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A Review of Differential Geometry500

A.1 Riemannian manifolds501

Consider a k-dimensional manifold M. At every point x ∈ M, the tangent space TxM is a k-502

dimensional vector space made up of all velocity vectors γ̇(t) where γ :R→M is a path such that503

γ(t) = x. There are many different ways that a manifold can be embedded in a vector space (for504

instance, the manifold of natural images can be embedded in the vector space of pixel representations505

of an image), and quantities on the manifold must be defined in a way that they transform consistently506

between different embeddings. Let x∈Rn be an embedding of the point x. Under a differentiable507

change in embedding x=f(x), tangent vector components v transform as v=Jfv, where Jf is the508

Jacobian of f at x. The cotangent space T ∗xM is also a k-dimensional vector space, but it consists of all509

gradients of differentiable functions at x and for finite dimensional manifolds is the dual space to the510

tangent space. A cotangent vector w transforms under a change of coordinates as w=J−1f w. When not511

otherwise specified, we will use “vector" and “tangent vector" interchangeably. Spaces of higher-order512

tensors can be defined based on how they transform under changes of coordinates. For instance, a513

linear transform of vectors in TxM represented by the matrix A transforms as A=JfAJ−1f , so linear514

transforms are rank-(1,1) tensors in TxM⊗T ∗xM.515

In a Riemannian manifold, every point x is equipped with a metric 〈·,·〉x : TxM×TxM→R that516

defines distances locally. If we choose a basis for the tangent space TxM, then in that basis the metric517

can be represented as a positive definite matrix Gx ∈Sn+ and 〈v,w〉x = vTGxw. This includes the518

`2 metric as a special case when Gx = I, and has the same form as the Mahalanobis distance from519

statistics [65], but for tangent vectors instead of distributions. Critically, the metric can change when520

moving across the manifold. The metric transforms as Gx=J−Tf GxJ
−1
f , so the metric is a rank-(0,2)521

tensor in T ∗xM⊗T ∗xM=T ∗⊗2x M. For cotangent vectors, the metric is 〈v,w〉∗x=vTG−1x w, which is522

a rank-(2,0) tensor.523

Once the metric is known in a given coordinate system, the Laplace-Beltrami operator can also be524

constructed in terms of coordinates:525
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In flat Euclidean space, Gx=I and this reduces to the more familiar Laplacian ∆[f ]=
∑
i
∂2f
∂x2
i

.526

For any two points x,y∈M, the geodesic distance between them is defined as the minimum length of527

any path between them528

D(x,y)= min
γ

γ(0)=x
γ(1)=y

∫ 1

0

dt
√
〈γ̇(t),γ̇(t)〉γ(t) (6)

A geodesic between x and y is a locally shortest path that is parameterised by arc length. In other words529

it is a path such that there exists a constant cwith: ∀t∈ [0,1),∃ε>0| ∀t′∈ [0,ε]D(γ(t),γ(t′))=c(t′−t).530

Note that a geodesic is not necessarily a minimum path from start to end. For example, a great circle531

from the south pole to itself on a sphere is a geodesic even though the distance from the south pole to532

itself is of course 0.533



It’s worth noting that the metric is a purely local notion of distance, defined only in the tangent space,534

while the geodestic distance is a global distance between two points anywhere on the manifold. Despite535

the name, the term “metric learning" in machine learning typically refers to learning a single, global536

notion of distance, or to learning a mapping that preserves distances, under the assumption that the537

correct local distance is already known [66].538

A.2 Parallel transport and affine connections539

So far we described how to construct a vector space equipped with a metric at every point on the540

manifold, but have not given any way to relate vectors in one tangent space to those in another. In541

general there is not a unique mapping from vectors in one tangent space to another, which is precisely542

why the usual parallelogram model of analogy breaks down when dealing with curved manifolds.543

Instead, a vector in TxM can be identified with a vector in TyM in a path-dependent manner through a544

process called parallel transport, where the vector is moved infinitesimally along a path such that it is545

always locally parallel with itself as it moves. To do this, we have to define what it means to be “locally546

parallel", which requires additional machinery: the affine connection.547

The affine connection at x is a map Γx : TxM×TxM→ TxM. For two vectors v and w ∈ TxM,548

