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Abstract

Algorithm configuration procedures optimize parameters of a given algorithm to
perform well over a distribution of inputs. Recent theoretical work focused on the
case of selecting between a small number of alternatives. In practice, parameter
spaces are often very large or infinite, and so successful heuristic procedures
discard parameters “impatiently”, based on very few observations. Inspired by
this idea, we introduce IMPATIENTCAPSANDRUNS, which quickly discards less
promising configurations, significantly speeding up the search procedure compared
to previous algorithms with theoretical guarantees, while still achieving optimal
runtime up to logarithmic factors under mild assumptions. Experimental results
demonstrate a practical improvement.

1 Introduction

Solvers for computationally hard problems (e.g., SAT, MIP) often expose many parameters that only
affect runtime rather than solution quality. Choosing values for these parameters is seldom easy or
intuitive, and different settings can lead to drastically different runtimes—days versus seconds—for
a given input instance. Such parameters are exposed in the first place because they do not have
known, globally optimal settings, instead typically expressing tradeoffs between different heuristic
mechanisms or implicit assumptions about problem structure. In practice, solver end-users typically
need to repeatedly solve similar problems: e.g., integer programs modeling airline crew scheduling
problems; or SAT formulae used to formally verify a sequence of related hardware or software designs.
This gives rise to the problem of algorithm configuration: finding a joint setting of parameters for
a given algorithm so that it performs well on input instances drawn from a given distribution. We
make no restrictions on the space of possible parameters or its structure: they may be continuous,
categorical, subject to arbitrary constraints, and may contain jump discontinuities. We refer to a
joint setting of all the algorithm’s parameters as a configuration to stress this generality. A common
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metric of performance for a configuration, and the one we consider in this work, is mean runtime: we
prefer configurations that are faster, on average, on the problems we care about solving. An algorithm
configuration method can sample instances from the distribution underlying an application and can
run any configuration (possibly also sampled from the set possible configurations) on any sampled
instance until a timeout of its choice, and the goal is to find a configuration with nearly optimal mean
runtime while using the least amount of time during the search.1

Heuristic methods for algorithm configuration such as ParamILS [18, 19], GGA [2, 3], irace [11, 29]
and SMAC [21, 22] have been used with great success for more than a decade, but they do not
come with any rigorous performance guarantees. More recently, algorithm configuration has also
been considered from a theoretical perspective. Kleinberg et al. [24] introduced a framework to
analyze algorithm configuration methods theoretically, and presented the first configuration procedure,
STRUCTURED PROCRASTINATION (SP), which is guaranteed to find an approximately optimal
solution with a non-trivial worst-case runtime bound. Since then algorithms with better theoretical
guarantees have been developed [35, 36, 25]. Overall, these theoretically-motivated configuration
procedures have nice properties, such as achieving near-optimal asymptotic worst-case running times.
However, none of them yet achieves competitive performance on practical problem benchmarks,
for two key reasons: (i) heuristic methods usually iteratively select candidate configurations that
appear likely to perform well given previous samples from the configuration space (e.g., leveraging
structure in the parameter space, such as smoothness or low pseudodimension [20, 30]), whereas the
theoretical algorithms select configurations randomly; and (ii) heuristic methods often impatiently
discard less promising configurations based on just a few runtime observations, while the theoretical
algorithms are more conservative and continue evaluating them until they demonstrate, with high
probability, that another configuration is better. Such early discard strategies are particularly effective
when the configuration space contains one or a few configurations that drastically outperform all
others. This “needle-in-a-haystack” scenario is common in practice, perhaps in part explaining the
success of these heuristic methods.

In this paper we take a significant step towards theoretically grounded and practical algorithm con-
figuration by addressing the second problem. We build on CAPSANDRUNS (CAR) [36], a simple
and intuitive algorithm that continuously discards configurations that perform poorly relative to a
global upper bound on the best achievable mean runtime. Here we introduce IMPATIENTCAPSAN-
DRUNS (ICAR), which equips CAR with the ability to quickly discard less-promising configurations
by applying an initial “precheck” mechanism that allows poorly performing configurations to be
discarded quickly. Additionally, via a more careful analysis we are able speed up a key subroutine
from CAR. While ICAR retains the favorable optimality and runtime guarantees of CAR under mild
assumptions, it is also provably faster in needle-in-a-haystack scenarios where most configurations
are considerably weaker than the best ones (these are the cases where good algorithm configuration
procedures are the most useful, because identifying a good configuration is the most consequential.)
Because of its precheck procedure, ICAR is able to examine more configurations than CAR, and
hence finds configurations with better mean runtime. Furthermore, not wasting time on examining
bad configurations, the total runtime of ICAR is significantly smaller than that of CAR and any other
existing procedure with theoretical guarantees, making a step towards closing the performance gap
relative to heuristic procedures.

Finally, we briefly survey some less closely related work. Gupta & Roughgarden [14] initiated the
study of algorithm configuration from a learning-theoretic perspective. Rather than seek general
purpose configuration procedures, as we do in this work, this and subsequent approaches seek to
bound the number of training samples required to guarantee good generalization for specific classes
of problems. Examples include combinatorial partitioning problems such as max-cut and clustering
[6], branching strategies in tree search algorithms [7], and general algorithm configuration when the
runtime is piecewise-constant over its parameter space [8]. Hyperparameter-search methods based on
multi-armed bandit algorithms are also related. The main difference is that this literature focuses on
settings where every configuration run costs the same amount or where there is a tradeoff between
how long each configuration is run and the accuracy with which its performance is estimated [5, 28];
thus, these methods do not face questions like how many instances to consider and how to cap runs.

1As usual, we treat the cumulative runtime of all the configurations tried as the total search time. One could
also consider including the overhead imposed by the configuration algorithm itself. However, beyond being
difficult to model, this cost is typically negligible compared to the runtime of the configurations.
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The rest of the paper is organized as follows. The formal model of algorithm configuration is given
in Section 2. The ICAR algorithm is presented and analyzed in Section 3. Experiments on some
algorithm configuration benchmarks are given in Section 4. Proofs and additional experimental
results are deferred to the appendix.

2 The Model

Following Kleinberg et al. [24], the algorithm configuration problem is defined by a triplet (Π,Γ, R),
where Π is a distribution over possible configurations, Γ is a distribution over input instances, and
R(i, j) is the runtime of a configuration i on a problem instance j. For example Π and Γ may simply
be uniform distributions, respectively over the space of hyperparameters and the set of past problem
instances seen. The mean runtime of a configuration i is defined as R(i) = Ej∼Γ[R(i, j)], and the
ultimate goal of an algorithm configuration method is to find a configuration i minimizing R(i).

During this search the configuration method needs to explore new configurations, which can be
sampled from Π.2 The configuration method can also sample problem instances from Γ and run a
configuration i on an instance j until it finishes, or the execution time exceeds a specified timeout
τ ≥ 0. The use of such a timeout allows for a tradeoff between learning more about the runtime of a
single configuration–instance pair and considering a larger number of such pairs.

To this end, for any configuration i we consider the τ -capped expected runtime Rτ (i) =
Ej∼Γ[min{R(i, j), τ}]. Furthermore, for any δ ∈ (0, 1), let tδ(i) = inft{t : Prj∼Γ(R(i, j) >
t) ≤ δ} denote the δ-quantile of i’s runtime, and define Rδ(i) = Rtδ(i)(i) the δ-capped expected
runtime of i.3 That is, Rδ(i) is the mean runtime of i if we cap the slowest δ-fraction of its runtimes.

Since a globally optimal configuration may be arbitrarily hard to find, we instead seek a solution
that is competitive with the performance of the top γ-fraction of the configurations for a γ ∈ (0, 1).
That is, instead of finding a configuration close to OPT = mini{R(i)}, we search for one close to
OPTγ = infx∈R+{x : Pri∼Π(R(i) ≤ x) ≥ γ}. Additionally, since the average runtime of any
configuration, including the optimal one, could be totally dominated by a few incredibly unlikely but
arbitrarily large runtime values, we seek solutions whose expected δ-capped runtime is close to the
δ-capped optimum. However, it turns out that this relaxed property is still impossible to verify [35].
Following Weisz et al. [35], we address this by adding a small amount of slack to the benchmark,
comparing to the (δ/2)-capped optimum rather than the δ-capped optimum. Putting this together,
we seek solutions whose expected δ-capped runtime is close to the (δ/2)-capped optimum, after
excluding the best γ-fraction of configurations: OPTγδ/2 = infx∈R+

{
x : Pri∼Π[R

δ
2 (i) ≤ x] ≥ γ

}
.

Definition 1 ((ε, δ, γ)-optimality). A configuration i is (ε, δ, γ)-optimal if Rδ(i) ≤ (1 + ε)OPTγδ/2.

This definition generalizes the notion of (ε, δ)-optimality of Weisz et al. [36] for a finite set of
configurations, where instead of the top-γ portion, we aim to achieve the performance of the best
configuration (up to ε): for a finite set of N configurations, configuration i is (ε, δ)-optimal if it is
(ε, δ, 1/N)-optimal when Π is the uniform distribution over the N configurations.

3 The Algorithm
Recent theoretically-sound algorithm configuration procedures make several runtime measurements
for every configuration in a finite poolN , and stop when they can confirm, with high probability, that
one configuration is close enough to the best one. The main challenge is to avoid wasting time on
(a) hard input instances with large runtimes; and (b) bad configurations that will be eliminated later.
To this end, STRUCTURED PROCRASTINATION (SP) [24] and its improved version STRUCTURED
PROCRASTINATION WITH CONFIDENCE (SPC) [25] gradually increase the runtime cap for every
configuration-instance pair, while carefully determining an order to evaluate these pairs, depending
on the configurations’ empirical average runtime (SP) or empirical confidence bounds on the mean
runtimes (SPC). LEAPSANDBOUNDS (LAB) [35], which introduced empirical confidence bounds to

2We can see Π as reflecting beliefs about the distribution of good configurations in the parameter space. This
implicitly neglects any search procedure that leverages structural assumptions about the parameter space.

