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Abstract

Modern neural networks are often regarded as complex black-box functions whose
behavior is difficult to understand owing to their nonlinear dependence on the data
and the nonconvexity in their loss landscapes. In this work, we show that these
common perceptions can be completely false in the early phase of learning. In
particular, we formally prove that, for a class of well-behaved input distributions,
the early-time learning dynamics of a two-layer fully-connected neural network
can be mimicked by training a simple linear model on the inputs. We additionally
argue that this surprising simplicity can persist in networks with more layers and
with convolutional architecture, which we verify empirically. Key to our analysis
is to bound the spectral norm of the difference between the Neural Tangent Kernel
(NTK) at initialization and an affine transform of the data kernel; however, unlike
many previous results utilizing the NTK, we do not require the network to have
disproportionately large width, and the network is allowed to escape the kernel
regime later in training.

1 Introduction

Modern deep learning models are enormously complex function approximators, with many state-
of-the-art architectures employing millions or even billions of trainable parameters [Radford et al.,
2019, Adiwardana et al., 2020]. While the raw parameter count provides only a crude approximation
of a model’s capacity, more sophisticated metrics such as those based on PAC-Bayes [McAllester,
1999, Dziugaite and Roy, 2017, Neyshabur et al., 2017b], VC dimension [Vapnik and Chervonenkis,
1971], and parameter norms [Bartlett et al., 2017, Neyshabur et al., 2017a] also suggest that modern
architectures have very large capacity. Moreover, from the empirical perspective, practical models
are flexible enough to perfectly fit the training data, even if the labels are pure noise [Zhang et al.,
2017]. Surprisingly, these same high-capacity models generalize well when trained on real data, even
without any explicit control of capacity.

These observations are in conflict with classical generalization theory, which contends that models of
intermediate complexity should generalize best, striking a balance between the bias and the variance
of their predictive functions. To reconcile theory with observation, it has been suggested that deep
neural networks may enjoy some form of implicit regularization induced by gradient-based training
algorithms that biases the trained models towards simpler functions. However, the exact notion of
simplicity and the mechanism by which it might be achieved remain poorly understood except in
certain simplistic settings.
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One concrete mechanism by which such induced simplicity can emerge is the hypothesis that neural
networks learn simple functions early in training, and increasingly build up their complexity in later
time. In particular, recent empirical work Nakkiran et al. [2019] found that, intriguingly, in some
natural settings the simple function being learned in the early phase may just be a linear function of
the data.

In this work, we provide a novel theoretical result to support this hypothesis. Specifically, we
formally prove that, for a class of well-behaved input distributions, the early-time learning dynamics
of gradient descent on a two-layer fully-connected neural network with any common activation can
be mimicked by training a simple model of the inputs. When training the first layer only, this simple
model is a linear function of the input features; when training the second layer or both layers, it is a
linear function of the features and their {5 norm. This result implies that neural networks do not fully
exercise their nonlinear capacity until late in training.

Key to our technical analysis is a bound on the spectral norm of the difference between the Neural
Tangent Kernel (NTK) [Jacot et al., 2018] of the neural network at initialization and that of the linear
model; indeed, a weaker result, like a bound on the Frobenius norm, would be insufficient to establish
our result. Although the NTK is usually associated with the study of ultra-wide networks, our result
only has a mild requirement on the width and allows the network to leave the kernel regime later
in training. While our formal result focuses on two-layer fully-connected networks and data with
benign concentration properties (specified in Assumption 3.1), we argue with theory and provide
empirical evidence that the same linear learning phenomenon persists for more complex architectures
and real-world datasets.

Related work. The early phase of neural network training has been the focus of considerable recent
research. Frankle and Carbin [2019] found that sparse, trainable subnetworks — “lottery tickets” —
emerge early in training. Achille et al. [2017] showed the importance of early learning from the
perspective of creating strong connections that are robust to corruption. Gur-Ari et al. [2018] observed
that after a short period of training, subsequent gradient updates span a low-dimensional subspace. Li
et al. [2019a], Lewkowycz et al. [2020] showed that an initial large learning rate can benefit late-time
generalization performance.

