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In the supplementary, we present more experimental results and analysis to show the effectiveness
of DualRC-Net. In section 1, we provide five alternatives to the FPN-like structure for fusing the
dual-resolution feature maps of the feature backbone. In section 2, we compare DualRC-Net with
other neighbourhood consensus based methods in more details. Finally, in section 3, we qualitatively
compare DualRC-Net with the state-of-the-art methods on three benchmarks. DualRC-Net establishes
the new state-of-the-art.

1 Investigation on more variants of FPN structure

Apart from the dual-resolution feature extractor we present in the main paper, we also investigate
other possible FPN-like architectures (shown in Figure 1) and thoroughly evaluate their effects on the
matching performance.
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Figure 1: Five variants of FPN architecture. (a) is our default architecture used in the main paper. In
(b), we directly fuse the output of conv4_23 with that of conv2_3 by up-sampling 4 times. In (c)
and (d), additional 3× 3 conv modules are adopted before up-sampling. In (e), we incorporate the
the output of conv5_3. The channels of all feature maps are aligned to 1024 by 1× 1 conv layers.
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We experiment with different alternatives of the FPN based dual-resolution feature extractor in
DualRC-Net and evaluate the model on HPatches [1] as well as InLoc [2] benchmarks. The results
are reported in Figure 2 and Figure 3 respectively.

Figure 2: Performance of different variants of FPN architecture on HPatches benchmark. The input
image size is1600� 1200and the top1000matches are selected for the evaluation of MMA.

Figure 3: Performance of different variants of FPN architecture on InLoc benchmark. Input images
have the image size of1600� 1200.

As shown in Figure 2, all �ve types of variants have similar overall performance. Type (b) and Type
(e) are slightly inferior on illumination change at small thresholds but all �ve types have almost
identical performance on viewpoint change. Overall, type (d) very slightly outperforms others but at
the cost of more parameters in the3 � 3 convolutional layers than type (a). Similarly, in Figure 3,
we can see the �ve types of variants also have similar performance on InLoc benchmark. Type (b)
is marginally behind others while type (a), (c), (d) and (e) have entangled curves such that no type
consistently outperform others. These results reveal that type (b) is marginally inferior than other
types as it only contains the information from two layers while the rest of the types have almost the
same performance. Therefore, we select type (a) which has, except type (b), the simplest architecture
among �ve options as our dual-resolution feature extractor.

Additionally, we also compare type (a) and type (e) with their 256 channel counterparts in Figure 4.
Notice that the 256 channel counterpart of type (e) is the original FPN [3]. We can see that increasing
number of channels does not affect the performance of type (e). However, type (a) with 1024 channels
performs better than that with 256 channels under huge illumination variations at smaller thresholds.
This further justi�es that type (a) is a more proper choice for DualRC-Net.
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Figure 4: Comparison between 256 and 1024 output feature channels for type (a) and type (e). Notice
that type (e) with 256 channels is the original FPN architecture.

2 Comparison with other neighbourhood consensus based methods

In this section, we compare DualRC-Net with Sparse-NCNet [4] and NCNet [5] on HPatches
benchmark in more details. In Figure 5a, we show the performance of the three methods given
input images with the same size of1600� 1200. DualRC-Net achieves the best results in all cases
except under huge illumination changes with a threshold less than 3 pixels. The success attributes
to that DualRC-Net can generate a larger relocalisation feature map under the same input image
size. In Figure 5b, we compare the performance of the three methods with the same relocalisaton
feature map size of200� 100. DualRC-Net achieves the best performance under huge illumination
variations, but it does not perform as well as the other two methods under huge viewpoint variations.
Overall, DualRC-Net performs on par with both Sparse-NCNet and NCNet. We hypothesise two
reasons for the deterioration in huge viewpoint variation. One is that the input image size for DualRC-
Net is only a half of Sparse-NCNet and a quarter of NCNet hence some valuable information are
lost in the down-sampled input image. Second, the 4D correlation tensor of DualRC-Net is only
50� 38� 50� 38while the other two methods have the size of100� 75� 100� 75. Smaller 4D
correlation tensor indicates weaker �ltering effect from the neighbourhood consensus module which
could lead to worse performance under huge viewpoint changes. In Figure 5c we demonstrate that
DualRC-Net can achieve similar or better results on HPatches with a much smaller image size than
other methods, which further veri�es the effectiveness of our dual-resolution design in DualRC-Net.
We also evaluate the runtime and memory cost for each method. The average processing time
per image pair are2:05s/0:82s/4:15s by DualRC-Net/Sparse-NCNet/NCNet with GPU memory of
1232MB/680MB/7868MB respectively on a200� 150feature map. The evaluation is performed on
Nvidia GTX 1080Ti.

We notice an interesting trend in Figure 5 that a larger relocalisation resolution leads to better
performance under illumination changes but worse performance under viewpoint changes at small
thresholds. This could be explained as follows. A smaller localisation resolution means that features
are more sparsely distributed on the image. Each feature covers a greater image area so that the
difference between nearby features is more distinctive. Moreover, as there is no homographic change
between the image pair, the correct correspondence of one point in imageI A will be at the same
location in imageI B , hence there is no need to search other places. Therefore, feature resolution has
little impact on the performance under illumination change. However, under viewpoint changes, the
relocalisation feature resolution matters more. If the resolution is small, the model will not be able
to capture the viewpoint changes as the features are spatially too coarse compared with the original
image. With a larger feature resolution, the discrepancy between nearby locations can be properly
captured, therefore, more robust matching can be achieved.
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(a) All methods have the same input image size of1600� 1200. The relocalisation feature resolutions of
DualRC-Net, Sparse-NCNet and NC-Net are400� 300, 200� 100and100� 75 respectively.

(b) All methods have the same relocalisation resolution of200� 150. The input image sizes for DualRC-Net,
Sparse-NCNet, and NCNet are800� 600, 1600� 1200and3200� 2400respectively.

(c) DualRC-Net can achieve better results with a smaller input image size. The input image sizes for DualRC-Net,
Sparse-NCNet and NCNet are1200� 900, 1600� 1200and3200� 2400respectively.

Figure 5: Comparing DualRC-Net with Sparse-NCNet and NCNet.
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3 Qualitative comparison

In this section, we provide more qualitative results of DualRC-Net on HPatches, InLoc, and Aachen
Day-Night benchmarks and compare with Sparse-NCNet and NCNet. The results for Sparse-
NCNet and NCNet are obtained using the pre-trained models provided by the authors under the best
con�gurations reported in the original papers. The input image sizes are1600� 1200for DualRC-Net
and3200� 2400for both Sparse-NCNet and NCNet.

HPatches benchmark We qualitatively compare DualRC-Net with Sparse-NCNet and NCNet on
HPatches benchmark [1]. Top 6000 matches are selected for each method. The correspondences
with a re-projection error less than 3 pixels are considered to be correct and are marked as green
dots. Otherwise, the correspondences are considered to be wrong and are marked as red dots. We
demonstrate that DualRC-Net performs notably better than others under challenging illumination
variations and performs on par with others under huge viewpoint changes.

DualRC-Net

(4778=6000)

Sparse-NCNet

(985=6000)

NCNet

(892=6000)

(5885=6000) (4249=6000) (4133=6000)

Figure 6: Comparison on HPatches benchmark under huge illumination changes. Top6000matches
are selected and the threshold is set as3 pixels. DualRC-Net performs the best under challenging
illumination variations. We also report (correct/total) matches under each pair.
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