3With a slight abuse of terminology, throughout we use the same expression for capping with timeouts (τ )
and quantiles (δ), when the interpretation is clear from the context; we specify the type of capping otherwise.
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the algorithm configuration problem, works with a much simpler schedule, and tests all configurations
for a given time budget, which is increased gradually.

On the other hand, CAPSANDRUNS (CAR) [36] first measures the runtime cap for each configuration
guaranteeing that at least a (1− δ)-portion of the instances can be solved within that cap, then runs a
racing algorithm (based on continuously recomputing confidence bounds on the mean runtimes) to
select which capped configuration is the best. During the race, all configurations are run in parallel
on more and more problem instances, and their mean runtime is continuously estimated. This makes
it possible to maintain a high-probability upper bound T on the optimal capped runtime, and any
configuration with a runtime lower bound above T can be eliminated. The algorithm stops when it
can prove that a configuration is (ε, δ)-optimal.

To apply any of the above methods to an infinite pool of configurations, one can simply select a
pool of

⌈
log(ζ)

log(1−γ)

⌉
configurations randomly from Π to ensure that with probability at least 1− ζ it

contains a configuration that belongs to the top γ-fraction of all the configurations. Thus the above
methods can select (ε, δ, γ)-optimal configurations from an infinite pool, with attractive theoretical
guarantees. Our focus in this paper is on extending CAR, due to its conceptual simplicity and good
practical performance. However, in contrast to LAB and SPC, which try to assign little runtime
to bad configurations from the very beginning, at the start CAR spends the same amount of time
testing all configurations. This is because the estimation of the runtime caps is done in parallel, so
every configuration is run for an equally long time until the first cap is found for any configuration
(only after this can the algorithm start eliminating configurations with large mean runtimes). As a
result, CAR spends more time testing the worst configurations than LAB or SPC. Appendix B further
compares these methods and their runtime bounds.

IMPATIENTCAPSANDRUNS (ICAR) addresses this problem, introducing a “precheck” mechanism
to ensure that bad configurations are eliminated early. The PRECHECK function estimates the mean
capped runtime (up to a constant multiplicative factor) needed by a configuration to solve at least
a constant fraction of the problem instances (less than 1 − δ/2). If this capped runtime is large
compared to the upper bound T on the (ε, δ, γ)-optimal runtime (maintained similarly as in CAR),
the configuration is rejected and eliminated from further analysis. This procedure is very similar
to the CAR algorithm (with some fixed, constant ε and δ); only the specific rejection conditions
differ mildly. Note that the runtime estimated by PRECHECK is a lower bound to the δ/2-capped
runtime, ensuring that good configurations are unlikely to be rejected. The efficiency of PRECHECK
crucially depends on the quality of the bound T on the optimal runtime. Therefore, similarly to
SPC, ICAR gradually introduces more and more configurations in batches Nk, k = K − 1, . . . , 0:
if a configuration passes PRECHECK, a (rough) estimate of its capped runtime is calculated (up to
a multiplicative constant, for a cap slightly larger than the δ quantile), again by first measuring the
runtime cap, then estimating the mean runtime using the measured cap. This runtime estimate is then
used to reduce the bound T , which improves the performance of PRECHECK for the next batch of
configurations, Nk−1. The size of batch Nk is of order 1/γk with γk = 2kγ, ensuring that with high
probability it contains an (ε, δ, γk)-optimal configuration (whose mean runtime is then bounded by
OPTγkδ/2). As a consequence, after batch Nk, T is at most 2OPTγkδ/2, gradually reducing towards
2OPTγδ/2. Finally, the racing part of CAR is run over all surviving configurations, further reducing
T towards OPTγδ/2, and stopping when an (ε, δ, γ)-optimal configuration is found.

Now we are ready to present the main theoretical result of the paper, a performance guarantee for
ICAR. The components of the algorithm are presented in Algorithms 1–5. We then discuss each and
present a proof sketch for the theorem (the detailed proof is given in Appendix A).

Theorem 1. For input parameters ε ∈ (0, 1/3), δ ∈ (0, 0.2), γ ∈ (0, 1), integer K ≥ 1, and failure
parameter ζ ∈ (0, 1/12), with probability at least 1 − 12ζ, IMPATIENTCAPSANDRUNS finds an
(ε, δ, γ)-optimal configuration with total work4 bounded by5

Õ

(
OPTγδ/2

ε2δγ
· F (38OPTγδ/2) +

K−2∑
k=0

OPTγkδ/2

γk

(
1 +

F (38OPT
γk+1

δ/2 )

δ

)
+

OPT
γK−1

δ/2

δγK−1

)
, (1)

where γk = 2kγ, and F (x) = Pri∼Π(R0.35(i) ≤ x) + 4ζ/K.
4We use “total work” and “total runtime” interchangeably; both sum over all parallel threads.
5We use the standard O and Õ notation, where the latter hides poly-logarithmic factors.
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Global variables
1: Instance distribution Γ
2: Phase I measurements count b
3: T ←∞ . Upper bound on OPTγδ/2, updated

continuously by all parallel processes
4: Set N of algorithm configurations

Algorithm 1 IMPATIENTCAPSANDRUNS

1: Inputs: Precision parameter ε ∈ (0, 1
3 ), Quan-

tile parameter δ ∈ (0, 1
7 ), Optimality quantile

target parameter γ, Failure probability parameter
ζ ∈ (0, 1

12 ), Number of iterations K, Instance
distribution Γ, Configuration distribution Π

2: Nk ← Sample
⌈

log(ζ/K)
log(1−γk)

⌉
−
⌈

log(ζ/K)
log(1−γk+1)

⌉
many configurations from Π for k ∈ [0,K − 1]

3: b←
⌈

26
δ log

(
2n
ζ

)⌉
4: Reset T ←∞
5: N ←

⋃K−1
k=0 Nk

6: for k = K − 1 downto 0 do
7: N k ← PRECHECK (Nk, ζ/K)
8: for configurations i ∈ N k in parallela do
9: Pi ← CAPSANDRUNS (i, ε, δ, ζ) thread

10: Start running Pi
11: Pause Pi when b runs of RUNTIMEEST

finished
12: end for
13: end for
14: N ← PRECHECK (N , ζ/K)
15: Continue runing Pi for i ∈ N
16: // CAPSANDRUNS eliminates the threads
17: Wait until all threads finish, abort if |N | = 1
18: return i∗ = argmini∈N Ȳ (i) and τi∗

Algorithm 2 CAPSANDRUNS thread

1: Inputs: Configuration i, precision ε, quantile
parameter δ, failure probability parameter ζ

2: // Phase I:
3: Run τi ←QUANTILEEST (i, δ)
4: // Phase II:
5: if QUANTILEEST (i, δ) aborted then
6: Remove i from N
7: else
8: Ȳ (i)← RUNTIMEEST(i, τi, ε, δ, ζ)
9: if RUNTIMEEST rejected i then

10: Remove i from N
11: end if
12: end if

Algorithm 3 QUANTILEEST

1: Inputs: i, δ
2: Initialize: m←

⌈
(1− 3

4δ)b
⌉

3: Run configuration i on b instances, in parallel,
until m of these complete. Abort and return
abort if total work ≥ 1.5Tb.

4: τ ← runtime of mth completed instance
5: return τ

aWhen running CAPSANDRUNS threads in parallel, we
allocate the same amount of time for every running thread,
regardless of the number of parallel tasks they themselves
may be performing.

Algorithm 4 PRECHECK

1: Inputs: ConfigurationsM, error parameter ζ/K
2: M′ ← {} . empty set
3: b′ ←

⌈
32.1 log

(
2K
ζ

)⌉
4: if T =∞ then
5: returnM
6: end if
7: for i ∈M do
8: if T last set when evaluating i then
9: append i toM′ . Add automatically

10: Continue
11: end if
12: // Phase I:
13: Run i on b′ instances in parallel until d0.8b′e

complete. Abort if total work ≥ 1.9Tb′.
14: if not aborted then
15: τ ′ ← runtime of d0.8b′eth completed instance
16: // Phase II:
17: for l = 1, l ≤ b′ do
18: Yl ← runtime of configuration i on

instance j ∼ Γ, with timeout τ ′

19: if
∑l
m=1 Ym > 2.99Tb′ then

20: // Stop measuring if total work too large
21: Break
22: end if
23: end for
24: Sample mean Ȳ ← 1

|Y |
∑
y∈Y y

25: Sample variance σ̄2 ← 1
|Y |
∑
y∈Y (y − Ȳ )2

26: Confidence C ← σ̄

√
2 log( 3K

ζ )

l +
3τ ′ log( 3K

ζ )

l

27: if Ȳ − C ≤ T then
28: append i toM′
29: end if
30: end if
31: end for
32: returnM′

Algorithm 5 RUNTIMEEST

1: Inputs: i, τi, ε, δ, ζ
2: Initialize: j ← 0
3: while True do
4: Sample jth instance J from Γ
5: Yi,j ← runtime of configuration i on instance J ,

with timeout τi
6: Sample mean Ȳ (i)← 1

j

∑j
j′=1 Yi,j′

7: Sample variance σ̄2
i ← 1

j

∑j
j′=1(Yi,j′ − Ȳ (i))2

8: // Calculate confidence:

9: Ci ← σ̄i

√
2 log(

3nj(j+1)
ζ )

j +
3τi log(

3nj(j+1)
ζ )

j

10: if Ȳ (i)− Ci > T then
11: return reject i
12: end if
13: if j=b then
14: T ← min{T, 2Ȳ (i)}.
15: end if
16: T ← min{T, Ȳ (i) + Ci} . upper confidence
17: if Ci ≤ ε

3 (2Ȳ (i)− Ci) then
18: return accept i with runtime estimate Ȳ (i).
19: end if
20: j ← j + 1
21: end while
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Discussion. (i) To illustrate the advantages captured by the theorem, consider a situation where
configuration runtimes are distributed exponentially, with their mean distributed uniformly over an
interval [A,A + B]. When the number of near-optimal configurations is small (i.e., B/A is large
enough), the bound on the fraction of configurations surviving PRECHECK, F (38OPTγδ/2), roughly
scales with γ, resulting in a runtime OPTγδ/2/(ε

2δ), providing a γ-factor speedup over typical bounds
in other work (which scale with OPTγδ/2/(ε

2δγ)). (Details are given in Appendix C.)