Γx(v,w) can be intuitively thought of as the amount the vector v changes when moving to an549

infinitesimally nearby tangent space in the direction w. For a Riemannian manifold, there are two550

natural properties that an affine connection should obey: it should preserve the metric, which means551

that the inner product between vectors does not change when they are parallel transported, and it should552

be torsion-free, which intuitively means the vector should not “twist" as it is parallel-transported. Given553

the appropriate formal definition of these requirements, there is a unique connection that satisfies554

these properties: the Levi-Civita connection. For a given choice of coordinates such that the metric555

can be represented by Gx at x, and letting the ijth element of Gx be denoted gij and the ith element556

of Γx(v,w) be denoted Γx(v,w)i, the Levi-Civita connection at x can be written in terms of the557

Christoffel symbols558

Γx(v,w)i=
∑
jk

Γijkvjwk

Γijk=
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The Levi-Civita connection defines a covariant derivative which takes a vector field v :M→TxM559

and a direction w ∈ TxM and gives the derivative of the field in that direction ∇wv(x) = ∂v
∂w |x+560

Γx(v(x),w). For a manifold embedded inRn that also inherits the metric from this space, the covariant561

derivative is the ordinary derivative inRn plus a correction to keep the vector on the manifold, where the562

affine connection is precisely that correction. In other words, the covariant derivative is the projection563

of the ordinary derivative onto the manifold. For other Riemannian manifolds, it is better thought of as564

a correction to force the covariant derivative to transform correctly as a rank-(0,1) tensor. It’s worth565

noting that, as the Levi-Civita connection is a correction to make the covariant derivative transform566

correctly, the connection itself does not transform as a tensor. For a change of coordinates x→x, the567

Christoffel symbols transform as:568

Γ
i

jk=
∑
mnp

∂xi
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∂xn
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where the first term in the sum is the usual change of coordinates for a rank-(1,2) tensor, and the second569

term is the correction to account for the change in curvature.570

Informally, two vectors can be thought of as parallel if the covariant derivative in the direction from571

one to the other is zero. That is, for some infinitesimal dt and vectors v,w ∈ TxM, the vector572

v+Γx(v,w)dt in the tangent space of x+wdtwill be parallel to v. Formally, for a path γ : [0,1]→M,573

the parallel transport of the starting vector v(0) ∈ Tγ(0)M is a function v(t) ∈ Tγ(t)M such that574

∇γ̇(t)v(t) = v̇(t)+Γγ(t)(v(t),γ̇(t)) = 0. Parallel transport makes it possible to define a differential575

equation to solve for the geodesic: if the velocity vector of a path is a parallel transport, that is, if576

∇γ̇(t)γ̇(t)= γ̈(t)+Γγ(t)(γ̇(t),γ̇(t))=0, then γ is a geodesic. An intuitive way to think of this is that a577
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geodesic is a path that always goes “straight forward" locally – its acceleration is always parallel to the578

path.579

Parallel transport can also be defined for higher-order tensors. For a rank-(p,q) tensor a
i∗1 ,...,i

∗
q

i1,...,ip
∈580

T⊗px ⊗T ∗⊗qx , the differential equation that defines the parallel transport is given by contracting the581

Christoffel symbols over all r indices of the tensor:582
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∗
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B Definitions and Proofs583

Definition 1. Groups, actions and orbits: A group is a setG={g,h,...} equipped with a composition584

operator · :G→G such that:585

1. G is closed under composition: g ·h∈G ∀g,h∈G586

2. There exists an identity element e∈G such that g ·e=e·g=g ∀g∈G587

3. The composition operator is associative: f ·(g ·h)=(f ·g)·h∀f,g,h∈G588

4. For all g∈G, there exists an inverse element g−1∈G such that g ·g−1 =g−1 ·g=e589

For some other object z ∈Z, a group action is a function · :G×Z→Z s.t. e ·z = z and (gh) ·z =590

g ·(h·z)∀z∈Z and g,h∈G. The setZ of all objects under the action of all group elements is referred591

to as the orbit of z under the action ofG. For instance, the unit sphere is the orbit of a unit vector under592

all rotations.593

Definition 2. Symmetry-Based Disentangling (Higgins et al., 2018): LetW be the set of world states,594

