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Notations. For two vectors a, b 2 Rr, ha, bi denotes the usual Euclidean product and kak the
associated norm. By convention, vectors are column vectors. For a vector x with components
(x1, . . . , xr), xi:j denotes the sub-vector with components (xi, xi+1, . . . , xj�1, xj).

For two matrices A 2 Rr1⇥r2 and B 2 Rr3⇥r4 , A ⌦ B denotes the Kronecker product. Ir is the
r ⇥ r identity matrix. AT is the transpose of A.

6 Complexity of incremental EM-based methods for smooth non-convex
finite sum optimization

We first compare the complexities of the incremental EM based methods using the following table
which summarizes the state-of-the-art results.

algorithm � KOpt KCE Optimal KCE

EM [10] - 1 + kmax n+ nkmax N/A
online-EM [6] decaying; O(L�1

k
�1/2) 1 + kmax n+ bkmax ✏

�2

iEM [21] 1 1 + kmax n+ bkmax ✏
�1

n

sEM-vr [7, 18] O(L�1
n
�2/3) 1 + kinkout n(1 + kout) + (bkin + n)kout ✏

�1
n
2/3

FIEM [18] O(L�1
n
�2/3) 1 + kmax n+ 2bkmax ✏

�1
n
2/3

FIEM [12] O(L�1
n
�1/3

k
�1/3
max ) 1 + kmax n+ 2bkmax ✏

�3/2p
n

SPIDER-EM O(L�1) 1 + kinkout n+ koutn+ 2bkinkout ✏
�1

p
n

Table 1: Comparison between different EM-based algorithms for smooth non convex finite sum
optimization. Except sEM-vr and SPIDER-EM which have nested loops (kout is the maximal number
of outer loops and kin is the number of inner loops per outer loop), kmax is the maximal number of
iterations. The last column is the optimal complexity to reach an ✏-approximate stationary point.

Next, we provide the psuedo-codes of several existing incremental EM-based algorithms, following
the notations defined in the main paper.
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Data: kmax 2 N?, bSinit 2 Rq

Result: The EM sequence: bSk, k = 0, . . . , kmax

1 bS0 = s̄ � T(bSinit) ;
2 for k = 0, . . . , kmax � 1 do
3 bSk+1 = s̄ � T(bSk)

Algorithm 2: The EM algorithm in the expectation space.

Data: kmax 2 N?, bSinit 2 Rq , �k 2 (0,1) for k = 1, . . . , kmax

Result: The SA sequence: bSk, k = 0, . . . , kmax

1 bS0 = s̄ � T(bSinit) ;
2 for k = 0, . . . , kmax � 1 do
3 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;
4 bSk+1 = bSk + �k+1

⇣
s̄Bk+1 � T(bSk)� bSk

⌘
.

Algorithm 3: The Online EM algorithm.

Data: kmax 2 N?, bSinit 2 Rq , �k 2 (0,1) for k = 1, . . . , kmax

Result: The iEM sequence: bSk, k = 0, . . . , kmax

1 S0,i = s̄i � T(bSinit) for all i = 1, . . . , n;
2 bS0 = eS0 = n�1

Pn
i=1

S0,i;
3 for k = 0, . . . , kmax � 1 do
4 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;
5 Sk+1,i = Sk,i for i /2 Bk+1 ;
6 Sk+1,i = s̄i � T(bSk) for i 2 Bk+1;
7 eSk+1 = eSk + n�1

P
i2Bk+1

(Sk+1,i � Sk,i) ;
8 bSk+1 = bSk + �k+1(eSk+1 �

bSk)

Algorithm 4: The Incremental EM (iEM) algorithm.

Data: kmax 2 N?, bSinit 2 Rq , �k 2 (0,1) for k = 1, . . . , kmax

Result: The FIEM sequence: bSk, k = 0, . . . , kmax

1 S0,i = s̄i � T(bSinit) for all i = 1, . . . , n;
2 bS0 = eS0 = n�1

Pn
i=1

S0,i;
3 for k = 0, . . . , kmax � 1 do
4 Sample a mini-batch Bk+1 in {1, . . . , n} of size b, with replacement ;
5 Sk+1,i = Sk,i for i /2 Bk+1 ;
6 Sk+1,i = s̄i � T(bSk) for i 2 Bk+1 ;
7 eSk+1 = eSk + n�1

P
i2Bk+1

(Sk+1,i � Sk,i) ;
8 Sample a mini-batch B

0
k+1

in {1, . . . , n} of size b, with replacement ;
9 Vk+1 = eSk+1 � b�1

P
i2B0

k+1
Sk+1,i ;

10 bSk+1 = bSk + �k+1(s̄B0
k+1
� T(bSk)� bSk + Vk+1)

Algorithm 5: The Fast Incremental EM (FIEM) algorithm.
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Data: kin 2 N?, kout 2 N?, bSinit 2 Rq , �t,k 2 (0,1) for t � 1, k � 1

Result: The sEM-vr sequence: bSt,k, t = 1, . . . , kout and k = 0, . . . , kin � 1

1 S1,0 = s̄ � T(bSinit) ;
2 bS1,0 = bSinit ;
3 for t = 1, . . . , kout do
4 for k = 0, . . . , kin � 2 do
5 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with replacement ;
6 Vt,k+1 = St,0 � s̄Bt,k+1 � T(bSt�1,kin�1) ;

7 bSt,k+1 = bSt,k + �t,k+1

⇣
s̄Bt,k+1 � T(bSt,k)� bSt,k + Vt,k+1

⌘

8 St+1,0 = s̄ � T(bSt,kin�1) ;
9 bSt+1,0 = bSt,kin�1 + �t,kin

⇣
St+1,0 �

bSt,kin�1

⌘

Algorithm 6: The sEM-vr algorithm.