Implicit regularization of (stochastic) gradient descent has also been studied in various settings,
suggesting a bias towards large-margin, low-norm, or low-rank solutions [Gunasekar et al., 2017,
2018, Soudry et al., 2018, Li et al., 2018, Ji and Telgarsky, 2019a,b, Arora et al., 2019a, Lyu and Li,
2019, Chizat and Bach, 2020, Razin and Cohen, 2020]. These results mostly aim to characterize the
final solutions at convergence, while our focus is on the early-time learning dynamics. Another line
of work has identified that deep linear networks gradually increase the rank during training [Arora
et al., 2019a, Saxe et al., 2014, Lampinen and Ganguli, 2018, Gidel et al., 2019].

A line of work adopted the Fourier perspective and demonstrated that low-frequency functions are
often learned first [Rahaman et al., 2018, Xu, 2018, Xu et al., 2019a,b]. Based on the NTK theory,
Arora et al. [2019c] showed that for very wide networks, components lying in the top eigenspace of
the NTK are learned faster than others. Using this principle, Su and Yang [2019], Cao et al. [2019]
analyzed the spectrum of the infinite-width NTK. However, in order to obtain precise characterization
of the spectrum these papers require special data distributions such as uniform distribution on the
sphere.

Most relevant to our work is the finding of Nakkiran et al. [2019] that a neural network learned in the
early phase of training can be almost fully explained by a linear function of the data. They supported
this claim empirically by examining an information theoretic measure between the predictions of
the neural network and the linear model. Our result formally proves that neural network and a
corresponding linear model make similar predictions in early time, thus providing a theoretical
explanation of their empirical finding.

Paper organization. In Section 2, we introduce notation and briefly recap the Neural Tangent
Kernel. In Section 3, we present our main theoretical results on two-layer neural networks as well as
empirical verification. In Section 4, we discuss extensions to more complicated architecture from
both theoretical and empirical aspects. We conclude in Section 5, and defer additional experimental
results and all the proofs to the appendices.



2 Preliminaries

Notation. We use bold lowercases a, b, a, 3, . . . to represent vectors, bold uppercases A, B, . ..
to represent matrices, and unbold letters a, b, «t, 3, . . . to represent scalars. We use [A]; ; or [a]; to
index the entries in matrices or vectors. We denote by ||-|| the spectral norm (largest singular value)
of a matrix or the £, norm of a vector, and denote by ||-|| - the Frobenius norm of a matrix. We use
(-, ) to represent the standard Euclidean inner product between vectors or matrices, and use ® to
denote the Hadamard (entry-wise) product between matrices. For a positive semidefinite (psd) matrix
A, let A'/2 be the psd matrix such that (A'/2)? = A; let Ayax(A) and Apin(A) be the maximum

and minimum eigenvalues of A.

Let [n] :={1,2,...,n}. Fora,b € R (b > 0), we use a £ b to represent any number in the interval
[a—b,a+0b]. Let I; be the d x d identity matrix, 04 be the all-zero vector in R?, and 14 be the all-one
vector in R?; we write I, 0, 1 when their dimensions are clear from context. We denote by Unif(A)
the uniform distribution over a set A, and by A (i, %) or N(u, X) the univariate/multivariate

Gaussian distribution. Throughout the paper we let g be a random variable with the standard normal
distribution A/(0, 1).

We use the standard O(+), ©(+) and ©(-) notation to only hide universal constant factors. For a, b > 0,
we alsousea S borb 2 atomeana = O(b), anduse ¢ < borb > atomean b > Ca for a
sufficiently large universal constant C' > 0. Throughout the paper, “high probability” means a large
constant probability arbitrarily close to 1 (such as 0.99).

Recap of Neural Tangent Kernel (NTK) [Jacot et al., 2018]. Consider a single-output neural
network f(a; @) where x is the input and 6 is the collection of parameters in the network. Around a

reference network with parameters 8, we can do a local first-order approximation:
f(a;0) ~ f(a;0) + (Vo f(x:0),0 — 6).

Thus when 6 is close to 0, for a given input x the network can be viewed as linear in Vg f(; 0).
This gradient feature map « — Vg f(; 0) induces a kernel Kg(z,z') := (Vo f(x;0), Vo f(x';0))
which is called the NTK at . Gradient descent training of the neural network can be viewed as kernel
gradient descent on the function space with respect to the NTK. We use NTK matrix to refer to an
n X n matrix that is the NTK evaluated on n datapoints.