G be a group that acts on those world states which factorizes asG=G1×G2×...×Gm, and f :W→Z595

be a mapping to a latent representation spaceZ. The representationZ is said to be disentangled with596

respect to the group factorizationG=G1×G2×...×Gm if:597

1. There exists an action ofG onZ.598

2. The map f :W →Z is equivariant between the actions of G on W and Z, i.e. g ·f(w) =599

f(g ·w) ∀g∈G,w∈W , and600

3. There is a fixed decomposition Z=Z1×Z2× ...×Zm such that each Zi is invariant to the601

action ofGj for all j except j= i.602

Theorem. Main text, Theorem 2: LetM=M1×...×Mm be a Riemannian product manifold, and603

let T (1)
x M,...,T

(m)
x M denote orthogonal subspaces of TxM that are tangent to each submanifold.604

Then the tensor fields Π(i) :M→TxM⊗T ∗xM for i∈ 1,...,m, where Π
(i)
x is the linear projection605

operator from TxM→T
(i)
x M, are in the kernel of the connection Laplacian ∆2.606

Argument. Given a basis U
(i)
x of the subspace T (i)

x , the projection matrix is given by Π
(i)
x =U

(i)
x U

(i)T
x .607

As T (i)
x is an invariant subspace under parallel transport, the holonomy of U

(i)
x around any loop608

has the form U
(i)
x Q for some orthonormal matrix Q. Therefore the holonomy of Π

(i)
x is given by609

U
(i)
x QQTU(i)T =U

(i)
x U(i)T =Π

(i)
x , and Π

(i)
x is invariant to parallel transport. As the rate of change610

for the tensor field Π(i) under diffusion will be 0, the entire tensor field goes to 0 under the action of611

∆2.612

Proof. Each Π(i) is an endomorphism of the tangent bundle. For a general endomorphism u of the613

tangent bundle, and a general vector fieldX , the covariant derivative satisfies∇(u(X))=(∇u)(X)+614

u(∇X). Let’s replace uwith Π(i) in this formula. SinceM is a product of Riemannian manifold, we615

have that∇
(
Π(i)(X)

)
and Π(i)(∇X) are equal. It follows that∇Π(i) is always 0, and the Laplacian616

∆2Π(i) =Tr∇2Π(i) also has to be 0.617
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C Spurious Eigenfunctions of ∆2
618

C.1 Analysis619

Figure 7: Eigenvalues and eigenfunctions of ∆2 for the product manifold S2×S2×S2, without
restriction to symmetric matrices. The spectrum (left) clearly has 5 nontrivial but small values before
the gap. The value of the first 5 nontrivial eigenfunctions at a single point are shown in the remaining
figures. The first three are clearly the skew-symmetric volume form, while the remaining two are the
expected projection matrices.

Figure 8: Eigenfunctions of ∆2 for the product manifold S3×S3, without restriction to symmetric
matrices. The first nontrivial eigenfunction is the expected projection matrix, while the next eight
eigenfunctions are all skew-symmetric – four per manifold.

A complete characterization of the zero eigenfunctions of the second-order connection Laplacian is620

beyond the scope of this paper. However, we have both empirically and theoretically found several zero621

eigenfunctions not of the form of projection matrices onto factor manifolds. The spheres S2 and S3 in622

particular seem to have a zero eigenfunction which maps points on the manifold to a skew-symmetric623

matrix.624

In Figs. 7 and 8, we give examples of these eigenfunctions at a random point on (S2)×3 and (S3)×2.625