7 An equivalent definition of the SPIDER-EM algorithm

Using Lemma 3 below this page, we deduce that SPIDER-EM can be equivalently described by the
following algorithm 7.

Data: kin 2 N?, kout 2 N?, bSinit 2 Rq , a positive sequence {�t,k, t, k � 1}.
Result: The SPIDER-EM sequence: bSt,k, t = 1, . . . , kout, k = 0, . . . , kin � 1

1 bS1,�1 = bSinit ;
2 eS1,0 = s̄ � T(bSinit) ;
3 for t = 1, . . . , kout do
4 Vt,0 = 0 ;
5 for k = 0, . . . , kin � 2 do
6 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with or without replacement ;
7 Vt,k+1 = Vt,k + eSt,k � s̄Bt,k+1 � T(bSt,k�1) ;
8 eSt,k+1 = s̄Bt,k+1 � T(bSt,k) ;

9 bSt,k+1 = bSt,k + �t,k+1

⇣
eSt,k+1 �

bSt,k + Vt,k+1

⌘

10 eSt+1,0 = s̄ � T(bSt,kin�1) ;
11 bSt+1,0 = bSt,kin�1 + �t,kin

⇣
eSt+1,0 �

bSt,kin�1

⌘

Algorithm 7: The SPIDER-EM algorithm (equivalent description)

Lemma 3. Let {�k, k � 1} be a positive deterministic sequence and {Bk, t, k � 1} be a family of
mini-batches sampled from {1, . . . , n}. Fix bS�1, bS0 and S0. Define for k = 0, · · · , kin � 2

(
Sk+1

def
= Sk + s̄Bk+1 � T(bSk)� s̄Bk+1 � T(bSk�1) ,

bSk+1

def
= bSk + �k+1

⇣
Sk+1 �

bSk

⌘
.

Set eS�1

def
= bS�1, eS0

def
= bS0, V0

def
= 0 and define for k = 0, . . . , kin � 2,

(
Vk+1

def
= Vk + s̄Bk � T(eSk�1)� s̄Bk+1 � T(eSk�1) ,

eSk+1

def
= eSk + �k+1

⇣
s̄Bk+1 � T(eSk)� eSk + Vk+1

⌘
;

by convention, set s̄B0 � T(eS�1) = S0.

Then for any k = �1, . . . , kin � 1, eSk = bSk.
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Proof. We prove by induction that for any k � 1, Vk = Sk� s̄Bk �T(bSk�1) and eSk = bSk. We have
by definition of V0, s̄B0 � T(eS�1), eS�1 and S1,

V1 = S0 � s̄B1 � T(eS�1) = S0 � s̄B1 � T(bS�1) = S1 � s̄B1 � T(bS0) .

In addition, by definition of eS0, eS1 and V1, we have

eS1 = bS0 + �1
⇣
s̄B1 � T(bS0)� bS0 + S1 � s̄B1 � T(bS�0)

⌘
.

Assume that the property holds for any 0  j  k. Then, by definition of Vk+1, the induction
assumption on Vk and the definition of Sk+1, it holds

Vk+1 = Vk + s̄Bk � T(eSk�1)� s̄Bk+1 � T(eSk�1)

= Sk � s̄Bk+1 � T(eSk�1) = Sk+1 � s̄Bk+1 � T(eSk) .

This concludes the induction for the property on {Vk, k � 0}. In addition, by the induction assump-
tion on eSk, the definition of Vk+1, the induction assumption on Vk and the definition of Sk+1, we
have

eSk+1 = bSk + �k+1

⇣
s̄Bk+1 � T(bSk)� bSk + Vk + s̄Bk � T(bSk�1)� s̄Bk+1 � T(bSk�1)

⌘

= bSk + �k+1

⇣
s̄Bk+1 � T(bSk)� bSk + Sk � s̄Bk+1 � T(bSk�1)

⌘

= bSk + �k+1

⇣
Sk+1 �

bSk

⌘
= bSk+1 .

This concludes the proof.

8 General convergence results

The purpose of this section is to show the general convergence results of a SPIDER-EM like algo-
rithm, and these results will be specialized in section 9. For all i = 1, . . . , n, s̄i � T is a function
from Rq to Rq; for a selection of b indices B in {1, . . . , n} with or without replacement, we set
s̄B � T

def
= b�1

P
i2B s̄i � T. More generally, s̄ � T def

= n�1
Pn

i=1
s̄i � T. For some results below,

specific assumptions may be introduced on s̄t � T.