While in general the NTK is random at initialization and can vary significantly during training, it
was shown that, for a suitable network parameterization (known as the “NTK parameterization”),
when the width goes to infinity or is sufficiently large, the NTK converges to a deterministic limit
at initialization and barely changes during training [Jacot et al., 2018, Lee et al., 2019, Arora et al.,
2019b, Yang, 2019], so that the neural network trained by gradient descent is equivalent to a kernel
method with respect to a fixed kernel. However, for networks with practical widths, the NTK does
usually stray far from its initialization.

3 Two-Layer Neural Networks

We consider a two-layer fully-connected neural network with m hidden neurons defined as:

flx; W, v) = % ivrqb (w:m/\/g) = %vnﬁ (Wa:/\/g) , (1)

where € R% is the input, W = [wy, ..., w,,]" € R™*?is the weight matrix in the first layer, and
v =[v1,...,0,]" € R™ is the weight vector in the second layer.’ Here ¢ : R — R is an activation
function that acts entry-wise on vectors or matrices.

Let {(z;,9:)}™; C R? x R be n training samples where x;’s are the inputs and y;’s are their associ-
ated labels. Denote by X = [1,...,x,]" € R"*% the data matrix and by y = [y1,...,y,] € R"
the label vector. We assume |y;| < 1 forall i € [n].

>The scaling factors % and \/% are due to the NTK parameterization such that the weights can be initialized

from A(0, 1). The standard parameterization can also be equivalently realized with the NTK parameterization
by properly setting different learning rates in different layers [Lee et al., 2019], which we do allow here.



We consider the following ¢ training loss:

n

1 2

L(W,v) = %;(f(mi;w,v) —4)?, @)

and run vanilla gradient descent (GD) on the objective (2) starting from random initialization.
Specifically, we use the following symmetric initialization for the weights (W, v):

Wi, .., Wipn/2 T ./\/(Od,Id>, Wiym/2 = W; (Vi € [m/2]),

ULy ey Unga R UNIF({1, =13),8 0y = —v; (Vi € [m/2)).

The above initialization scheme was used by Chizat et al. [2019], Zhang et al. [2019], Hu et al.
[2020], Bai and Lee [2020], etc. It initializes the network to be the difference between two identical
(random) networks, which has the benefit of ensuring zero output: f(x; W,v) = 0 (Vx € R%),
without altering the NTK at initialization. An alternative way to achieve the same effect is to subtract
the function output at initialization [Chizat et al., 2019].

3)

Let (W (0),v(0)) be a set of initial weights drawn from the symmetric initialization (3). Then the
weights are updated according to GD:

W(t+1)=W(t) —mVwL(W(t),v(), v(t+1)=uv(t)-mnV.L(W(),v(), @
where 1; and 7, are the learning rates. Here we allow potentially different learning rates for flexibility.

Now we state the assumption on the input distribution used in our theoretical results.

Assumption 3.1 (input distribution). The datapoints x1, . . ., x, are i.i.d. samples from a distribution
D over RY with mean 0 and covariance X such that Tr[X] = d and | Z|| = O(1). Moreover, x ~ D
can be written as x = $'/%x where & € R satisfies E[z] = 04, E[zz "] = I, and T’s entries are
independent and are all O(1)-subgaussian.”

Note that a special case that satisfies Assumption 3.1 is the Gaussian distribution A (0, X), but we
allow a much larger class of distributions here. The subgaussian assumption is made due to the
probabilistic tail bounds used in the analysis, and it can be replaced with a weaker bounded moment
condition. The independence between &’s entries may also be dropped if its density is strongly
log-concave. We choose to use Assumption 3.1 as the most convenient way to present our results.

We allow ¢ to be any of the commonly used activation functions, including ReL U, Leaky ReLU, Erf,
Tanh, Sigmoid, Softplus, etc. Formally, our requirement on ¢ is the following:

Assumption 3.2 (activation function). The activation function ¢(-) satisfies either of the followings:

(i) smooth activation: ¢ has bounded first and second derivatives: |¢'(z)| = O(1) and |¢" (z)| =
O(1) (Vz € R), or

>
(ii) piece-wise linear activation: ¢(z) = {Z (z20) for some a € R, |a| = O(1).8

az (z < 0)
We will consider the regime where the data dimension d is sufficiently large (i.e., larger than any

constant) and the number of datapoints n is at most some polynomial in d (i.e., n < do(l)). These
imply logn = O(logd) < d¢ for any constant ¢ > 0.