(ii) The first term in the bound corresponds to the work done in the final racing part of ICAR. The
other terms correspond to the work done for each batch Nk (except that the cost of the last precheck
is included in the k = 0 term).

(iii) Kleinberg et al. [24] showed that to find an (ε, δ)-optimal configuration out of a pool of size n,
the worst-case minimum total runtime is Ω̃(nOPT

ε2δ ).6 Since we need to test Ω(1/γ) configurations, in

the worst case the total runtime needed to find an (ε, δ, γ)-optimal configuration is about
OPTγ

δ/2

ε2δγ . The
first term in our bound matches this, except that it is multiplied by (an upper bound on) the fraction
of configurations surviving PRECHECK, F (38OPTγδ/2). Under typical parameter settings, this is the
main term of the bound—the only one scaling with 1/(ε2δγ)—and the performance improvement of
ICAR over CAR comes from this additional factor of F (38OPTγδ/2). Note that this term, and all the
others, scale with a bound on the optimal runtime for the set of configurations they correspond to
(e.g., for batch Nk they scale with OPTγkδ/2).

(iv) F (38OPT
γk+1

δ/2 ) is an upper bound on the number of configurations surviving PRECHECK from
Nk. Due to the a worst-case nature of our analysis, the bound is conservative, and in practice the
number of surviving configurations is much smaller. In essence, this term measures how many
configurations are competitive with a very good (OPT

γk+1

δ/2 -optimal) configuration. In other words, it
measures the “needle-in-a-haystack” property of the configuration task.

(v) The first term can be replaced with the problem-dependent bound of Weisz et al. [36, Equation 1]
for n = F (38OPTγδ/2) 1

γ configurations. This bound depends on the characteristics of the runtime
distributions of the configurations, and show that the algorithm can run much faster if the problem is
easy, e.g., adapting to the relative variance of the runtime distributions. However, for simplicity, we
only present the worst-case form here.

(vi) The rest of the terms represent the cost of iteratively selecting only the best configurations to
evaluate. None of these terms depends on 1/ε2. Note 1/γk is roughly the number of configurations
in batch Nk, and each configuration is run essentially as long as the best configuration in that batch
(OPTγkδ/2). Each of these configurations is run on constantly many instances in PRECHECK, and
the surviving fraction of F (38OPT

γk+1

δ/2 ) configurations is also run on 1/δ instances to measure an
accurate cap and set the bound T . These terms scale with OPTγkδ/2/γk = 2−kOPTγkδ/2/γ. Thus, the
bound is only meaningful when 2−kOPTγkδ/2 is not too large. While in principle they can be infinite,
in realistic scenarios this is not the case. Nevertheless, this requires the practitioner to choose γK−1

such that it guarantees a small-enough optimal runtime OPT
γK−1

δ/2 , which is essentially the same
task as choosing a proper γ. The terms also scale with 1/δ, but the effect of this is mitigated by the
success of PRECHECK: for k 6= K − 1, each term is multiplied by the upper bound F (38OPTγkδ/2)

on the fraction of configurations surviving PRECHECK.

(vii) Our analysis shows that CAR can be sped up significantly without sacrificing any of its guarantees
from Weisz et al. [36], by measuring the runtime caps on fewer samples (i.e., replacing the original
value of b from Weisz et al. [36] with the one in Line 3 of Algorithm 1). We call this improved
algorithm CAR ++. This effect is also partly responsible for the improved performance of ICAR.

Insights into the algorithm and proof sketch We start with a brief description of the CAR
algorithm, which runs parallel threads of Algorithm 2 for all configurations it considers. As described
before, one thread, working on configuration i, has two phases: In the first phase, implemented
in QUANTILEEST (Algorithm 3), a runtime cap τi is determined such that i is guaranteed, with

6Essentially this holds since we need Ω̃( 1
ε2δ

) sample runs to estimate the δ-capped runtime of a configuration
with accuracy ε, as the maximum runtime for configuration i on some instance can be as large as Rδ(i)/δ.
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high probability, to solve a random instance with probability between 1 − δ and 1 − δ/2 (i.e.
tδ(i) ≤ τi < tδ/2(i)).7 This is achieved by solving sufficiently many instances in parallel, and τi
is selected to be the time when a (1− 3δ/4)-fraction of the instances are solved. If measuring this
cap takes too long, then QUANTILEEST stops measuring and eliminates configuration i. Unless this
happens, in the second phase, the method RUNTIMEEST (Algorithm 3) is used to estimate the mean
τi-capped runtime Rτi(i) of i, by solving successively selected random instances and computing
the average runtime Ȳ (i). Then the empirical Bernstein inequality [4] is used to guarantee that
Rτi(i) ∈ [Ȳ (i)−Ci, Ȳ (i) +Ci] for Ci calculated in Line 9 of Algorithm 5. This confidence interval
is used continuously in multiple ways: (i) to reduce a global upper bound T on the best possible
runtime of all the configurations (Line 16); (ii) to eliminate a configuration if it shows thatRτi(i) > T
(Line 10); and (iii) to check if Rτi(i) is estimated accurately enough (Line 17). The procedure (which
is an instance of a so-called Bernstein race [31]) continues until each configuration is either measured
accurately or eliminated. The continuous elimination (also in QUANTILEEST) and parallel execution
guarantees that when the procedure stops, every configuration is run for at most Õ(OPT/(ε2δ))
time, and eventually an (ε, δ)-optimal configuration is found, where OPT is the minimum mean
δ/2-quantile capped runtime of the configurations.

As explained before, ICAR (Algorithm 1) starts to examine new configurations in batches. For
any batch Nk, first each configuration is quickly tested to see if it can be excluded from the set of
potentially optimal configurations. This is done by the PRECHECK function, given in Algorithm 4.
PRECHECK is very similar to CAR, but works with constant accuracy and quantile parameters
instead of ε and δ, ensuring that it runs quickly, in time independent of these parameters. Also,
the conditions to reject configurations are slightly different. For a configuration i, PRECHECK first
estimates a cap τ ′ that guarantees solving random instances with constant probability pi ∈ [0.1, 0.35];
then the mean τ ′-capped runtime is estimated roughly up to a constant multiplicative error. Since
δ/2 ≤ 0.1 (the lower bound on pi), PRECHECK can compute multiplicative lower bounds on the
runtime Rδ/2(i). These are then used to set the rejection conditions such that at least one of the
best configurations from this batch i with Rδ/2(i) ≤ T is not rejected. Combining with the fact
that

⋃K−1
j=k Nj contains a top-γk configuration, such a configuration survives PRECHECK and the

corresponding CAPSANDRUNS-thread in ICAR (Algorithm 1) ensures that T is set to at most
2OPTγkδ/2 in Line 11 of Algorithm 1, that is, T is continuously refined as new batches are evaluated.
The number of configurations surviving PRECHECK can be bounded by looking at mean runtimes
capped at the 0.35-quantile (upper bound on pi). Together with the setting of T , this implies that
at most a Õ(F (38OPT

γk+1

δ/2 ) fraction of the |Nk| = Õ(1/γk) configurations survive PRECHECK.
Considering that the number of runs carried out for each configuration is constant in PRECHECK,
Õ(1/δ) in the loop of Algorithm 1, and Õ(1/(ε2δ)) in the last full CAR procedure, since the average
runtime per configuration for Nk is OPTγkδ/2 (by the analysis of CAR), the runtime bound of the
theorem follows. Correctness (i.e., the fact that the procedure finds an (ε, δ, γ)-optimal configuration)
follows from that of CAR and because PRECHECK retains good configurations, as just shown.

4 Experiments
The basic setup and main results of our experimental analysis of ICAR are given below, while details
are presented in Appendix D, along with a synthetic experiment examining ICAR’s speedup as good
configurations become increasingly rare. We compared against the best available configurators that
come with theoretical guarantees. We used the improved version of CAR (CAR++), derived in
this paper, which uses a smaller b-value than the original version, thanks to our improved analysis
(see Section 3 and Appendix A for details). Including CAR++ in the experiments allowed us to
separately examine the effects of two improvements we introduced: (i) the smaller number of samples
b needed in CAR, and (ii) the main conceptual innovation of this paper, the impatient discarding of
configurations using PRECHECK. We attempted to compare against SPC [25] as well. However, in
the experiments presented in Table 1, although SPC identified good configurations, it usually was
not able to provide the required guarantees on ε and δ even after running for twice as long as the
slowest alternative considered (CAR): SPC did not provide guarantees for 7 out of the 9 scenarios
while also being the slowest in the other two cases (1.56 and 1.91 times slower than CAR). Therefore,
we decided not to include SPC in our further comparisons.

7Almost all guarantees provided in this paper are based on random sampling and hence hold with high
probability. For brevity, when it is clear from the context, we often omit the ‘high-probability’ qualifier.
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Total CPU Time (days) Number of Conf. Before/After PRECHECK Rδ of returned conf. (secs)

γ = 0.05 γ = 0.02 γ = 0.01 γ = 0.05 γ = 0.02 γ = 0.01 γ = 0.05 γ = 0.02 γ = 0.01

Minisat
CNFuzzDD

ICAR 101 (13) 243 (15) 467 (25) 134 / 74 351 / 197 724 / 395 5.0 (0.1) 4.9 (0.1) 4.9 (0.1)
CAR++ 92 (5) 224 (16) 452 (18) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CAR 158 (18) 368 (7) 771 (22) 97 245 492 5.2 (0.1) 4.9 (0.1) 4.9 (0.1)

CPLEX
Regions200

ICAR 164 (91) 275 (101) 420 (103) 134 / 10 351 / 15 724 / 26 34.8 (4.3) 29.8 (2.2) 28.5 (1.8)
CAR++ 229 (20) 567 (28) 1098 (88) 97 245 492 35.3 (4.3) 32.0 (2.2) 29.8 (1.8)

CAR 524 (53) 1295 (64) 2549 (199) 97 245 492 35.3 (4.5) 31.9 (1.6) 29.8 (2.2)

CPLEX
RCW

ICAR 1284 (391) 2030 (302) 4072 (239) 134 / 18 351 / 44 724 / 97 156.1 (11.9) 146.5 (4.1) 143.3 (4.9)
CAR++ 1728 (375) 3644 (185) 7526 (131) 97 245 492 162.1 (11.9) 149.1 (4.1) 143.3 (4.9)

CAR 3306 (502) 7591 (192) 15658 (258) 97 245 492 160.1 (13.3) 149.1 (4.7) 143.3 (4.9)

Table 1: Total CPU time in days to find a (0.05, 0.1, γ)-optimal configuration, the number of configurations before and after PRECHECK,
and the quality of the returned configurations, as measured by δ-capped mean runtime with δ = 0.1. For CAR and CAR++, the number of
configurations sampled is reported. Error terms (in parentheses) are standard deviations over five runs.