Let {�k, k � 1} be a positive deterministic sequence. Let {Bk, k � 1} be a family of independent
random mini batches sampled in {1, . . . , n} of size b, (either with replacement or without replace-
ment). Finally, let U�1, U0 be random variables. Assume that (U�1, U0) are independent from the
sequences {Bk, k � 1} and set

eU0

def
= s̄ � T(U�1) = E [s̄B1 � T(U�1)|U�1] . (16)

Consider the recursive definition for k � 0,
eUk+1 = eUk + s̄Bk+1 � T(Uk)� s̄Bk+1 � T(Uk�1) ,

Uk+1 = Uk + �k+1

⇣
eUk+1 � Uk

⌘
.

Finally, define the filtration

G0

def
= �(U�1, U0), for k � 0, Gk+1

def
= � (Gk [ Bk+1) ,

and define the sequence of random variables

�0

def
= h(U�1), for k � 0, �k+1

def
= eUk+1 � Uk = ��1

k+1
(Uk+1 � Uk) .

Lemma 4. For any k � 0, Bk+1 and Gk are independent. For any u 2 Rq ,
E
⇥
s̄Bk+1 � T(u)

⇤
= s̄ � T(u) .

Assume that s̄i � T is globally Lipschitz with constant Li; set L2 def
= n�1

Pn
i=1

L2

i . For any u, u0
2

Rq ,

E
⇥
ks̄Bk+1 � T(u)� s̄Bk+1 � T(u

0)� s̄ � T(u) + s̄ � T(u0)k2
⇤


1

b

�
L2
ku� u0

k
2
� ks̄ � T(u)� s̄ � T(u0)k2

�
.
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Proof. By assumption, Bk+1 and (U0, U�1) are independent, and therefore Bk+1 and G0 are also.
In addition, Bk+1 is independent of B` for any `  k so Bk+1 is independent of Gk.

• Case: sampling with replacement. We write Bk+1 = {I1, · · · , Ib} where the random variables are
independent, and uniformly distributed on {1, · · · , n}. Then

E
⇥
s̄Bk+1 � T(u)

⇤
=

1

b

bX

`=1

E [s̄I` � T(u)] = E [s̄I1 � T(u)] = s̄ � T(u) .

In addition, since the variance of the sum is the sum of the variance for independent r.v.
E
⇥
ks̄Bk+1 � T(u)� s̄Bk+1 � T(u

0)� s̄ � T(u) + s̄ � T(u0)k2
⇤

=
1

b2

bX

`=1

E
⇥
ks̄I` � T(u)� s̄I` � T(u

0)� s̄ � T(u) + s̄ � T(u0)k2
⇤

Then we have
E
⇥
ks̄I` � T(u)� s̄I` � T(u

0)� s̄ � T(u) + s̄ � T(u0)k2
⇤

=
1

n

nX

i=1

E
⇥
ks̄i � T(u)� s̄i � T(u

0)k2
⇤
� ks̄ � T(u) + s̄ � T(u0)k2

 ku� u0
k
2
1

n

nX

i=1

L2

i � ks̄ � T(u) + s̄ � T(u0)k2 (17)

which concludes the proof.

• Case: sampling with no replacement. I1 is a uniform random variable on {1, · · · , n} so that
E [s̄I1 � T(u)] = s̄�T(u). Conditionally to I1, I2 is a uniform random variable on {1, · · · , n}\{I1}.
Therefore

E [s̄I2 � T(u)] =
1

n� 1

0

@
nX

j=1

s̄j � T(u)� E [s̄I1 � T(u)]

1

A =
n

n� 1
s̄ � T(u)�

1

n� 1
s̄ � T(u) .

By induction, for any ` � 2,

E [s̄I` � T(u)] =
1

n� `+ 1

0

@
nX

j=1

s̄j � T(u)�
`�1X

q=1

E
⇥
s̄Iq � T(u)

⇤
1

A

=
n

n� `+ 1
s̄ � T(u)�

`� 1

n� `+ 1
s̄ � T(u) .

As a conclusion, b�1
Pb

`=1
E [s̄I` � T(u)] = s̄�T(u). Let u, u0

2 Rq; set �(I`)
def
= s̄I` �T(u)� s̄�

T(u)+ s̄I` �T(u
0)� s̄�T(u0). Then E [�(I`)] = 0. We first prove by induction that E

⇥
k�(I`)k2

⇤
=

E
⇥
k�(I1)k2

⇤
. Upon noting that I1 is a uniform random variable on {1, · · · , n},

E
⇥
k�(I`)k

2
⇤
=

1

n� `+ 1

 
nX

i=1

k�(i)k2 � E
⇥
k�(I1)k

2 + · · ·+ k�(I`�1)k
2
⇤
!

