∗2)(r − η∗2)

∣∣
≤ 4Ur|η∗1 − η∗2 |
= 4Ur

∣∣J(θ1)− J(θ2)
∣∣

≤ 4UrCJ‖θ1 − θ2‖.

E.5 Proof of Lemma D.5

Proof of Lemma D.5. By definition,∣∣Ξ(O, η1,θ)− Ξ(O, η2,θ)
∣∣ =

∣∣(η1 − η∗)(r − η∗)− (η2 − η∗)(r − η∗)
∣∣

≤ 2Ur|η1 − η2|.

E.6 Proof of Lemma D.6

Proof of Lemma D.6. By the Cauchy-Schwartz inequality and the definition of total variation norm,
we have

E
[
Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)

]
= (ηt−τ − η∗t−τ)E[r(st, at)− r(s̃t, ãt)].

Since

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
,

the total variation between Ot and Õt has appeared in (E.2), in the proof of Lemma D.2, which is

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑
i=t−τ

E‖θi − θt−τ‖.

Plugging this bound, we have

∣∣E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)]
∣∣ ≤ 2U2

r |A|L
t∑

i=t−τ
E‖θi − θt−τ‖.

34

E.7 Proof of Lemma D.7

Proof of Lemma D.7. We first note that according to the definition,
E[η(O′t, ηt−τ ,θt−τ)|θt−τ] = 0,

where O′t = (s′t, a
′
t, s
′
t+1) is the tuple generated by s′t ∼ µθt−τ , a

′
t ∼ πθt−τ , s

′
t+1 ∼ P . By the

ergodicity in Assumption 4.2, it holds that
dTV

(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
≤ mρτ−1.

It can be shown that
E[Ξ(Õt, ηt−τ ,θt−τ)] = E

[
Ξ
(
Õt, ηt−τ ,θt−τ

)
− Ξ(O′t, ηt−τ ,θt−τ)

]
= E

[
(ηt−τ − η∗t−τ)

(
r(s̃t, ãt)− r(s′, a′)

)]
≤ 4U2

r dTV
(
P
(
Õt = ·|st−τ+1,θt−τ

)
, µθt−τ ⊗ πθt−τ ⊗ P

)
≤ 4U2

rmρ
τ−1.

The argument used here also appears in the proof of Lemma D.11 and explained in detail there.

E.8 Proof of Lemma D.8

Proof of Lemma D.8.∣∣Λ(O,ω,θ1)− Λ(O,ω,θ2)
∣∣ =

∣∣∣〈ω − ω∗1 , g(O,ω)− ḡ(θ1,ω)
〉
−
〈
ω − ω∗2 , g(O,ω)− ḡ(θ2,ω)

〉∣∣∣
≤
∣∣∣〈ω − ω∗1 , g(O,ω)− ḡ(θ1,ω)

〉
−
〈
ω − ω∗1 , g(O,ω)− ḡ(θ2,ω)

〉∣∣∣︸ ︷︷ ︸
I1

+
∣∣∣〈ω − ω∗1 , g(O,ω)− ḡ(θ2,ω)

〉
−
〈
ω − ω∗2 , g(O,ω)− ḡ(θ2,ω)

〉∣∣∣︸ ︷︷ ︸
I2

.

For the term I2, we simply use the Cauchy-Schwartz inequality to get 2Uδ‖ω∗1 − ω∗2‖.
For the term I1, it can be bounded as:∣∣∣〈ω − ω∗1 , g(O,ω)− ḡ(θ1,ω)

〉
−
〈
ω − ω∗1 , g(O,ω)− ḡ(θ2,ω)

〉∣∣∣
=
∣∣∣〈ω − ω∗1 , ḡ(θ1,ω)− ḡ(θ2,ω)

〉∣∣∣
≤ 2Rω

∥∥ḡ(θ1,ω)− ḡ(θ2,ω)
∥∥

≤ 2Rω · 2Uδ · dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P)

≤ 2U2
δ dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P),

where the first inequality is due to Cauchy-Schwartz; the second inequality is by the definition of
total variation norm; the third inequality is due to the fact Uδ ≥ 2Rω . Therefore, we have∣∣Λ(θ1,ω, O)− Λ(θ2,ω, O)

∣∣ ≤ 2U2
δ dTV (µθ1 ⊗ πθ1 ⊗ P, µθ2 ⊗ πθ2 ⊗ P) + 2Uδ‖ω∗1 − ω∗2‖

≤ 2U2
δ |A|L

(
1 + dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖+ 2UδL∗‖θ1 − θ2‖

= K1‖θ1 − θ2‖,
where the second inequality is due to Lemma B.1 and Proposition 4.4.