Under Assumption 3.1, the datapoints satisfy the following concentration properties:

i _
d

Claim 3.1. Suppose n > d. Then under Assumption 3.1, with high probability we have

1+ 0(\/@) (Vi € [n]), Lzumidl — 0(\/@) (Vi,j € [n],i # j), and || XX T|| = ©(n).

The main result in this section is to formally prove that the neural network trained by GD is
approximately a linear function in the early phase of training. As we will see, there are distinct
contributions coming from the two layers. Therefore, it is helpful to divide the discussion into the
cases of training the first layer only, the second layer only, and both layers together. All the omitted
proofs in this section are given in Appendix D.

8Qur results also hold for A/(0, 1) initialization in the second layer. Here we use Unif ({21} for simplicity.
"Recall that a zero-mean random variable X is o2-subgaussian if E[exp(sX)] < exp(c?s?/2) (Vs € R).
8We define ¢'(0) = 1 in this case.



3.1 Training the First Layer

Now we consider only training the first layer weights W, which corresponds to setting 72 = 0 in (4).
Denote by f; : R? — R the network at iteration ¢ in this case, namely f!(z) := f(x; W (t),v(t)) =
f(a; W(t),v(0)) (note that v(t) = v(0)).

The linear model which will be proved to approximate the neural network f; in the early phase of
training is £ (z; B) := BT (), where

e ::% [Cf] with ¢ = E[¢/(g)] and v = Elg¢/(9)] - VI[Z2/d. ()

Here recall that g ~ A/(0,1). We also consider training this linear model via GD on the {5 loss, this
time starting from zero:

n

B(0) =0411, PB(t+1)=p0() — nlvﬁ% Z (flinl(wi;ﬁ(t)) _ yi)2~ ©

i=1
We let £/ be the model learned at iteration ¢, i.e., fi*!(z) := finl(z; 3(t)).

We emphasize that (4) and (6) have the same learning rate 7;. Our theorem below shows that f} and
finl are close to each other in the early phase of training:

Theorem 3.2 (main theorem for training the first layer). Let o € (0, i) be a fixed constant. Suppose
the number of training samples n and the network width m satisfy n 2> d'*® and m > d**<.
Suppose 1 < d and ny = 0. Then there exists a universal constant ¢ > 0 such that with high
probability, forall0 <t <T = dl;;gd simultaneously, the learned neural network f! and the

linear model f}™! at iteration t are close on average on the training data:
fZ Fias) — fim () < a2, (7)

Moreover, f} and ™! are also close on the underlying data distribution D. Namely, with high
probability, for all 0 < t < T simultaneously, we have

Eonp [min{(f} (z) - f;"'(2))*,1}] S d” a)+\/@ ®

Theorem 3.2 ensures that the neural network f! and the linear model f}*! make almost the same
predictions in the early time of training. This agreement is not only on the training data, but also over
the underlying input distribution D. Note that this does not mean that f} and f/"! are the same on
the entire space R? — they might still differ significantly at low-density regions of D. We also remark
that our result has no assumption on the labels {y;} except they are bounded.

The width requirement in Theorem 3.2 is very mild as it only requires the width m to be larger than
d'* for some small constant o. Note that the width is allowed to be much smaller than the number
of samples n, which is usually the case in practice.

The agreement guaranteed in Theorem 3.2 is up to iteration ' = c - dlogd (for some constant c). It

turns out that for well-conditioned data, after T iterations, a near optimal linear model will have been
reached. This means that the neural network in the early phase approximates a linear model all the
way until the linear model converges to the optimum. See Corollary 3.3 below.