=
n

n� `+ 1
E
⇥
k�(I1)k

2
⇤
�

1

n� `+ 1

`�1X

p=1

E
⇥
k�(Ip)k

2
⇤

which concludes the induction. Second, let us prove that for any ` � 0,

E
"
k

`+1X

p=1

�(Ip)k
2

#
 (`+ 1)E

⇥
k�(I1)k

2
⇤
. (18)

Since n�1
Pn

i=1
�(i) = E [�(I1)] = 0,

E
"*

X̀

p=1

�(Ip),�(I`+1)

+#
=

1

n� `
E
"*

X̀

p=1

�(Ip),
nX

i=1

�(i)�
X̀

p=1

�(Ip)

+#
= �

1

n� `
E
"
k

X̀

p=1

�(Ip)k
2

#
,
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so that

E
"
k

`+1X

p=1

�(Ip)k
2

#
=

✓
1�

2

n� `

◆
E
"
k

X̀

p=1

�(Ip)k
2

#
+E

⇥
k�(I`+1)k

2
⇤
 (`+1)E

⇥
k�(I1)k

2
⇤
.

The proof follows from (18) and (17) since here again, I1 is uniformly distributed on {1, · · · , n}.

Lemma 5. For any k � 0,

E [�k+1|Gk]� h(Uk) = �k � h(Uk�1) .

Proof. Let k � 0. Since conditionally to Gk, Bk+1 = {I1, . . . , Ib} where the random variables Ik’s
are independent and uniformly distributed on {1, . . . , n}, we have

E
h
eUk+1|Gk

i
= eUk + s̄ � T(Uk)� s̄ � T(Uk�1) .

In the case k = 0, we have by using (16)

E [�1 � h(U0)|G0] = E
h
eU1|G0

i
� s̄ � T(U0) = 0 = �0 � h(U�1) ;

the last equality explains the convention for �0. In the case k > 0,

E [�k+1|Gk] = E
h
eUk+1 � Uk|Gk

i
= eUk + h(Uk)� s̄ � T(Uk�1)

= �k + Uk�1 + h(Uk)� �̄T(Uk�1) = h(Uk) +�k � h(Uk�1) .

Proposition 6. Assume that for all i = 1, · · · , n, s̄i � T is globally Lipschitz, with constant Li; set
L2 def

= n�1
Pn

i=1
L2

i . Then �0 � E [�0|G0] = 0,

E[k�1 � E [�1|G0] k
2
|G0] = E[k�1 � h(U0)k

2
|G0]

 �
1

b
ks̄ � T(U0)� s̄ � T(U�1)k

2 +
L2

b
kU0 � U�1k

2 .

and for any k � 1,

E[k�k+1 � E[�k+1|Gk]k
2
|Gk]  �

1

b
ks̄ � T(Uk)� s̄ � T(Uk�1)k

2 +
L2

b
�2k k�kk

2 ;

E[k�k+1 � h(Uk)k
2
|G0]  �

1

b

kX

j=0

E
⇥
ks̄ � T(Uj)� s̄ � T(Uj�1)k

2
|G0

⇤

+
L2

b

0

@
kX

j=1

�2j E
⇥
k�jk

2
|G0

⇤
+ kU0 � U�1k

2

1

A .

Proof. The statement on �0 is trivial since �0 = h(U�1) 2 G0. By definition of �1, by Lemma 4
and by (16)

E [�1|G0] = E
h
eU1|G0

i
� U0 = eU0 + s̄ � T(U0)� s̄ � T(U�1)� U0 = h(U0) .

The equation

�1 � E [�1|G0] = s̄B1 � T(U0)� s̄B1 � T(U�1)� (s̄ � T(U0)� s̄ � T(U�1))

and Lemma 4 provides the upper bound for �1. Let k � 1. By definition of �k+1 and by Lemma 4,

�k+1 � E [�k+1|Gk] = eUk+1 � E
h
eUk+1|Gk

i

= s̄Bk+1 � T(Uk)� s̄Bk+1 � T(Uk�1) + s̄ � T(Uk)� s̄ � T(Uk�1)
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and we then conclude by Lemma 4 again. For the second statement, since we have E
⇥
kUk2

⇤
=

E
⇥
kU � E[U |V ]k2

⇤
+ E

⇥
kE[U |V ]k2

⇤
for any random variables U, V , it holds for any k � 0,

E
⇥
k�k+1 � h(Uk)k

2
|Gk

⇤
= E

⇥
k�k+1 � E [�k+1|Gk] k

2
|Gk

⇤
+ kE [�k+1|Gk]� h(Uk)k

2

= E
⇥
k�k+1 � E [�k+1|Gk] k

2
|Gk

⇤
+ k�k � h(Uk�1)k

2

where we used Lemma 5 in the last equality. By induction, this yields

E
⇥
k�k+1 � h(Uk)k

2
|G0

⇤
=

kX

j=0

E
⇥
E
⇥
k�j+1 � E [�j+1|Gj ] k

2
|Gj

⇤
|G0

⇤

where we have used that �0�h(U�1) = 0 (by definition). We then conclude with the first statement.

Lemma 7. For any h, s, S 2 Rq and any q ⇥ q symmetric matrix B, it holds
�2 hBh, Si = �hBS, Si � hBh, hi+ hB{h� S}, h� Si .