E.9 Proof of Lemma D.9

Proof of Lemma D.9. By definition,∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)
∣∣ =

∣∣∣〈ω1 − ω∗, g(O,ω1)− ḡ(ω1,θ)
〉
−
〈
ω2 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣
≤
∣∣∣〈ω1 − ω∗, g(O,ω1)− ḡ(ω1,θ)

〉
−
〈
ω1 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣
+
∣∣∣〈ω1 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉
−
〈
ω2 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣
≤ 2Rω

∥∥∥(g(O,ω1)− g(O,ω2)
)
−
(
ḡ(ω1,θ)− ḡ(ω2,θ)

)∥∥∥+ 2Uδ‖ω1 − ω2‖.

35

Note that we have ‖g(O,ω1,θ)− g(O,ω2,θ)‖ = |(φ(s′)−φ(s))>(ω1−ω2)| ≤ 2‖ω1−ω2‖ and
similarly ‖ḡ(ω1,θ)− ḡ(ω2,θ)‖ ≤ |E

[
(φ(s′)− φ(s))>(ω1 − ω2)

]
| ≤ 2‖ω1 − ω2‖. Therefore,∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)

∣∣ ≤ 2Rω

∥∥∥(g(O,ω1)− g(O,ω2)
)
−
(
ḡ(ω1,θ)− ḡ(ω2,θ)

)∥∥∥+ 2Uδ‖ω1 − ω2‖

≤ 2Rω · 4‖ω1 − ω2‖+ 2Uδ‖ω1 − ω2‖
≤ 6Uδ‖ω1 − ω2‖.

E.10 Proof of Lemma D.10

Proof of Lemma D.10. By the Cauchy-Schwartz inequality and the definition of total variation norm,
we have

E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] = E
[〈
ωt−τ − ω∗t−τ , g(Ot,ωt−τ)− g(Õt,ωt−τ)

〉]
≤ 2U2

δ dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
.

(E.3)

The total variation between Ot and Õt has appeared in (E.2), in the proof of Lemma D.2, which is

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑
i=t−τ

E‖θi − θt−τ‖.

Plugging this bound into (E.3), we have

E
∣∣Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)

∣∣ ≤ U2
δ |A|L

t∑
i=t−τ

E‖θi − θt−τ‖.

E.11 Proof of Lemma D.11

Proof of Lemma D.11. We first note that according to the definition in Section C.3,

E[Λ(O′t,ωt−τ ,θt−τ)|st−τ+1,θt−τ] = 0,

where O′t = (s′t, a
′
t, s
′
t+1) is the tuple generated by s′t ∼ µθt−τ , a

′
t ∼ πθt−τ , s

′
t+1 ∼ P . By the

ergodicity in Assumption 4.2, it holds that

dTV
(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
≤ mρτ−1.

It can be shown that

E[Λ(Õt,ωt−τ ,θt−τ)] = E[Λ(Õt,ωt−τ ,θt−τ)− Λ(O′t,ωt−τ ,θt−τ)]

= E
〈
ωt−τ − ω∗t−τ , g(Õt,ωt−τ)− g(O′t,ωt−τ)

〉
≤ 4RωUδdTV

(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)
≤ 2U2

δ dTV
(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
≤ 2U2

δmρ
τ−1.

The third inequality holds because 2Rω < Uδ and

dTV
(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)
= dTV

(
P((s̃t, ãt) = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ

)
= dTV

(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
.

This can be shown following the same procedure in (B.1), because P(Õt = ·|st−τ+1,θt−τ) =
P(s̃t = ·|st−τ+1,θt−τ)⊗ πθt−τ ⊗ P .

36

	Introduction
	Related work
	Preliminaries
	Markov decision processes
	Policy gradient theorem
	REINFORCE with a baseline
	The two time-scale actor-critic algorithm

	Main theory
	Assumptions and propositions
	Convergence of the actor
	Convergence of the critic
	Convergence rate and sample complexity

	Conclusion and discussion
	Proof Sketch
	Proof Sketch of Theorem 4.5
	Proof Sketch of Theorem 4.7
	Estimating the Average Reward k
	Approximating the TD Fixed Point

	Preliminary Lemmas
	Probabilistic Lemmas
	Lipschitzness of the Optimal Parameter
	Asymptotic Equivalence

	Proof of Main Theorems and Propositions
	Proof of Theorem 4.5
	Proof of Theorem 4.7: Estimating the Average Reward
	Proof of Theorem 4.7: Approximating the TD Fixed Point
	Proof of Corollary 4.9

	Proof of Technical Lemmas
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3
	Proof of Lemma C.4
	Proof of Lemma C.5
	Proof of Lemma C.6
	Proof of Lemma C.7

	Proof of Auxiliary Lemmas
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4
	Proof of Lemma D.5
	Proof of Lemma D.6
	Proof of Lemma D.7
	Proof of Lemma D.8
	Proof of Lemma D.9
	Proof of Lemma D.10
	Proof of Lemma D.11