Datasets. We looked at two datasets from MIP and one from SAT. We considered true runtime
data from the minisat SAT solver on instances generated by CNFuzzDD (http://fmv.jku.at/
cnfuzzdd), which was examined in past work [35, 36, 25]. For the MIP scenarios, we looked at the
CPLEX integer program solver on combinatorial auction instances (Regions200 [27]) and problems
from wildlife conservation (RCW [1]). To generate sufficient MIP runtime data, following Hutter
et al. [23], we used an Empirical Performance Model (EPM)—a random forest model trained on
existing runtime data—to predict the runtime of new configurations on new instances. EPMs can
do surprisingly well at predicting individual runtimes, particularly on the MIP datasets we consider.
More importantly for our purposes, Eggensperger et al. [13] showed that such EPMs are effective
surrogates for algorithm configuration, capturing key properties of runtime distributions such as the
relative quality of configurations. We note that similar surrogates have also been used to guide search
procedures [20, 9, 34, 38], to build algorithm portfolios [32, 37], to impute missing data [10], and to
optimize hyperparameters from limited observations [33].

Main Results. Table 1 shows the total CPU time needed to find a (0.05, 0.1, γ)-optimal configura-
tion on each dataset with the same total failure probability (0.05) and with different values of γ. The
parameters were not specifically chosen; results for varying ε and δ are reported in Appendix D. ICAR
consistently outperformed CAR in all cases; ICAR outperformed CAR++ on the MIP datasets and
was competitive on the SAT one. The performance improvement was largest when the PRECHECK
mechanism managed to discard the most configurations; the MIP datasets have relatively more weak
configurations, enabling PRECHECK to filter out more configurations quickly (see Fig. 2 in the
Appendix for the distribution of configuration means). When γ is relatively small, ICAR was more
likely to sample a really good configuration, making it easier to discard weak ones. In this case its
runtime was as little as half that of CAR++, a significant improvement. Despite taking less total CPU
time, ICAR actually sampled more configurations than CAR did. To understand this phenomenon
better, Fig. 1 shows the time spent running each configuration. For all datasets the plots nearly overlap
for the very best few configurations, indicating that ICAR treated these good configurations in much
the same way as CAR or CAR++. However, the effect of the PRECHECK mechanism is clear, as
ICAR ran many bad configurations for near-zero time, discarding them quickly. In cases where a
bad configuration made it past PRECHECK (largest spikes in the blue curve), ICAR ran it for an
amount of time similar to CAR++. Finally, the empirical mean δ-capped runtime (Rδ) of the returned
configuration is reported in Table 1. All configurators returned solutions with similar quality, but
thanks to its ability to examine more configurations, ICAR often did slightly better.

5 Conclusions

This paper presented a novel algorithm configuration method, ICAR, that selects configurations
from an infinite pool with optimal theoretical guarantees up to logarithmic factors under mild
conditions. While earlier theoretically grounded methods thoroughly test all configurations, ICAR—
like successful heuristic approaches—quickly discards less promising ones. As a result, ICAR
achieves significant speedups, particularly in needle-in-a-haystack scenarios. It thus constitutes an
important step towards closing the gap between theoretical and heuristic procedures.

A key limitation is that our work focuses simply on evaluating randomly sampled configurations.
We do note that state-of-the-art heuristic methods also evaluate many random configurations to
avoid getting stuck in local optima, so analyzing such procedures is of obvious practical importance.
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Figure 1: CPU time spent on each configuration while searching for a (0.05, 0.1, 0.05)-optimal one (note the log scale on the y-axis).
CAR and CAR++ allocated a significant amount of time to evaluating bad configurations, while ICAR discarded many of these with near
minimal work via its PRECHECK routine. The large spikes in the ICAR curve are those configurations that fail to be rejected by the first call
to PRECHECK. Smaller spikes are configurations that were also rejected by PRECHECK, but the decision took more time (e.g., T was larger in
PRECHECK or the configuration was rejected in the second phase of PRECHECK).

Furthermore, ICAR can be understood as a way of weighing different candidate configurations against
each other, which could be proposed by model- or gradient-based methods as well as by random
sampling (see, e.g., an argument to this effect in [24, Theorem 7.1]).

Broader Impact

We expect that our theorems will guide the design of future algorithm configuration procedures.
We note that speeding up computationally expensive algorithms saves time, money, and electricity,
arguably reducing carbon emissions and yielding social benefit. The algorithms we study can be
be applied to a limitless range of problems and so could yield both positive and negative impacts;
however, we do not foresee our work particularly amplifying such impacts beyond the computational
speedups already discussed.
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A Proof of Theorem 1

First we give a detailed outline of the proof, followed by the actual statements and their proofs.

The first step of the proof improves the analysis of CAPSANDRUNS given in [36]. In [36], the
value of b was

⌈
48
δ log

(
3n
ζ

)⌉
, which we replace here with

⌈
26
δ log

(
2n
ζ

)⌉
. This value is used in

the original analysis of CAPSANDRUNS twice, in Lemma 2 and Lemma 3 of [36]. The analysis of
Lemma 2 still holds with the new value without any change, while we give a new proof for Lemma 3
of [36]: the difference is that in the new proof we use the Bernstein inequality (Appendix E) rather
than its empirical version. The new version of the lemma, Lemma 2, is slightly stronger, which means
we can replace 2Tb with 1.5Tb in Line 3 of the sub-routine QUANTILEEST. Note that this change of
the value of b itself improves the runtime of CAR, and we call the resulting algorithm CAR++, which
will also be examined in the experiment section.

To prove Theorem 1, we need to (i) prove the correctness of IMPATIENTCAPSANDRUNS, that is,
the (ε, δ, γ)-optimality of the configuration returned by the algorithm; and (ii) give a bound on the
total runtime. Starting with the correctness, we note that the algorithm proceeds in iterations from
K − 1 to 0 in decreasing order, sampling bigger and bigger sets of configurations Nk. Each new
set Nk, together with those configurations sampled before for k′ > k, contains an OPTγkδ/2-optimal
configuration with high probability (Lemma 4), in other words, a configuration from an exponentially
decreasingly small quantile of the best configurations. The size of Nk, for all k ∈ [0,K − 1] is
roughly log(K/ζ)/γk (Lemma 6). Next, we prove in Lemma 8 that PRECHECK does not reject a
good configuration, and does reject a truly bad configuration. Unlike other parts of the proof, we
do not guarantee this to hold with high probability for all configurations, instead we guarantee it to
hold with high probability for any one configuration per each iteration k; this will be chosen later
to be one of the OPTγkδ/2-optimal configurations. Then, Lemma 10 shows that there remains an
OPTγkδ/2-optimal configuration after each iteration k (Line 11 of Algorithm 1) that is not rejected
by QUANTILEEST or RUNTIMEEST. This is because even if our designated configuration was
rejected by PRECHECK, that means that there was an even better configuration, which from the
proof of CAPSANDRUNS, by Lemma 9, will not be rejected by QUANTILEEST or RUNTIMEEST.
Several corollaries follow from this. Corollary 11 shows that with high probability, the configuration
IMPATIENTCAPSANDRUNS returns in the end is (ε, δ, γ)-optimal, showing the correctness of the
algorithm To prove the runtime bound, we start by showing that in every iteration k, T is set to at
most 2OPTγkδ/2, after evaluating a configuration for no more than 4bOPTγkδ/2 time (Corollary 12).
From this, Corollary 13 deduces a runtime bound for CAR in each iteration, which depends on
the number of configurations surviving PRECHECK. Using the correctness analysis of PRECHECK
(Lemma 8), Lemma 14 gives an upper bound on this number, essentially saying that roughly only
F (38OPT

γk+1

δ/2 ) fraction of the Nk configurations survive PRECHECK in round k, where F (x) is
roughly the probability of a random configuration sampled from Π having a larger 0.35th quantile-
capped8 runtime than x. That is, essentially only those configurations survive which can solve at least
65% of the problem instances reasonably fast.

This is complemented by Lemma 15, which gives a runtime bound for PRECHECK, relying on Lines
13 and 21 of PRECHECK (Algorithm 4) stopping lengthy evaluations. To finish the proof, we combine
the runtime bounds for all the components of ICAR discussed above. The lemmas above introduce
various high-probability events under which their statements hold (by guaranteeing mostly that our
bounds on the runtime caps and on the average runtimes hold), and a union bound over them proves
that all those events hold simultaneously with probability at least 1− 12ζ, proving Theorem 1.

A.1 Formal Proof

Lemma 2 (Improved version of Lemma 3 of [36]). Let τ be a constant satisfying 0 ≤ τ ≤ tδ/2(i),
and let Zτ (i, j), j ∈ [1, b], be b runtime measurements of configuration i with timeout τ . Let Z̄τ (i)
be their average and Rτ (i) their expectation. Then for c > 0, Pr

(
|Z̄τ (i)−Rτ (i)| ≥ cRτ (i)

)
≤

8This constant 0.35 can be set arbitrarily, and it only affects other constants in the algorithm. It was set to
0.35 so that these constant do not increase beyond how large they have to be to guarantee other statements with
high probability.
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2 exp
(

bδc2

4(1+c/3)

)
. In particular, for Si = { 1

2Rτ (i) ≤ Z̄τ (i) ≤ 1.5Rτ (i)} and b =
⌈

26
δ log

(
2n
ζ

)⌉
,

we have Pr(Sci ) ≤
ζ
n (by substituting c = 1

2 ).