Proposition 8. Assume H1, H2, H3 and H4 and H5. It holds for any K � 2,
K�1X

`=1

�` E
⇥
kU` � U`�1k

2
|G0

⇤
+

vmin

2

K�2X

k=0

�k+1E
⇥
kh(Uk)k

2
|G0

⇤

W(U0)� E [W(UK�1)|G0] +
L2vmax

2b

 
K�1X

k=1

�k

!
kU0 � U�1k

2 ,

where (by convention,
PK�2

`=K�1
= 0)

�`
def
=

 
vmin

2�`
�

LrW

2
�

vmax

2

L2

b

K�2X

k=`

�k+1

!

Proof. Let k 2 {0, · · · ,K�2}. By Proposition 1 and H5-Item (c), W is continuously differentiable
with globally Lipschitz gradient, which implies

W(Uk+1)�W(Uk)  hrW(Uk), Uk+1 � Uki+
LrW

2
kUk+1 � Ukk

2 .

By Proposition 1, we have rW(Uk) = �B(Uk)h(Uk); hence,
hrW(Uk), Uk+1 � Uki = �hB(Uk)h(Uk), Uk+1 � Uki .

We apply Lemma 7 with B  B(Uk), h  h(Uk) and S  �k+1 = (Uk+1 � Uk)/�k+1. This
yields by H5-Item (a),

hrW(Uk), Uk+1 � Uki  �
�k+1vmin

2
k�k+1k

2
�
vmin�k+1

2
kh(Uk)k

2+
vmax�k+1

2
kh(Uk)��k+1k

2

and since �k+1 = (Uk+1 � Uk)/�k+1, we obtain

hrW(Uk), Uk+1 � Uki  �
vmin

2�k+1

kUk+1 � Ukk
2
�

vmin�k+1

2
kh(Uk)k

2 +
vmax�k+1

2
k�k+1 � h(Uk)k

2 .

Therefore, we established
✓

vmin

2�k+1

�
LrW

2

◆
kUk+1 � Ukk

2 +
vmin�k+1

2
kh(Uk)k

2


vmax�k+1

2
k�k+1 � h(Uk)k

2

+W(Uk)�W(Uk+1) .

Applying the conditional expectation and using Proposition 6 (and again �2j k�jk
2 = kUj�Uj�1k

2

for j � 1), this yields
✓

vmin

2�k+1

�
LrW

2

◆
E
⇥
kUk+1 � Ukk

2
|G0

⇤
+

vmin�k+1

2
E
⇥
kh(Uk)k

2
|G0

⇤


vmax�k+1

2

L2

b

kX

j=0

E
⇥
kUj � Uj�1k

2
|G0

⇤
+ E [W(Uk)�W(Uk+1)|G0] .
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We now sum from k = 0 to k = K � 2 and obtain by using Lemma 9 with �̄j  

E
⇥
kUj � Uj�1k

2
|G0

⇤
,

✓
vmin

2�K�1

�
LrW

2

◆
E
⇥
kUK�1 � UK�2k

2
|G0

⇤

+
K�2X

`=1

 
vmin

2�`
�

LrW

2
�

vmax

2

L2

b

K�2X

k=`

�k+1

!
E
⇥
kU` � U`�1k

2
|G0

⇤

+
vmin

2

K�2X

k=0

�k+1E
⇥
kh(Uk)k

2
|G0

⇤
 E [W(U0)�W(UK�1)|G0]

+ kU0 � U�1k
2

 
K�1X

k=1

�k

!
L2vmax

2b
.

This concludes the proof.

Lemma 9. For any real numbers ai, bi, �̄i and K � 2,

K�1X

k=1

 
ak�̄k � bk

k�1X

`=0

�̄`

!
= aK�1�̄K�1 � �̄0

K�1X

k=1

bk +
K�2X

`=1

 
a` �

K�1X

k=`+1

bk

!
�̄` .

Lemma 10. For any k � (t� 1)kin,

kX

q=(t�1)kin

0

@�aq+1Xq+1 + bq+1

qX

j=(t�1)kin

Yj + cq+1

qX

j=(t�1)kin

djXj

1

A

= �ak+1Xk+1 + d(t�1)kin

0

@
kX

q=(t�1)kin

cq+1

1

AX(t�1)kin

+
kX

j=(t�1)kin+1

0

@dj

0

@
kX

q=j

cq+1

1

A� aj

1

AXj +
kX

j=(t�1)kin

0

@
kX

q=j

bq+1

1

AYj .

9 Proof of Main Results in section 3

For t = 1, · · · , kout and k = 0, · · · , kin � 2, define the �-field Ft,k:

F0,kin�1

def
= �(bSinit) , Ft,0

def
= Ft�1,kin�1 , Ft,k+1

def
= � (Ft,k [ Bt,k+1) .