Corollary 3.3 (well-conditioned data). Under the same setting as Theorem 3.2, and additionally
assume that the data distribution D’s covariance X satisfies Ain(2) = Q(1). Let B, € RT! be the
optimal parameter for the linear model that GD (6) converges to, and denote f'*(x) := fl"l(x; 3,).
Then with high probability, after T = c - dlog 4 jterations (for some universal constant c), we have

fz Ph) = [ @)" S a7, Byup [min{(fh(x) — /17 (@))%, 1)) S a2 + (/1L



3.1.1 Proof Sketch of Theorem 3.2

The proof of Theorem 3.2 consists of showing that the NTK matrix for the first layer at random
initialization evaluated on the training data is close to the kernel matrix corresponding to the linear
model (5), and that furthermore this agreement persists in the early phase of training up to iteration
T. Specifically, the NTK matrix @1 (W) € R™*"™ at a given first-layer weight matrix W, and the
kernel matrix @' ¢ R™*™ for the linear model (5) can be computed as:

01 (W) = (¢(XWT/Vd)¢(XW T /Vd)T /m) © (XX T /d), @™ := (X XT +117)/d.
We have the following result that bounds the difference between ®1 (W (0)) and ®'"! in spectral

norm:

Proposition 3.4. With high probability over the random initialization W (0) and the training data
X, we have ||©1(W(0)) — ©""!|| < .

Notice that [|©'"! || = ©(2) according to Claim 3.1. Thus the bound = in Proposition 3.4 is of
smaller order. We emphasize that it is important to bound the spectral norm rather than the more
naive Frobenius norm, since the latter would give H®1(W(0)) — @l H r 2 q» Which is not useful.
(See Figure 5 for a numerical verification.)

To prove Proposition 3.4, we first use the matrix Bernstein inequality to bound the perturbatlon of
©1(W(0)) around its expectation with respect to W (0): ||©1(W(0)) — Eyy (o) [©1(W(0))]]| <

<rt=- Then we perform an entry-wise Taylor expansion of Eyy 0)[©1(W(0))], and it turns out that
the top-order terms exactly constitute @'"!, and the rest can be bounded in spectral norm by T

After proving Proposition 3.4, in order to prove Theorem 3.2, we carefully track (i) the prediction
difference between ft1 and ft““l, (i1) how much the weight matrix W move away from initialization,
as well as (iii) how much the NTK changes. To prove the guarantee on the entire data distribution we
further need to utilize tools from generalization theory. The full proof is given in Appendix D.

3.2 Training the Second Layer

Next we consider training the second layer weights v, which corresponds to 771 = 0 in (4). Denote by
f? : R® — R the network at iteration ¢ in this case. We will show that training the second layer is
also close to training a simple linear model f!i"2(x;~) := ~ "4 (x) in the early phase, where:

% (x ( and v are defined in (5),
d _
¥alz) = ll]l \/%V ll]] ’ 190 : ]Egg()],)] ©
121 — Izl 1)2
ﬁOJFﬂl(\/’ 1)+192(\/g 1) 192 [( )¢/( )]

As usual, this linear model is trained with GD starting from zero:

n

Y(0) = 0at2, (t+1)=~(t) - n2v7% S (M2 @i (t) - vi)? (10)

i=1
We denote by f1"2 the resulting model at iteration ¢.

Note that strictly speaking f'"2(x;~) is not a linear model in = because the feature map 1, (x)
contains a nonlinear feature depending on ||z|| in its last coordinate. Because H\f”

data assumption according to Claim 3.1, its effect might often be invisible. However, we emphasize
that in general the inclusion of this norm-dependent feature is necessary, for example when the target
function explicitly depends on the norm of the input. We illustrate this in Section 3.4.

~ 1 under our

Similar to Theorem 3.2, our main theorem for training the second layer is the following:

Theorem 3.5 (main theorem for training the second layer). Ler o € (0, i) be a fixed constant. Sup-
>dite if E = d/1 if E =

mz - ) lf [d)(g)] 0 ) Suppose M2 K / ogn, UC [¢(g)] 0

m 2 d*TY otherwise N2 K 1, otherwise

and m1 = 0. Then there exists a universal constant ¢ > 0 such that with high probability, for all

posen 2> d'T° and {
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Figure 1: Two-layer neural network learns a linear model early in training. (a) Losses of a
neural network and the corresponding linear model predicted by (11). Solid (dashed) lines represent
the training (test) losses. We have d = 50, and use 20,000 training samples and 2,000 test samples.
The neural network and the linear model are indistinguishable in the first 1,000 steps, after which
linear learning finishes and the network continues to make progress. (b) Evolution of logits (i.e.,
outputs) of 5 random test examples. We see excellent agreement between the predictions of the neural
network and the linear model in early time. (c) Discrepancy (in MSE) between the outputs of the
network and the linear model for various values of d. As predicted, the discrepancy becomes smaller
as d increases.