Proof. Since Zτ (i, j) ≤ τ , Var(Zτ (i)) = Varj∼Γ[Zτ (i, j)] ≤ Ej∼ΓZ
2
τ (i, j) ≤ τRτ (i). As at least

δ/2 fraction of instances run longer than τ , we have that Rτ (i) ≥ δ
2τ , so Var(Zτ (i)) ≤ 2

δR
2
τ (i).

Using the Bernstein inequality,

Pr
(
|Z̄τ (i)−Rτ (i)| ≥ cRτ (i)

)
≤ 2 exp

(
− bc2R2

τ (i)/2
1
3τcRτ (i) + Var(Zτ (i))

)
≤ 2 exp

(
− bc2R2

τ (i)/2
2
3δ cR

2
τ (i) + 2

δR
2
τ (i)

)
= 2 exp

(
bδc2

4(1 + c/3)

)
.

Remark 3. From Lemma 6 of [36], there is an event E1 (with the notation of [36],this event is
E1 ∩ E2 ∩ E3) with Pr(E1) ≥ 1 − 6ζ, under which all the high-probability statements in the
analysis of CAPSANDRUNS hold for the algorithm with the constants improved as above. Note
that throughout ICAR, we only run one CAR, but pause and resume its threads as we go through
the iterations k ∈ [−1,K − 1]. Pausing and resuming threads has no effect on the correctness
proof of CAR, so throughout the execution of ICAR, all the high-probability statements that hold for
CAR also hold for ICAR. In particular, E1 guarantees that the average runtime estimates of CAR
(used in RUNTIMEEST and QUANTILEEST) are close to their expectations, and that QUANTILEEST
measures an accurate cap for each configuration such that tδ(i) ≤ τi ≤ tδ/2(i).

Lemma 4. There is an event E2 with Pr(E2) ≥ 1 − ζ such that under E2, for all integers
k ∈ [0,K − 1], there is a configuration i ∈

⋃K−1
j=k Nj with R

δ
2 (i) ≤ OPTγkδ/2 after Line 2 of

IMPATIENTCAPSANDRUNS (Algorithm 1).

Proof. For any i chosen randomly from the distribution Π, R
δ
2 (i) ≤ OPTγkδ/2 with probability

at least γk. As the configurations are sampled independently, the probability that none of the

sampled configurations are optimal for γk is at most (1 − γk)|
⋃K−1
j=k Nj| = (1 − γk)

⌈
log(ζ/K)
log(1−γk)

⌉
≤

ζ/K. Applying the union bound over k ∈ [0,K − 1], with probability at least 1 − ζ, for all
k ∈ [0,K − 1], there is a configuration i with R

δ
2 (i) ≤ OPTγkδ/2 sampled into

⋃K−1
j=k Nj at Line 2 of

IMPATIENTCAPSANDRUNS.

Remark 5. Noting that γ0 = γ, and
⋃K−1
k=0 Nk = N , the previous lemma with k = 0 states that

under E2, a configuration i with R
δ
2 (i) ≤ OPTγδ/2 is sampled into N .

In the following we refer to the last part of Algorithm 1 (Lines 14 to 18) iteration −1, denote it with
k = −1, and accordingly define N−1 = N and N−1 = N .

Lemma 6. After Line 2 of Algorithm 1, for all k ∈ [−1,K − 1], |Nk| ≤ log(K/ζ)/γk + 1.

Proof. Using that for any x ∈ (0, 1), x ≤ − log(1− x), we have for any k ∈ [−1,K − 1] that

|Nk| ≤
⌈

log(ζ/K)

log(1− γk)

⌉
≤ log(K/ζ)

− log(1− γk)
+ 1 ≤ log(K/ζ)/γk + 1.

By [36, Lemma 2], under E1, and noting that T can only be set by RUNTIMEEST evaluating a
configuration after the cap τ for that configuration has already been measured by QUANTILEEST, we
immediately obtain the following:

Lemma 7. If a configuration i sets T , then tδ(i) ≤ τi ≤ tδ/2(i).
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The next lemma gives conditions for configurations being accepted or rejected by PRECHECK.

Lemma 8. Suppose δ ≤ 0.2 and assume that we are in the PRECHECK call in iteration −1 ≤
k < K − 1 of Algorithm 1 (recall that iteration -1 refers to the last part of the algorithm after
the iteration loop is finished). Let Prk denote the conditional probability conditioned on all the
random events before the call to PRECHECK. Let i′ be the configuration that was last evaluated
to set T by RUNTIMEEST (in an iteration k′ > k). For any i ∈ M, there is an event E3,k,i with
Prk(E3,k,i) ≥ 1− 4ζ/K such that under E1 and E3,i, (1) if R

δ
2 (i) ≤ Rτi′ (i

′), i will not be rejected
by PRECHECK, and (2) if R0.35(i) ≥ 19T , then i will be rejected by PRECHECK.

Proof. Consider the evaluation of configuration i in PRECHECK. Let Il be the indicator that
the lth instance in Phase I of PRECHECK takes at least t1/10(i) time to complete (without
capping). The Il are independent and identically distributed Bernoulli random variables with
Prk(Il = 1) = 1/10. We use the Chernoff bound (Appendix E) to get that Prk

(∑b′

l=0 Il > 0.2b′
)

=

Prk

(∑b′

l=0 Il >
1
10b
′(1 + 1)

)
≤ exp

(
− 1

30b
′) ≤ ζ/(2K). Let E3,k,i,1 be the event that

∑b′

l=0 Il ≤
0.2b′. Similarly, defining Jl to be the indicator that the lth instance in Phase I of PRECHECK takes
at least t0.35 time to complete (without capping), noting that Prk(Jl = 1) = 0.35, the Chernoff
bound implies that Prk

(∑b′

l=0 Jl < 0.2b′
)

= Prk

(∑b′

l=0 Jl > 0.35b′(1− 0.35−0.2
0.35 )

)
≤ ζ/(2K).

Let E3,k,i,2 be the event that
∑b′

l=0 Jl ≥ 0.2b′.

So for any configuration i ∈M, under E3,k,i,1, the number of samples from the 1/10-tail will be at
most b0.2b′c, and under E3,k,i,2, the number of samples from the 0.35-tail will be at least d0.2b′e, so
picking the d0.8b′eth finished run and denoting it by τ ′ (in Line 15 of Algorithm 4) ensures under
and E3,k,i,1 and E3,k,i,2 that t0.35(i) ≤ τ ′ ≤ t1/10(i). For δ ≤ 0.2 (which we have by assumption),
this implies that τ ′ ≤ tδ/2(i).

By [36, Lemma 7], under E1, Rτi′ (i
′) ≤ T . Assuming that R

δ
2 (i) ≤ Rτi′ (i

′) for (1), we have
R
δ
2 (i) ≤ T . Then under E3,k,i,1, Rτ ′(i) ≤ R1/10(i) ≤ T (as by assumption δ ≤ 0.2 and

τ ′ ≤ t1/10(i), so Rτ ′(i) ≤ R1/10(i) ≤ R
δ
2 (i) ≤ Rτi′ (i

′) ≤ T ). There are two cases in which
we reject configuration i. First, if avg(Y ) − C ≥ T . By the empirical Bernstein bound [4]
(Appendix E), there is an event E3,k,i,3 such that Prk(E3,k,i,3) ≥ 1 − ζ/K, and under E3,k,i,3,
| avg(Y )− Ek[avg(Y )|τ ′]| ≤ C. As Ek[avg(Y )|τ ′] = Rτ ′(i) ≤ T , we have that under E1, E3,k,i,1

and E3,k,i,3, configuration i in iteration k will not be rejected in Line 27 of PRECHECK if (1) holds.

The second type of rejection happens in Line 13 of PRECHECK when Phase I of PRECHECK runs
for at least 1.9Tb′ time. For each run l that is performed in Phase I, denote by Xl the hypothetical
runtime of that instance if the cap were t1/10(i), and by Yl the run if the runtime cap were t0.35(i).
From the above, under E3,k,i,1 τ

′ ≤ t1/10(i), and if we had to abort then that means we haven’t run
any instance for τ ′ time yet, so by denoting measurements performed so far by Phase I of PRECHECK
by X̄l, we have X̄l ≤ Xl, so when we abort we have that avg(X) ≥ 1.9T .

Applying Lemma 2 with c = 0.9, b = b′ =
⌈
32.1 log

(
2K
ζ

)⌉
, δ = 0.2, and τ = t1/10(i), we get that

Prk
(
| avg(X)−R1/10(i)| ≥ 0.9R1/10(i)

)
≤ 2 exp

(
b′ 81

5·520

)
≤ ζ

K . Denote by E3,k,i,4 the event
that avg(X) ≤ 1.9T . Then, for (1), under E1 and E3,k,i,1, by the above R1/10(i) ≤ T , we have
Prk(avg(X) ≥ 1.9T ) ≤ Prk(avg(X)−R1/10(i) > 0.9R1/10(i)) ≤ ζ

K , so Prk(E3,k,i,4) ≥ 1− ζ
K ,

and under E1 and E3,k,i,4, this configuration will not be rejected in Line 13 of PRECHECK if it
satisfies (1).

For (2), let E3,k,i,5 the event that avg(Y ) ≥ 0.1R0.35(i)). Apply Lemma 2 with the same param-
eters except τ = t0.35(i), to get that Prk(avg(Y ) ≤ 0.1R0.35(i)) = Prk(R0.35(i) − avg(Y ) ≥
0.9R0.35(i)) ≤ Prk(| avg(Y )−R0.35(i)| ≥ 0.9R0.35(i)) ≤ 2 exp

(
b′ 81

5·520

)
≤ ζ

K . For PRECHECK
to not reject a configuration i, it measures a cap τ ′ ≥ t0.35(i) (under E3,k,i,2), and so the mea-
surements Ȳl satisfy Ȳl ≥ Yl, so we spend b′ avg(Ȳl) ≥ b′ avg(Yl) ≥ 0.1R0.35(i) time for
configuration i under E3,k,i,5. Thus, with probability at least Prk(E3,k,i,4) ≥ 1 − ζ/K, a con-
figuration where R0.35(i) ≥ 19T is rejected in Line 13. Taking a union bound and letting
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E3,k,i = E3,k,i,1 ∩ E3,k,2 ∩ E3,k,i,3 ∩ E3,k,i,4 ∩ E3,k,i,5 (the event that all the high-probability
statements above hold for configuration i and iteration k), we have that Prk(E3,k,i) ≥ 1−4ζ/K.