With these definitions, we have for t = 1, · · · , kout and k = 0, · · · , kin � 2,

bSt,k+1 2 Ft,k+1 , St,k+1 2 Ft,k+1 , Bt,k+1 2 Ft,k+1 ;

and bSt,0 2 Ft,0, St,0 2 Ft,0. For t = 1, · · · , kout and k = 0, · · · , kin � 2 set

Ht,k+1

def
= ��1

t,k+1

⇣
bSt,k+1 �

bSt,k

⌘
= St,k+1 �

bSt,k 2 Ft,k+1 ; (19)

and choose the convention H1,0
def
= h(bS1,�1), and

Ht+1,0 = Ht,kin

def
= ��1

t,kin
(bSt+1,0 �

bSt,kin�1) = St+1,0 �
bSt,kin�1 = h

⇣
bSt,kin�1

⌘
. (20)

9.1 Preliminary lemmas

The following results are consequences of the general analysis in section 8.
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Lemma 11. Assume H1, H2, H3. Let {bSt,k, t = 1, · · · , kout, k = 0, · · · , kin � 1} be the sequence
given by algorithm 1. For t = 1, · · · , kout and k = 0, · · · , kin � 2

E [Ht,k+1|Ft,k]� h(bSt,k) = Ht,k � h(bSt,k�1) ,

Ht,0 � h(bSt,�1) = 0 = Ht,kin � h(bSt,kin�1) .

Proof. Let t � 1: apply Lemma 5 with U0  
bSt,0, U�1  

bSt,�1, �k+1  �t,k+1, Bk+1  Bt,k+1.
Then eU0  St,0 satisfies the condition (16) and for any k � 0, we have Uk+1 = bSt,k+1, eUk+1 =
St,k+1, �k+1 = Ht,k+1 and Gk+1 = Ft,k+1. This yields the result.

Corollary 12 (of Lemma 11). For t = 1, · · · , kout and k = 0, · · · , kin

E[Ht,k � h(bSt,k�1)|Ft,0] = 0 .

Proof. Let t � 1. If k = 0 then by Lemma 11, the property holds. Let k 2 {0, . . . , kin � 2}. We
write by using Lemma 11

E[Ht,k+1 � h(bSt,k)|Ft,0] = E[E[Ht,k+1 � h(bSt,k)|Ft,k]|Ft,0] = E[Ht,k � h(bSt,k�1)|Ft,0] .

The proof is concluded by induction:

E[Ht,k+1 � h(bSt,k)|Ft,0] = E[Ht,0 � h(bSt,�1)|Ft,0] = 0 .

Proposition 13. Assume H1, H2, H3, H5-(b) and set L2 def
= n�1

Pn
i=1

L2

i . For any t = 1, · · · , kout,
Ht,0 � h(bSt,�1) = 0, and

E[kHt,1 � E [Ht,1|Ft,0] k
2
|Ft,0]  �

1

b
ks̄ � T(bSt,0)� s̄ � T(bSt,�1)k

2 +
L2

b
kbSt,0 �

bSt,�1k
2 .

In addition, for k = 1, · · · , kin � 2,

E[kHt,k+1 � h(bSt,k)k
2
|Ft,0]  �

1

b

kX

j=0

E
h
ks̄ � T(bSt,j)� s̄ � T(bSt,j�1)k

2
|Ft,0

i

+
L2

b

0

@
kX

j=1

�2t,j E
⇥
kHt,jk

2
|Ft,0

⇤
+ kbSt,0 �

bSt,�1k
2

1

A ,

E[kHt,k+1 � E[Ht,k+1|Ft,k]k
2
|Ft,k]  �

1

b
ks̄ � T(bSt,k)� s̄ � T(bSt,k�1)k

2 +
L2

b
�2t,k kHt,kk

2 .

Finally,
kHt,kin � h(bSt,kin�1)k = kHt,kin � E [Ht,kin |Ft,kin�1] k = 0 .

Proof. Let t � 1. Apply Proposition 6 with �k  �t,k, Bk+1  Bt,k+1, U0  
bSt,0, U�1  

bSt,�1,
Gk  Ft,k. Since St,0 = s̄�T(bSt,�1), then the condition (16) is satisfied with eU0 = St,0. Conclude
by observing that eUk = St,k and �k+1 = Ht,k+1.

9.2 Proof of Theorem 2

Proposition 14. Assume H1, H2, H3, H4 and H5. Set L2 def
= n�1

Pn
i=1

L2

i . For any positive
numbers �t,k, set for t = 1, · · · , kout and k = 0, · · · , kin � 1

At,k
def
= �t,kvmin

 
1�

�2

t,k

2vmin

� �t,k
LrW

2vmin

�
L2v2

max

2vminb
�t,k

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!!

Bt,k
def
=

v2
max

2b

kin�2X

k=0

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
;
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by convention �t,0 = 0, �t,0 = �t�1,kin , �0,kin = 0 and Bt,kin�1 = 0.

Let {bSt,k, t = 1, · · · , kout; k = 0, · · · , kin � 1} be the sequence given by algorithm 1. For any
t = 1, · · · , kout,

W(bSt,0) W(bSt,�1)� �t�1,kinvmin

✓
1� �t�1,kin

LrW

2vmin

◆
kh(bSt,�1)k

2 ; (21)

and
koutX

t=1

kin�1X

k=0

⇣
At,kE[kHt,kk

2] +Bt,kE[ks̄ � T(bSt,k)� s̄ � T(bSt,k�1)k
2]
⌘
 E[W(bSinit)]�minW .