0<t<T=c¢- % simultaneously, we have
1 - in 2 —Q(a : in —Q(a
S (Rl — @)t SN, Equp [minf(f2() - [F(@),1}] S 479,
i=1

Similar to Theorem 3.2, an important step in proving Theorem 3.5 is to prove that the NTK matrix
for the second layer is close to the kernel for the linear model (9). Note that the theorem treats the
case 9 = E[¢(g)] = 0 differently. This is because when 9y # 0, the second layer NTK has a large
eigenvalue of size ©(n), while when ¥ = 0, its largest eigenvalue is only O("I?%).

We remark that if the data distribution is well-conditioned, we can also have a guarantee similar to
Corollary 3.3.

3.3 Training Both Layers

Finally we consider the case where both layers are trained, in which 77, = 72 = 1 > 0 in (4). Since
the NTK for training both layers is simply the sum of the first-layer NTK and the second-layer
NTK, the corresponding linear model should have its kernel being the sum of the kernels for linear
models (5) and (9), which can be derived easily:

ng

d

fin(x;8) =6 "p(x), P(x):= \/%u , (11
Uy Jr191(% —1) +192(% —1)2

where the constants are from (9). Note that (1p(x), ¥ (x')) = (1 (x), Y1 (x")) + (P2(x), Y2 (x')).

Again, we can show that the neural network is close to the linear model (11) in early time. The
guarantee is very similar to Theorems 3.2 and 3.5, so we defer the formal theorem to Appendix D; see
Theorem D.1. Note that our result can be directly generalized to the case where 1; # 72, for which
we just need to redefine the linear model using a weighted combination of the kernels for (5) and (9).

3.4 Empirical Verification

Verifying the early-time agreement between neural network and linear model. We verify our
theory by training a two-layer neural network with erf activation and width 256 on synthetic data
generated by  ~ N(0, I) and y = sign(f*(x)), where f* is a ground-truth two-layer erf network
with width 5. In Figure la, we plot the training and test losses of the neural network (colored in
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blue) and its corresponding linear model fi™ (in red).’ In the early training phase (up to 1,000 steps),
the training/test losses of the network and the linear model are indistinguishable. After that, the
optimal linear model is reached, and the network continues to make progress. In Figure 1b, we plot
the evolution of the outputs (logits) of the network and the linear model on 5 random test examples,
and we see excellent early-time agreement even on each individual sample. Finally, in Figure 1c, we
vary the input dimension d, and for each case plot the mean squared error (MSE) of the discrepancies
between the outputs of the network and the linear model. We see that the discrepancy indeed becomes
smaller as d increases, matching our theoretical prediction.

The necessity of the norm-dependent feature. We now illustrate the necessity of including the
norm-dependent feature in (11) and (9) through an example of learning a norm-dependent function.

We generate data from ¢ ~ N(0,I) and y = % + ReLU(a"z) (||al| = O(1)), and train a
two-layer network with ReLU activation. We also train the corresponding linear model f lin(11)
as well as a “naive linear model” which is identical to f except ¥; and 9J, are replaced with 0.

Figure 2 shows that f!" is indeed a much better approximation to the neural network than the naive
linear model.

4 Extensions to Multi-Layer and Convolutional Neural Networks

In this section, we provide theoretical and empirical evidence supporting that the agreement between
neural networks and linear models in the early phase of training may continue to hold for more
complicated network architectures and datasets than what we analyzed in Section 3.

4.1 Theoretical Observations

Multi-layer fully-connected (FC) neural networks. For multi-layer FC networks, it was known
that their infinite-width NTKs have the form K (z, ') = h(1=l =" Lﬁ) (xz,x' € R?) for
some function 4 : R? - R [Yang and Salman, 2019]. Let © be the NTK matrix on the n training

d d
data: [©]; ; = K(z;, ;). Under Assumption 3.1, we know from Claim 3.1 that % ~ 1 and
(®i,25)

21 ~ 0 (i # j). Hence we can Taylor expand / around (1, 1, 0) for the off-diagonal entries of ®
and around (1, 1, 1) for the diagonal entries. Similar to our analysis of two-layer networks, we should
be able to bound the higher-order components in the expansion, and only keep the simple ones like
XX 7,117, etc. This suggests that the early-time linear learning behavior which we showed for
two-layer FC networks may persist in multi-layer FC networks.