From the proof of [36, Theorem 1] we can extract the following result:

Lemma 9. LetN be the set of configurations CAPSANDRUNS is called with, andN ′ the ones among
these that are not rejected in QUANTILEEST. Let i∗ = mini∈N ′ Rτi(i). Under E1, i∗ is not rejected
in RUNTIMEEST and CAPSANDRUNS returns a configuration I for whichRτI (I) ≤ (1+ε)Rτi∗ (i∗).

To proceed, we instantiate the events E3,k,i of Lemma 8 for one of the best configurations i in Nk.
By Lemma 4 and Remark 5, under E2, for every iteration k of IMPATIENTCAPSANDRUNS, there
is a configuration ı̂∗k ∈

⋃K−1
j=k Nj such that R

δ
2 (̂ı∗k) ≤ OPTγkδ/2. Furthermore, this guarantees that

ı̂∗0 ∈ N satisfies R
δ
2 (̂ı∗0) ≤ OPTγδ/2, which also implies, through the first part of Lemma 9, that

under E1, there is a configuration ı̂∗−1 satisfying R
δ
2 (̂ı∗−1) ≤ OPTγδ/2. Now we define the following

event E4 ⊂ E1 ∩ E2 as E4 = ∩K−2
k=−1E3,k,̂ı∗k

∩ E1 ∩ E2.

Lemma 10. Pr(E4) ≥ 1− 11ζ. Under E4, for all integer 0 ≤ k ≤ K − 1, there is a configuration
i∗k remaining in

⋃K−1
j=k N j at the end of the kth iteration (after Line 11 in Algorithm 1), that is not

rejected by QUANTILEEST or RUNTIMEEST, for which Rτi∗
k
(i∗k) ≤ OPTγkδ/2. Similarly, there is

a configuration i∗ remaining in N at the end of the final CAPSANDRUNS call (after Line 17 in
Algorithm 1), for which Rτi∗ (i∗) ≤ OPTγδ/2.

Proof. By the union bound, taking also into account the lower bounds on the probabilities of E1, E2,
and E3,k,i∗k,j

(given by Remark 3, Lemma 4, Lemma 8, Lemma 14), we have Pr(E1 ∩E2) ≥ 1− 7ζ ,
and Pr(E4) ≥ 1− 11ζ.

Now suppose E4 holds (this also means that E1 and E2 hold). Let i′ denote the configuration that
last set T .

For k = K − 1 there is no PRECHECK as T =∞, in other words nothing is rejected by PRECHECK.
For iterations 0 ≤ k ≤ K − 2, and for the final CAPSANDRUNS call, either R

δ
2 (̂ı∗k) ≤ Rτi′ (i

′), in
which case by Lemma 8, under E1 and E3,k,̂ı∗k

, ı̂∗k is not rejected, or R
δ
2 (̂ı∗k) > Rτi′ (i

′). Thus under
E4, R

δ
2 (̂ı∗k) > Rτi′ (i

′) holds whenever ı̂∗k is rejected. We assume this for the rest of the proof.

The remainder of this proof handles iterations 0 ≤ k ≤ K − 1, but the arguments transfer for the
final CAPSANDRUNS call case by writing γ and ı̂∗−1 instead of γk and ı̂∗k. We investigate the two
possible cases:

• If ı̂∗k is not rejected by PRECHECK, then under E1 by Lemma 8 in [36], there is an i in the set
of configurations CAPSANDRUNS is called with, that will not be rejected by QUANTILEEST,
and for which Rτi(i) ≤ R

δ
2 (̂ı∗k) ≤ OPTγkδ/2.

• If ı̂∗k is rejected by PRECHECK, then i′ is a configuration not rejected by QUANTILEEST (as
it set T ), for which Rτi′ (i

′) ≤ R δ
2 (̂ı∗k) ≤ OPTγkδ/2.

In either case, there is a configuration i not rejected by QUANTILEEST, for which Rτi(i) ≤ OPTγkδ/2.
Thus by Lemma 9, under E1, there is a configuration i∗k not rejected by QUANTILEEST or RUN-
TIMEEST for which Rτi∗

k
(i∗k) ≤ Rτi(i) ≤ OPTγkδ/2.

Corollary 11. Under E4, the configuration returned by IMPATIENTCAPSANDRUNS is (ε, δ, γ)-
optimal.

Proof. By Lemma 9 and Lemma 10, under E4, the final CAPSANDRUNS call returns with a configu-
ration I for which RτI (I) ≤ (1 + ε)Rτi∗ (i∗) ≤ (1 + ε)OPTγδ/2. Under E1, Rδ(I) ≤ RτI (I), so I
is (ε, δ, γ)-optimal.
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Corollary 12. Under E4, for all iterations 0 ≤ k ≤ K − 1, T is set by QUANTILEEST to at
most 2OPTγkδ/2, and the combined time spent by QUANTILEEST and RUNTIMEEST evaluating the
configuration that has set T is bounded by 4bOPTγkδ/2 when it sets T .

Proof. Take i∗k as in Lemma 10. Since i∗k is not rejected in either QUANTILEEST or RUNTIMEEST, its
b measurements in RUNTIMEEST will complete, and by [36, Lemma 4], under E1, this measurement
will be at most 2Rτi∗

k
(i∗k) ≤ 2OPTγkδ/2. T is thus set to at most this value. From the proof of

[36, Lemma 5], the work spent by QUANTILEEST and RUNTIMEEST evaluating i∗k is bounded by
4bOPTγkδ/2 time.

Corollary 13. Suppose E4 holds. Then for all iterations 0 ≤ k ≤ K − 1, CAPSANDRUNS performs
at most Õ

(
b|N k|OPTγkδ/2

)
work.

Proof. By Corollary 12, under E4, in iteration k, T is set to at most 2OPTγkδ/2, after which by

the proof of [36, Lemma 5], each configuration performs at most Õ
(
bOPTγkδ/2

)
work. Also by

Corollary 12, the work performed by the configuration that set T to this value in iteration k is
upper bounded by 4bOPTγkδ/2. Since configurations are run in parallel, all the other configurations
performed at most this amount of work in the meantime. Thus in total CAPSANDRUNS performs at
most Õ

(
b|N k|OPTγkδ/2

)
work in iteration k.

Lemma 14. There is an event E5 such that Pr(E5) ≥ 1 − ζ, and under E5, E1, and E4, for all
iterations k ∈ [−1,K − 2], the number of configurations not rejected by PRECHECK can be bounded
as

|N k| ≤ (log(K/ζ) + 1)

[
F (38OPT

γk+1

δ/2 )
1

γk
+

√
2F (38OPT

γk+1

δ/2 )
1

γk
+

2

3

]
,

where F (x) = Pri∼Π(R0.35(i) ≤ x) + 4ζ/K.

Proof. Note that for the first call of PRECHECK, with k = K − 1, PRECHECK returns its input
without any modification, so |M′| = |M|. For the rest of the calls, −1 ≤ k < K − 1.

Denoting by Bi the indicator whether configuration i ∈ Nk is accepted by PRECHECK. Since
elements of Nk are independent and identically distributed random variables, and there are no
interactions between configurations being evaluated by PRECHECK, the outcomes Bi of PRECHECK
are also independent and identically distributed. By Lemma 8, under E1, PRECHECK rejects a
configuration i if R0.35(i) ≥ 19T with probability at least 1− 4ζ/K, so the probability of reject is at
least Pri∼Π(R0.35(i) ≥ 19T |T )(1−4ζ/K) ≥ Pri∼Π(R0.35(i) ≥ 19T |T )−4ζ/K = 1−F (19T ),
so the conditional probability of accept is at most F (19T ). The number of configurations not accepted

is
∑
i∈Nk Bi. Let E5,k be the event that

∑
i∈Nk Bi ≤ F (19T )|Nk| +

√
2F (19T )|Nk| log K

ζ +

2
3 log

(
K
ζ

)
. By the Bernstein inequality, Pr

(
Ec5,k

∣∣∣T) ≤ ζ
K . Since this holds for all values of T ,

we have that Pr
(
Ec5,k

)
≤ ζ

K , so by a union bound over k ∈ [−1,K − 2], Pr(E5) ≥ 1 − ζ for

the event E5 =
⋂K−2
k=−1E5,k. By Lemma 6, |Nk| ≤ log(K/ζ)/γk + 1. By Corollary 12, under E4,

T ≤ 2OPT
γk+1

δ/2 when PRECHECK is run for iteration k. Making these substitutions and reordering
the terms gives the result.

Lemma 15. For iterations −1 ≤ k < K − 1, under E4, PRECHECK runs for at most
10OPT

γk+1

δ/2

⌈
32.1 log

(
2K
ζ

)⌉
(log(K/ζ)/γk + 1) time.

Proof. By Corollary 12, under E4, T ≤ 2OPT
γk+1

δ/2 when PRECHECK is run for iteration k. Phase
I of PRECHECK is aborted when the total runtime reaches 1.9Tb′ ≤ 3.8OPT

γk+1

δ/2 b′. Phase II of
PRECHECK is aborted when the total Phase II runtime exceeds 2.99Tb′ ≤ 5.98OPT

γk+1

δ/2 b′. This
abort only happens after the last run, which takes at most τ ′ time, where τ ′ is measured in Phase I of
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PRECHECK. Because of the way τ ′ is calculated by Phase I, at least b0.2b′c instances were running
up until τ ′ time, which took b0.2b′c τ ′ ≤ 1.9Tb′ time. For any valid setting of ζ, b0.2b′c ≥ 0.19b′,
so τ ′ ≤ 10T ≤ 20OPT

γk+1

δ/2 ≤ 0.21OPT
γk+1

δ/2 b′, so the work of PRECHECK for each configuration is
upper bounded by (3.8 + 5.98 + 0.21)OPT

γk+1

δ/2 b′ < 10OPT
γk+1

δ/2 b′. Multiplying this by the number
of configurations |Nk| PRECHECK evaluates, and using Lemma 6, the total work of PRECHECK is
bounded by 10OPT

γk+1

δ/2 b′(log(K/ζ)/γk + 1).