Proof. Let t � 1. By H5-(c), we have for any k = �1, · · · , kin � 1,

W(bSt,k+1) W(bSt,k) + �t,k+1

D
rW(bSt,k), Ht,k+1

E
+ �2t,k+1

LrW

2
kHt,k+1k

2 ; (22)

by convention, we set bSt,kin

def
= bSt+1,0. By Proposition 1, H5-(a) and (20), we have

D
rW(bSt,kin�1), Ht,kin

E
 �vminkh(bSt,kin�1)k

2 = �vminkHt,kink
2 ,

so that
W(bSt,kin) W(bSt,kin�1)� �t,kinvminkHt,kink

2 + �2t,kin

LrW

2
kHt,kink

2 . (23)

This concludes the proof of (21) since bSt,kin = bSt+1,0 and bSt,kin�1 = bSk+1,�1. Now, let us fix
k 2 {0, · · · , kin � 2}. We write
D
rW(bSt,k), Ht,k+1

E
= �

D
B(bSt,k)h(bSt,k), Ht,k+1

E

= �
D
B(bSt,k)

⇣
h(bSt,k)�Ht,k+1

⌘
, Ht,k+1

E
�

D
B(bSt,k)Ht,k+1, Ht,k+1

E

 �

D
B(bSt,k)

⇣
h(bSt,k)�Ht,k+1

⌘
, Ht,k+1

E
� vminkHt,k+1k

2 . (24)

Note that for a, b 2 Rq and � > 0,

ha, bi 
�2

2
kak2 +

1

2�2
kbk2 .

By H5-(a), we have for any �t,k+1 > 0,
���
D
B(bSt,k)

⇣
h(bSt,k)�Ht,k+1

⌘
, Ht,k+1

E��� 
�2

t,k+1

2
kHt,k+1k

2 +
v2
max

2�2

t,k+1

kHt,k+1 � h(bSt,k)k
2 .

(25)
Combining (22), (24) and (25) yield

W(bSt,k+1) W(bSt,k)� ⇤t,k+1kHt,k+1k
2 + �t,k+1

v2
max

2�2

t,k+1

kHt,k+1 � h(bSt,k)k
2 ,

where for ` = 1, . . . , kin � 1,

⇤t,`
def
= �t,`vmin

 
1�

�2

t,`

2vmin

� �t,`
LrW

2vmin

!
.

By Proposition 13,

E
h
W(bSt,k+1)|Ft,0

i
 E

h
W(bSt,k)|Ft,0

i
� ⇤t,k+1E

⇥
kHt,k+1k

2
|Ft,0

⇤

� �t,k+1

v2
max

2�2

t,k+1

1

b

kX

j=0

E
h
ks̄ � T(bSt,j)� s̄ � T(bSt,j�1)k

2
|Ft,0

i

+ �t,k+1

v2
max

2�2

t,k+1

L2

b

0

@
kX

j=1

�2t,j E
⇥
kHt,jk

2
|Ft,0

⇤
+ kbSt,0 �

bSt,�1k
2

1

A ;
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by taking the expectation, this yields

E
h
W(bSt,k+1)

i
 E

h
W(bSt,k)

i
� ⇤t,k+1E

⇥
kHt,k+1k

2
⇤

� �t,k+1

v2
max

2�2

t,k+1

1

b

kX

j=0

E
h
ks̄ � T(bSt,j)� s̄ � T(bSt,j�1)k

2

i

+ �t,k+1

v2
max

2�2

t,k+1

L2

b

0

@
kX

j=1

�2t,j E
⇥
kHt,jk

2
⇤
+ E

h
kbSt,0 �

bSt,�1k
2

i
1

A ;

By summing from time k = 0 to k = kin � 2, we have (see Lemma 10)

E
h
W(bSt+1,�1)

i
= E

h
W(bSt,kin�1)

i
 E

h
W(bSt,0)

i
� ⇤t,kin�1E

⇥
kHt,kin�1k

2
⇤

+
v2
max

L2

2b

 
kin�2X

`=0

�t,`+1

�2

t,`+1

!
E
h
kbSt,0 �

bSt,�1k
2

i

�
v2
max

2b

kin�2X

k=0

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
E
h
ks̄ � T(bSt,k)� s̄ � T(bSt,k�1)k

2

i

+
kin�2X

k=1

 
L2v2

max

2b
�2t,k

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
� ⇤t,k

!
E
⇥
kHt,kk

2
⇤
.

With (21), and using Ht,kin = h(bSt,kin�1) = h(bSt+1,�1); bS1,0 = bS1,�1 = bSinit; and for t � 2,
bSt,0 �

bSt,�1 = �t�1,kinh(bSt�1,kin�1) = �t�1,kinHt�1,kin = �t�1,kinHt,0:

E
h
W(bSt+1,0)

i
� E

h
W(bSt,0)

i

 �⇤t,kin�1E
⇥
kHt,kin�1k

2
⇤
+

v2
max

L2

2b
�2t�1,kin

 
kin�2X

`=0

�t,`+1

�2

t,`+1

!
E
⇥
kHt,0k

2
⇤

t>1

�
v2
max

2b

kin�2X

k=0

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
E
h
ks̄ � T(bSt,k)� s̄ � T(bSt,k�1)k