Each submanifold of S2 has a single skew-symmetric eigenfunction, while each submanifold of S3626

has four such skew-symmetric eigenfunctions. Looking at the spectrum, the eigenvalues are of similar627

magnitude to those eigenvalues used by GEOMANCER. Indeed, the individual eigenfunctions separate628

the submanifolds of interest so cleanly that it is unfortunate that these eigenfunctions do not seem to629

exist for all manifolds.630

For S2 we can construct the skew-symmetric eigenfunction as follows. Let (v1,v2) be an orthonormal631

basis for a point on S2, then v1v
T
2 −v2v

T
1 is a skew-symmetric tensor. This tensor does not depend632

on the choice of basis, so it is a uniquely defined tensor field on the whole of S2 (This is in fact one633

way to construct the volume form for S2). As parallel transport preserves orthonormality, this field634

is left invariant by parallel transport. Any field which is invariant under parallel transport is a zero635

eigenfunction of the connection Laplacian. For general spheres Sn, the volume form will be a rank-n636

skew-symmetric tensor, and therefore will not in general be an eigenfunction of ∆2. The interpretation637

of the 4 skew-symmetric zero eigenfunctions that exist for S3 is still an open question, and we also do638

not know whether these skew-symmetric eigenfunctions exist for other manifolds.639

C.2 Eliminating Spurious Eigenfunctions640

To remove skew-symmetric eigenfunctions, let Πsym be the linear projection operator fromRk×k to641

the space of symmetric matrices, which can be represented by a matrix in Rk2×k(k+1)/2. Then we can642

project the blocks of ∆2 into this smaller space to remove eigenfunctions which are skew-symmetric.643

Note that this is a projection of full matrices into a lower dimensional space where the matrix is only644

represented by its upper (or lower) triangular, rather than a projection into the space of full matrices.645

This has the added benefit of reducing the computational overhead in both space and time by about a646

factor of 4.647
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Figure 9: Fraction of points in the training set for which the number and dimensionality of the
disentangled subspaces is correctly recovered for synthetic products of spheres and special orthogonal
groups. Beyond a critical threshold, the fraction quickly jumps up and plateaus, and on some small
manifolds it reaches nearly perfect accuracy.

To avoid eigenfunctions derived from ∆0, which will always have the form of some scalar function648

times the identity, we further multiply the blocks by Πtr ∈ Rk(k+1)/2×k(k+1)/2−1, which projects649

symmetric matrices onto symmetric matrices with zero trace. Putting this all together, we project each650

block ∆2
(ij) onto the space of operators on symmetric zero-trace matrices, to yield a projected block651

∆2
(ij) =ΠT

trΠ
T
sym∆2

(ij)ΠsymΠtr and projected second-order graph connection Laplacian ∆2.652

D Experimental Details653

For all experiments, we used twice the dimensionality of the manifold for the number of nearest654

neighbors, and computed the bottom 10 eigenfunctions of ∆2. We chose the threshold γ such that the655

algorithm would terminate at the largest gap in the spectrum. We ran 10 copies of all experiments to656

validate the robustness of our results. All experiments were run on CPU. The simplest experiments657

finished within minutes (for instance, S2 × S2 with 10,000 data points) while the most complex658

manifolds required days. The largest experiments, such as (S2)×5 with 1,000,000 data points, were659

terminated after 5 days. On the Stanford 3D Objects data, we implemented some steps in parallel660

across 100-1000 CPUs, such as computing tangent spaces or connection matrices. This allowed us to661

complete most steps in GEOMANCER in just a few minutes.662

D.1 Synthetic Manifolds663

For the results in Fig. 5(b), we excluded points where the shape of the subspaces was not estimated664

correctly. In Fig. 9, we count the proportion of points in the training set for which we recovered the665

correct number and dimensionality of subspaces and find that, past a threshold in the dataset size,666

the fraction of correct subspace shapes jumps up, and in some cases becomes essentially exact. The667

fraction of estimated subspaces with the correct shape and the error between those subspaces and the668

ground truth seem to rise in tandem, which suggests that there is a hard lower limit on the amount of669

data required for disentangling.670

If θi,jk ∈ (0, π2 ) is the largest angle between the ground truth T (j)
xi M and the GEOMANCER es-671

timate of T (k)
xi M (or π

2 if the dimensions do not match), then the error in Fig. 5(b) is given as672

1
t

∑t
i=1minσ∈Sm

1
m

∑m
j=1θi,jσj where the minimum is taken over all permutations ofm subspaces.673

17



Figure 10: Additional example renderings of the Stanford Bunny and Stanford Dragon under different
pose and illumination conditions.