Proof of Theorem 1. Suppose E4 and E5 hold. By a union bound, taking also into account the
lower bounds on the probabilities of these events (given by Lemma 10 and Lemma 14), we have
Pr(E4 ∩ E5) ≥ 1 − 12ζ. By Corollary 11, under these events, the configuration returned by
IMPATIENTCAPSANDRUNS is (ε, δ, γ)-optimal.

Next we consider the runtime of IMPATIENTCAPSANDRUNS. For iteration k = K − 1, E1, E2, and
E4, by Corollary 13 and Lemma 6, the runtime of CAPSANDRUNS is Õ

(
bOPTγkδ/2/γK−1

)
. For iter-

ations 0 ≤ k < K−1, by Corollary 13, the runtime of CAPSANDRUNS in iteration k is upper bounded
as Õ

(
b|N k|OPT

γK−1

δ/2

)
. Using the bound |N k| = Õ

(
F (38OPT

γk+1

δ/2 )/γk

)
given by Lemma 14

the work by CAPSANDRUNS in iteration k is bounded by Õ
(
bF (38OPT

γk+1

δ/2 )OPTγkδ/2/γk

)
.

For the final CAPSANDRUNS call, the total work performed by CAPSANDRUNS would only increase
if we didn’t do any work on any configurations before, in other words, if we restarted CAPSANDRUNS
with the input configurations N . By this idea we can upper bound the total work of the final
CAPSANDRUNS call using [36, Theorem 1], which states that under E1, the total work of a restarted
CAPSANDRUNS with input configurations N is at most Õ

(
|N | 1

ε2δ mini∈N R
δ
2 (i)

)
, which is a

simplified form of the problem-dependent bound (1) in [36]. By Lemma 10, mini∈N R
δ
2 (i) ≤

OPTγδ/2, and by Lemma 14, |N | = Õ
(
F (38OPTγδ/2)/γ

)
. Plugging these in the bound we get that

the final CAPSANDRUNS takes Õ
(

OPTγδ/2F (38OPTγδ/2) 1
ε2δγ

)
time.

Now we turn our attention to bounding the work done in PRECHECK. By Lemma 15, under E1, for
all the iterations, and including the final PRECHECK call, the total work is Õ

(∑K−1
k=0 OPTγkδ/2/γk

)
.

Adding all this work up, noting that b = Õ(1/δ), we get that under E4 and E5, the total work
performed by IMPATIENTCAPSANDRUNS is

Õ

(
1

ε2δγ
OPTγδ/2F (38OPTγδ/2) +

K−2∑
k=0

1

γk
OPTγkδ/2

(
1 + F (38OPT

γk+1

δ/2 )/δ
)

+
1

δγK−1
OPT

γK−1

δ/2

)
.

B Comparison of methods with theoretical guarantees

Configuration Anytime No assumption on the Capped Problem-dependent Needle-in-haystack
algorithm maximum runtime OPT bound speedup

SP 3 7 7 7 7
SPC 3 3 7 7 7
LAB 7 3 7 7 7
CAR 7 3 3 3 7
ICAR 7 3 3 3 3 (up to γ-factor)

Table 2: Comparison of algorithm-configuration methods with theoretical guarantees.

To select a near-optimal configuration with high probability from a finite set of n configurations,
the runtime of SP [24] can be bounded by Õ(nOPT

ε2δ log log κ̄), which includes a doubly logarithmic
dependence on an upper bound on the maximum runtime κ̄, which is a parameter of the algorithm and
is assumed to be finite. While not anytime, LAB [35] achieves a runtime bound of Õ(nOPT

ε2δ ) with a
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different method, independently of the maximum runtime (which can be infinite, and the algorithm
does not need to have access to an upper bound on it). SPC [25] has a similar worst-case bound, and it
improves upon SP by employing confidence bounds on the measurements, similarly to LAB. [24] also
showed a lower bound of Ω(nOPT

ε2δ ) in the worst case, matching the upper bounds up to logarithmic
terms. CAR [36] improves on LAB in two respects: (i) it finds a near-optimal configuration relative
to OPT δ

2
, the smallest δ/2-capped runtime over the n configurations, instead of the uncapped OPT;

(ii) it enjoys a problem-dependent runtime bound that is much more favourable than the worst-case
bound if the variances of the runtime distributions are better than in the worst case. The latter bound
also scales with OPT δ

2
instead of OPT (the capping can be chosen to be arbitrarily close to δ but it

must be smaller, as discussed in Section 2). This difference is significant, as there can be an arbitrarily
large gap between OPT δ

2
and OPT.9 Denoting the relative variance and relative range of the capped

runtimes for configuration i by σ̂2(i) and r(i), respectively (with respect to the expected capped
runtime), and the relative gap between configuration i and the optimal configuration by ∆i,10 the
runtime of CAR is bounded by

Õ

(
OPT δ

2

[
n

δ
+
∑
i∈N

max

{
max

{
σ̂2(i), σ̂2(i∗)

}
max{ε2,∆2

i }
,

max {r(i), r(i∗)}
max{ε,∆i}

}])
.

This bound is always as good as the upper bounds above and matches the worst-case lower bound (up
to logarithmic factors). Similarly to CAR, the guarantees for ICAR also involve the capped optimal
runtime. Furthermore, a similar problem-dependent bound can be calculated straightforwardly for
ICAR, which was omitted to simplify the presentation.

The runtimes of all the methods presented scale with n, the number of configurations. To convert to a
guarantee of finding a near-optimal configuration from the top γ fraction of an infinite pool, these
methods select n = Õ(γ−1) configurations, and thus the runtimes scale with γ−1. This work focuses
on reducing this factor by “impatiently” eliminating configurations quickly. Table 2 summarizes the
features of the different methods.

C Runtime Bound for Exponential Distributions

To better understand the runtime bound in Theorem 1, consider a scenario where the runtime of
each configuration follows an exponential distribution. Such scenarios are realistic and motivated
by practical applications [17]: roughly speaking, many solvers for NP-hard problems (e.g., SAT)
proceed by initializing with a random seed and, if they fail, try again with another random seed.
To better understand the runtime bound in Theorem 1, consider a scenario where the runtime of
each configuration follows an exponential distribution. Such scenarios are realistic and motivated by
practical applications [15, 17, 16, 26]: roughly speaking, many solvers for NP-hard problems (e.g.,
SAT) proceed by initializing with a random seed and, if they fail, try again with another random seed.
To make the example concrete, suppose that the mean runtime for each configuration is distributed
uniformly between A and A + B, denoted by U(A,A + B), for some A,B > 0. Here A can be
thought of as a small average runtime associated with the cost of starting the run of any configuration
on any problem instance, and B as the maximum “true” mean runtime of the configurations.

We can simplify the runtime bound of Theorem 1 for this setting. The best γk fraction of the configu-
rations have mean A+Bγk so OPTγkδ/2 ≤ A+Bγk. Furthermore, for a configuration i with mean
1
λ , Rτ (i) = 1

λ

(
1− e−λτ

)
for any runtime cap τ . Substituting τ = tδ(i), noting that the probability

of running over the cap is δ so e−λτ = δ, we have Rδ(i) = 1
λ (1− δ). Similarly, R0.35(i) = 0.65 1

λ .
Then F (38OPTγkδ/2) − 4ζ/K = Pri∼Π(R0.35(i) ≤ 38OPTγkδ/2) ≤ Pr 1

λ∼U(A,A+B)(0.65 1
λ ≤

38(A + Bγk)) ≤ Pr 1
λ∼U(A,A+B)(

1
λ ≤ 58.5(A + Bγk)) ≤ 58.5(A+Bγk)−A

B = O(γk + A
B ). This

bounds F (38OPTγkδ/2) − 4ζ/K. The extra 4ζ/K is insignificant, as the failure probability ζ can
simply be chosen to be O(ε2δ), resulting in only additional logarithmic factors in the runtime; thus,
any term multiplied by ζ in the runtime bound is of such low order and disappears in the Õ(·) notation.
Substituting the bound on F and OPTγkδ/2, assuming a choice of ζ as above, the runtime bound of

9In fact, OPT can even be infinite while OPT δ
2

is still finite.
10For precise definitions, the reader is referred to the original paper Weisz et al. [36].
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Theorem 1 becomes

Õ

(
A+Bγ

ε2δγ
·
(
γ +

A

B

)
+

K−2∑
k=0

A+Bγk
γk

(
1 +

(
γk + A

B

)
δ

)
+
A+BγK−1

δγK−1

)

= Õ
(

1

ε2δ

(
A2

Bγ
+A+Bγ

)
γ +

1

δ

(
A

γK−1
+B

)
+
A

γ

)
,

where the K term disappears in the Õ(·) notation as K ≤ log2( 1
γ ) and we also used that γk =

γ2k for k ∈ [0,K − 1]. Contrasting this with the typical runtime bound Õ
(

1
ε2δγOPTγδ/2

)
=

Õ
((

A
γ +B

)
1
ε2δ

)
of previous works, we can see that the main term (the one multiplied by 1

ε2δ ) is

reduced by a factor of max{γ, AB }. The rest of the terms have no dependence on ε and are typically
always much smaller (under reasonable parameter values, essentially ifB/A is not too large compared
to 1/ε2) than the typical runtime bound for other works: , e.g., A

δγK−1
is smaller than the first term

provided ε2B/A is small compared to 2K−1 (which holds if K is large enough or ε is small enough);
B
δ does not depend on the number of configurations evaluated neither does it scale with ε. Note that
the last term, Aγ , is associated with having to evaluate about 1

γ number of configurations, and this
term could not scale better than with the minimum runtime A (this term again is small unless B/A is
huge, on the order of 1/(ε2δ)).

D Details of Experiments

We followed the experimental setup of Weisz et al. [36]. Runs were pre-computed and then queried
from a simulation environment in which they can be stopped and resumed. In a scenario where this is
not possible (e.g., due to memory constraints when performing real runs) the experiments can still be
implemented by restarting runs from scratch with doubling cap times, resulting in at most a factor of
2 slowdown.