Convolutional neural networks (CNNs). We consider a simple 1-dimensional CNN with one
convolutional layer and without pooling (generalization to the commonly used 2-dimensional CNNs
is straightforward):

1 m
W, V). = — 'v;r w, * T . 12)
Here € R%is the input, W = [wy, ..., w,,]T € R™9and V = [vy,...,v,,]" € R™*? contain

the weights, where m is the number of channels (or width), and ¢ < d is the filter size. All the
weights are initialized i.i.d from A/(0, 1). The convolution operator * is defined as: for input € R?

For ¢ = erf, we have 99 = 91 = 92 = 0, so f'™ in (11) is a linear model in = without the nonlinear
feature.
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Figure 3: Good agreement between 4-hidden-layer CNN/FC network and linear model on
CIFAR-10 early in training. (a) Decomposition of the test losses onto Vj, (solid lines) and Vth-
(dashed lines) for , FC and the corresponding linear model. (b) Three randomly selected test
outputs for different models. (c) The relative MSE between the networks and the linear model.
Note that we adjust the learning rates of and FC so that their corresponding linear models are
identical.

and filter w € R?, we have w x z € R? with [w * z]; := > =1 [wl; [&];, ;. We consider circular
padding (as in Xiao et al. [2018], Li et al. [2019b]), so the indices in input should be understood as
[m]z = [x]i+d’

We have the following result concerning the NTK of this CNN:

Proposition 4.1. Let ¢ = erf. Suppose n > d*** and q = dzt2e for some constant o € (0, %)
Consider n datapoints x1, . .., T, i~y Unif ({£1}4). Then the corresponding NTK matrix ©cyn €
R™*"™ of the CNN (12) in the infinite-width limit (m — o0o) satisfies HGCNN — 2§2XXT/d|| N
with high probability, where ( = E[¢(g)].

The proof is given in Appendix E. The above result shows that the NTK of a CNN can also be close
to the (scaled) data kernel, which implies the linear learning behavior in the early time of training the
CNN. Our empirical results will show that this behavior can even persist to multi-layer CNNs and
real data beyond our analysis.

4.2 Empirical Results

We perform experiments on a binary classification task from CIFAR-10 (“cats” vs “horses”) using
a multi-layer FC network and a CNN. The numbers of training and test data are 10,000 and 2,000.
The original size of the images is 32 x 32 x 3, and we down-sample the images into size 8 x 8 X 3
using a 4 x 4 average pooling. Then we train a 4-hidden-layer FC net and a 4-hidden-layer CNN
with erf activation. To have finer-grained examination of the evolution of the losses, we decompose
the residual of the predictions on test data (namely, f;(x) — y for all test data collected as a vector
in R290%) onto V4;,, the space spanned by the inputs (of dimension d = 192), and its complement
Vi (of dimension 2000 — d). For both networks, we observe in Figure 3a that the test losses of the
networks and the linear model are almost identical up to 1,000 steps, and the networks start to make
progress in Vi after that. In Figure 3b we plot the logit evolution of 3 random test datapoints and
again observe good agreement in early time. In Figure 3c, we plot the relative MSE between the
network and the linear model (i.e., Ez || fi(x) — fi(x)||?/Eqx || f () || evaluated on test data). We
observe that this quantity for either network is small in the first 1,000 steps and grows afterwards. The
detailed setup and additional results for full-size CIFAR-10 and MNIST are deferred to Appendix A.

5 Conclusion

This work gave a novel theoretical result rigorously showing that gradient descent on a neural network
learns a simple linear function in the early phase. While we mainly focused on two-layer fully-
connected neural networks, we further provided theoretical and empirical evidence suggesting that
this phenomenon continues to exist in more complicated models. Formally extending our result to
those settings is a direction of future work. Another interesting direction is to study the dynamics of
neural networks after the initial linear learning phase.
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