D.2 Stanford 3D Objects674

A dataset of 100,000 images each of the Stanford Bunny and Stanford Dragon was rendered in MuJoCo675

[67], originally at 1024x1024 resolution, and downsampled to 64x64 pixels. Images were rendered676

with a randomly sampled 3D rotation and a randomly sampled illumination source position on a sphere.677

Latent vectors were represented by a concatenation of unit vectors in R3 and orthogonal matrices in678

R3×3 for a 12-dimensional state vector.679

When applying GEOMANCER to data other than the true latent state vectors, we can no longer directly680

compare against ground truth. Instead, we must align the subspaces around the ground truth data with681

the subspaces around the training data. Let z1,...zt be the true latent state vectors and x1,...,xt be the682

training data. For each point xi, we use the basis for the tangent space Uxi computed in GEOMANCER,683

while the tangent space basis Uzi for zi can be computed in closed form because we know the ground684

truth isS2×SO(3). Let i1,...,ik be the indices of the nearest neighbors of zi, then we project zi1 ,...,zik685

into the basis Uzi and xi1 ,...,xik into the basis Uxi to form a data matrices Vzi =UT
zi(zi1 ,...,zik) and686

Vxi =UT
xi (xi1 ,...,xik). We can then align the two subspaces by computing the orthonormal matrix687

closest to
(
V Tzi Vzi

)−1/2
V Tzi Vxi

(
V TxiVxi

)−1/2
using the same SVD technique used to compute the688

connection matrices in GEOMANCER. We then compute the angle between ground truth subspaces689

and subspaces learned by GEOMANCER after multiplying by the alignment matrix to give the results690

in Table. 1.691

The different perturbations applied to the data in Table 1 were random orthogonal rotations (Rotated),692

multiplication by a diagonal matrix with entries sampled from exp(N (0,0.5)) (Scaled), and multipli-693

cation by a random matrix with entries sampled iid fromN (0,1) (Linear). For Laplacian Eigenmaps,694

two points were considered neighbors if the state vector of one was in the 10 nearest neighbors of695

the other. Varying numbers of embedding dimensions were used, from 5 to 18, and used as input to696

GEOMANCER (Fig. 11). Above 13 dimensions, GEOMANCER consistently performs significantly697

better than chance.698

D.3 Training β-VAE on Stanford 3D Objects699

Model architecture We used the standard architecture and optimization parameters introduced700

in[19] for training the β-VAE model on the Stanford Bunny and Stanford Dragon datasets. The encoder701

consisted of four convolutional layers (32x4x4 stride 2, 32x4x4 stride 2, 32x4x4 stride 2, and 32x4x4702

stride 2), followed by a 128-d fully connected layer and a 32-d latent representation. The decoder703

architecture was the reverse of the encoder. We used ReLU activations throughout. The decoder704

parametrized a Bernoulli distribution. We used Adam optimizer with 1e−4 learning rate and trained705
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Figure 11: Results of GEOMANCER trained on embedding from Laplacian Eigenmaps (LEM) with
different embedding dimensionalities, using the nearest neighbors from the true latents. While not
as accurate as working from the true latents directly, GEOMANCER on LEM embeddings performs
significantly better than chance above a certain number of dimensions.

Figure 12: Results of GEOMANCER trained on embedding from β-VAE with different embedding
dimensionalities induced by different values of β. The β-VAEs themselves were trained directly from
pixels with no knowledge of the true latents. The results are no better than chance.