Parameter values Experiments on all datasets were done with (ε, δ) = (0.05, 0.1) and varying
γ ∈ {0.01, 0.02, 0.05}. For each configurator, ζ was set so that the total failure probability is 0.05.
The hyperparameter K was set such that 0.25 < γ2K−1 ≤ 0.5. This is a somewhat arbitrary choice,
but was made so that values of γk were neither too big to be trivial, nor too small to be computationally
prohibitive.

EPM Setup We used the provided generators for Regions200 and RCW to produce as many new
random instances as needed, which were pre-processed using the feature extractors provided with the
EPM.11 Runtime-related features (e.g., CPU time required for feature computation) were dropped
since they are machine-dependent. We then used the provided configurations and runtime data12 to
train the EPM model, using the parameters suggested in [13]. Finally, the trained EPM was used as a
surrogate model to provide runtimes for new configuration-instance pairs. New configurations were
sampled by uniformly choosing a value for each parameter of CPLEX from the appropriate range. A
new instance was then generated and the pair was given to the EPM. Note that ICAR examined more
configurations than CAR did. For consistency, sampling was done so that the configurations given to
CAR and ICAR were streamed in the same order. Consequently, the configurations seen by CAR
were a subset of those seen by ICAR. To aid future experimentation, we pre-generated and stored the
runtime data (see details below), which we make available13 in addition to our EPM pipeline code.14

Description of the datasets

11http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
12https://www.ml4aad.org/automated-algorithm-design/performance-prediction/epms/
13https://www.cs.ubc.ca/~drgraham/datasets.html
14https://github.com/empennage98/icar
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Figure 2: Distribution of δ-capped mean runtime of the sampled configurations, with δ = 0.1. For Minisat/CNFuzzDD, many configurations
are close to the optimal one, whereas for CPLEX/Regions200 and CPLEX/RCW, many configurations are significantly worse than the optimal
one. Consequently, PRECHECK is able to discard more configurations in the latter two scenarios.

• Minisat/CNFuzzDD is a SAT scenario based on the minisat solver, with 6 parameters,
applied to the CNFuzzDD15 instances. The benchmark dataset16 we used is the same as
in [35, 36, 25], including 972 configurations and 20118 instances. To simulate the process
of sampling random configurations, we randomly selected an unused configuration from
the pool upon request from CAR/ICAR. Again, the selection was made such that they were
given to CAR and ICAR in the same order.

• CPLEX/Regions200 is a MIP scenario using CPLEX, an interger programming solver,
applied to a combinatorial auction winner determination problem. For CPLEX, we used
the same configuration space as in [13]: There are 74 parameters, where categorial and
small-domain integeral/continuous parameters were sampled uniformly, and large-domain
integral/continuous parameters were sampled log-uniformly. The benchmark dataset is
generated with the EPM described above, with 10000 configurations and 50000 instances. It
takes around 13 CPU days on a single thread to generate the datasets on our machines (Intel
Core i7-7700K).

• CPLEX/RCW is a MIP scenario using the CPLEX solver applied to Red-cockaded Wood-
pecker conservation problems. The configuration space is the same as CPLEX/Regions200.
The benchmark dataset is generated with the EPM described above, with 10000 configura-
tions and 35640 instances. It takes around 20 CPU days on a single thread to generate the
datasets on our machines.

D.1 IMPATIENTCAPSANDRUNS with Varying Parameters

We also compared the performance of ICAR and CAR++ with varying values of ε and δ (with
fixed γ = 0.02 and failure probability 0.05). The speedup (computed as the ratio of the runtimes)
achieved by ICAR over CAR++ is reported in Table 3. As we can see, for the CPLEX datasets, the
speedup was fairly stable across a range of ε and δ that a user might be likely to care about. Table 4
shows the ratio of the δ-capped mean runtime of the returned configurations. On the other hand, for
Minisat/CNFuzzDD, CAR++ was up to 20% faster than ICAR. As we can see, ICAR and CAR++
returned configurations with very similar quality, but ICAR sometimes returned slightly better ones.
To understand the different behavior in the different datasets, a histogram of the runtime distributions
over the configurations is plotted in Figure 2, showing that in case of Minisat/CNFuzzDD, there are
much more near-optimal configurations than for CPLEX/Regions200 and CPLEX/RCW, making the
early discard procedure much less effective.

D.2 Synthetic Experiments

To better understand how well ICAR can exploit a needle-in-a-haystack scenario, we examined its
performance on synthetic data. In this way we could choose each configuration’s true mean, and
thus control their distribution. The runtimes of each configuration were sampled from an exponential
distribution, with the means being uniformly chosen from the interval [OPT, c ·OPT]. We tend to

15http://fmv.jku.at/cnfuzzdd/
16https://github.com/deepmind/leaps-and-bounds
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Minisat/CNFuzzDD CPLEX/Regions200 CPLEX/RCW

δ 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1

ε = 0.025 0.80 0.83 0.71 0.95 2.76 2.44 2.15 2.03 2.27 1.99 1.83 1.63

ε = 0.05 0.83 0.84 0.78 0.92 2.90 2.54 2.24 2.06 2.54 2.21 1.96 1.80

ε = 0.075 0.84 0.86 0.82 0.92 2.94 2.58 2.28 2.09 2.66 2.30 2.03 1.85

ε = 0.1 0.85 0.87 0.85 0.93 2.97 2.60 2.29 2.11 2.73 2.36 2.08 1.88

Table 3: Speedup achieved by ICAR over CAR++ for various values of ε and δ. The runtimes of ICAR and CAR++ are averaged over five
runs. Values greater than one indicate ICAR is faster.

Minisat/CNFuzzDD CPLEX/Regions200 CPLEX/RCW

δ 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1

ε = 0.025 1.00 1.00 1.00 1.00 0.93 0.93 0.93 0.93 1.00 0.99 0.98 0.98

ε = 0.05 1.00 1.00 1.00 1.00 0.93 0.93 0.93 0.93 1.00 0.99 0.98 0.98

ε = 0.075 1.00 1.00 1.00 1.00 0.93 0.93 0.93 0.93 1.00 0.99 0.98 0.98

ε = 0.1 1.00 1.00 1.00 1.00 0.93 0.93 0.93 0.93 1.00 0.99 0.98 0.98

Table 4: Ratio of δ-capped mean runtime of the configurations returned by ICAR over CAR++ for various values of ε and δ. The δ-capped
mean runtime of the returned configurations are averaged over five runs. Values smaller than one indicate ICAR returned better solutions.

Total CPU Time (days) Number of Configurations Before/After Precheck

c = 2 c = 5 c = 10 c = 25 c = 2 c = 5 c = 10 c = 25

ICAR 505 (23) 187 (18) 113 (17) 92 (27) 351 / 349 351 / 114 351/ 54 351/ 27
CAR++ 344 (24) 214 (12) 193 (20) 195 (31) 245 245 245 245

CAR 447 (21) 384 (15) 380 (35) 406 (62) 245 245 245 245

Table 5: Total CPU time in days to find a (0.05, 0.1, 0.02)-optimal configuration and the number of configurations before and after precheck
in the synthetic experiments. For CAR and CAR++, the number of configurations sampled is reported. CAR++ is the improved version CAR
arising from more careful analysis. Error terms are standard deviations over five runs.

think that real algorithm runtimes do look somewhat exponential, and there is justification for this, at
least in certain cases [15, 17, 16, 26].

We ran the simulation for c ∈ {2, 5, 10, 25}. The larger the value of c, the more configurations will
tend to be far from the best one, creating more and more of a “needle-in-a-haystack” scenario. We
used (ε, δ, γ) = (0.05, 0.1, 0.02) and failure probability of 0.05, as before. Table 5 shows the total
CPU time to find a (0.05, 0.1, 0.02)-optimal configuration for the range of c values. The degree to
which ICAR outperformed CAR and CAR++ increases as c increases, as expected. We can see that
PRECHECK was able to reject a greater proportion of configurations when many tended to be far from
optimal (large c).

Figure 3 shows the CPU time spent on each configuration, sorted by the δ-capped mean runtime. When
c = 2, ICAR rejected very few configurations in PRECHECK, but as c increases we can see a greater
proportion of configurations were being run for minimal time compared to CAR++. Furthermore,
the runtime of CAR and CAR++ became dominated by the runs on the bad configurations, as those
configurations contribute a large amount to the area under the curves.
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Figure 3: Synthetic experiments: As the proportion of configurations that are far from the optimal gets larger (i.e., as c gets larger), the CPU
runtime of CAR was more dominated by the work spent on bad configurations, while ICAR was able to drop more bad configurations with its
PRECHECK mechanism. Note the log scale on the y-axis.

E High-Probability Tail Bounds

For convenience, we summarize here the main concentration inequalities used in the paper. For
proofs, see, e.g., [12] and [5].

Bernstein inequality Let X1, . . . , Xn be independent zero-mean random variables with range R
(i.e., |Xi| ≤ R almost surely, for all i). Then, for any t > 0,

Pr

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1E(X2

i ) + 1
3Rt

)
.

Empirical Bernstein bound Let X1, . . . , Xn be independent and identically distributed random
variables with range R and mean µ. Let the empirical mean be X̄ and the empirical variance be
σ̄2 = 1

n

∑n
i=1(Xi − X̄)2. Applying Bernstein’s inequality to the sum and the sum of the squares of

these random variables, we get the empirical Bernstein bound [4, 5], which states that with probability
at least 1− ζ,

|X̄ − µ| ≤
√

2σ̄2 log(3/ζ)

n
+

3R log(3/ζ)

n
.

Chernoff bound Let X be a set of n independent and identically distributed Bernoulli random
variables. Let their empirical average be X̄ = 1

n

∑n
i]1Xi and let E(Xi) = µ. Then,

• Pr
(
X̄ ≥ (1 + c)µ

)
≤ exp

(
− c2

2+cnµ
)

for any c > 0, and

• Pr
(
X̄ ≤ (1− c)µ

)
≤ exp

(
− c

2

2 nµ
)

for any 0 < c < 1.
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