the models for 1 mln iterations using batch size of 16, which was enough to achieve convergence. The706

models were trained to optimize the following disentangling objective:707

Lβ−V AE=Ep(x)[ Eqφ(z|x)[log pθ(x|z)]−βKL(qφ(z|x) || p(z)) ] (10)

where p(x) is the probability of the image data, q(z|x) is the learned posterior over the latent units given708

the data, and p(z) is the unit Gaussian prior with a diagonal covariance matrix. For each dataset we709

trained 130 instances of the β-VAE with different β hyperparameter sampled uniformly from β∈ [1,30]710

and ten seeds per β setting.711
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Model selection In order to analyze whether any of the trained β-VAE instances were able to712

disentangle the two generative subspaces (changes in 3D rotation and lighting), we applied the recently713

proposed Unsupervised Disentanglement Ranking (UDR) score [61] that measures the quality of714

disentanglement achieved by trained β-VAE models by performing pairwise comparisons between the715

representations learned by models trained using the same hyperparameter setting but with different716

seeds. This approach requires no access to the ground truth data generative process, and does not717

make other limiting assumptions that precluded us from applying any other existing disentangling718

metrics. We used the Spearman version of the UDR score. For each trained β-VAE model we719

performed 9 pairwise comparisons with all other models trained with the same β value and calculated720

the corresponding UDRij score, where i and j index the two β-VAE models. Each UDRij score721

is calculated by computing the similarity matrixRij , where each entry is the Spearman correlation722

between the responses of individual latent units of the two models. The absolute value of the similarity723

matrix is then taken |Rij | and the final score for each pair of models is calculated according to:724

1

da+db

[∑
b

r2a∗IKL(b)∑
aR(a,b)

+
∑
a

r2b ∗IKL(a)∑
bR(a,b)

]
(11)

where a and b index into the latent units of models i and j respectively, ra = maxaR(a, b) and725

rb=maxbR(a,b). IKL indicate the “informative” latent units within each model, and d is the number726

of such latent units. The final score for model i is calculated by taking the median of UDRij across all j.727

β-VAE is unable to disentangle Stanford 3D Objects Fig. 13(a) shows plots UDR scores for the728

130 trained β-VAE models. It is clear that the range of β values explored through the hyperparameter729

search is adequate, since the highest value of β=30 resulted in the total collapse of the latent space730

to the prior (resulting in 0 informative latents for the bunny dataset), and the lowest value of β = 1731

resulted in too many informative latents to represent SO(3)xS2 in a disentangled manner. None of732

the trained models were able to achieve high UDR scores close to the maximum of 1. The highest733

UDR scores were achieved by the models with either two or four informative latents, so we visualized734

whether they were able to learn a disentangled latent representation that factorizes into independent735

subspaces representing changes in pose and illumination. Fig. 13(b) shows that this is not the case, since736

manipulations of every latent results in changes in both the position and illumination of the Stanford737

objects. As a final test we presented the same two models with sets of 100 images of the respective738

Stanford objects that they were trained on. In each set we fixed the value of one of the object’s attributes739

(pose or illumination), while randomly sampling the other one. A model that is able to disentangle these740

attributes into independent subspaces should have informative latent dimensions with small variance741

in their inferred means in the condition where their preferred attribute is fixed. It is clear that no such742

latents exist for the two beta-VAE models, with all informative latents encoding both pose and lighting743

attributes.744
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Figure 13: (a) Unsupervised Disentanglement Ranking (UDR) scores [61] for 130 β-VAE models
trained with different β hyperparameter settings, with ten seeds per setting. UDR scores are plotted
against the number of informative latents discovered by the trained model. (b) Latent traversals for
the β-VAE models with the highest UDR scores from (a). An initial set of values for the latents is
inferred from a seed image, before changing the value of each latent dimension between -2.5 and 2.5
in equal increments and visualizing the corresponding reconstruction. All latents encode changes in
both rotation and lighting. (c) Inferred means for the informative latents from the β-VAE models with
the highest UDR scores from (a). In each subplot 100 images are presented to the model where the
value of one subspace (lighting or rotation) is fixed, while the value of the other subspace is randomly
sampled. The plotted inferred means are normalized according to (µi−µ), where µ is the mean over
100 inferred means µi for the model latent i. If a model learns to disentangle lighting from rotation,
then latent dimensions corresponding to each disentangled subspace should show significantly smaller
dispersion of inferred means in the condition where the corresponding subspace is fixed. It can be seen
that no such latents exist in either of the two β-VAEs.
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