2

i

+
kin�2X

k=1

 
L2v2

max

2b
�2t,k

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
� ⇤t,k

!
E
⇥
kHt,kk

2
⇤
� �t,kinvmin

✓
1� �t,kin

LrW

2vmin

◆
E
⇥
kHt+1,0k

2
⇤

 �Bt,kE
h
ks̄ � T(bSt,k)� s̄ � T(bSt,k�1)k

2

i
+

kin�1X

k=1

 
L2v2

max

2b
�2t,k

 
kin�2X

`=k

�t,`+1

�2

t,`+1

!
� ⇤t,k

!
E
⇥
kHt,kk

2
⇤

+
v2
max

L2

2b
�2t�1,kin

 
kin�2X

`=0

�t,`+1

�2

t,`+1

!
E
⇥
kHt,0k

2
⇤

t>1 � �t,kinvmin

✓
1� �t,kin

LrW

2vmin

◆
E
⇥
kHt+1,0k

2
⇤
.

We now sum from t = 1 to t = kout.

Corollary 15 (of Proposition 14). Choose ↵ > 0, � > 0 such that

C(↵,�)
def
= 1�

�2

2vmin

�
↵

2vmin

LrW

L
�
↵2v2

max

2�2vmin

kin
b

is positive; and set
�t,k+1

def
=

↵

L
, �t,k+1

def
= � .

Then, for uniform random variables ⌧, ⇠ on {1, · · · , kout} and {0, · · · , kin � 1} respectively, inde-
pendent from Fkout,kin�1,

E
⇥
kH⌧,⇠k

2
⇤


L

↵vminC(↵,�)

1

kinkout

⇣
E
h
W(bSinit)

i
�minW

⌘
.
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Proof. We have

At,k �
↵vmin

L

✓
1�

�2

2vmin

�
↵

2vmin

LrW

L
�
↵2v2

max

2�2vmin

kin
b

◆
,

Bt,k �
v2
max

2b

↵

L�2
kin ,

from which the conclusion follows.

Proof of Theorem 2 Let ⌧, ⇠ be uniform random variables resp. on {1, · · · , kout} and
{0, · · · , kin � 1}. Since bS1,�1 = bS1,0 and for t � 2, bSt,�1 = bSt�1,kin�1, then bSt,⇠�1 is well
defined. We write

E
h
kh(bS⌧,⇠�1)k

2

i
 2E

⇥
kH⌧,⇠k

2
⇤
+ 2E

h
kH⌧,⇠ � h(bS⌧,⇠�1)k

2

i
.

For the second term, we have

E[kH⌧,⇠ � h(bS⌧,⇠�1)k
2] =

1

kinkout

koutX

t=1

kin�1X

k=0

E[kHt,k � h(bSt,k�1)k
2] (26)

by Proposition 13, since bS1,0 = bS1,�1, the RHS of (26) is upper bounded by

↵2

b

1

kout

koutX

t=1

kin�1X

k=0

E
⇥
kHt,kk

2
⇤

↵2kin
b

E
⇥
kH⌧,⇠k

2
⇤
.

The proof is concluded by Corollary 15:

E[kh(bS⌧,⇠�1)k
2] 

✓
1

kin
+
↵2

b

◆
2L

↵vminC(↵,�)

1

kout

⇣
E[W(bSinit)]�minW

⌘
. (27)

Let us choose � > 0 so that � 7! C(↵,�) is maximal: for A,B > 0, the function x 7! x/A+B/x

is minimal at x?
def
=
p
AB. This yields

�2(↵)
def
= ↵vmax

r
kin
b

,

and

vmin C(↵,�(↵))
def
= vmin � ↵µ? , µ?

def
= vmax

r
kin
b

+
LrW

2L
.

The function ↵ 7! ↵ vmin C(↵,�(↵)) is maximal when ↵?
def
= vmin/(2µ?) thus yielding

↵? vmin C(↵?,�(↵?)) = v2
min

/(4µ?). By replacing �  �(↵) and ↵ ↵? in (27), we have

E[kh(bS⌧,⇠�1)k
2] 

✓
µ? +

kinv2min

4µ?b

◆
8L

v2
min

1

kin kout

⇣
E[W(bSinit)]�minW

⌘
. (28)

9.3 On the Batch Size b and Epoch Length kin

Assume that b = O(na) and kin = O(nc) for some a, c � 0. Let ✏ > 0.

Case a � c. When n ! 1, µ?(kin, b) = O(1). Choose ↵ 2 (0, vmin/µ?(kin, b)) such that
↵ = O(n�d) for some d � 0.

The RHS in (15) is lower than ✏ by choosing

kout = O

✓
✏�1n�c

✓
nd +

1

nd+a�c

◆◆
;

this implies that

KCE(n, ✏) = O
�
n+ (n+ na+c)kout

�
, KOpt(n, ✏) = O (1 + (1 + nc)kout) .

23



In order to make kout as small as possible, we choose d = 0 and c as large as possible (i.e. a = c).
Hence kout = O(✏�1n�a). This implies that KOpt(n, ✏) = O(✏�1). For fixed a � 0, KCE(n, ✏) is
optimized by choosing a  1 � a, which implies a  1/2. The largest value of a will provide the
best rate for kout. Hence, the conclusion is

a = c = 1/2, d = 0,

which yields b = O(
p
n), kin = O(

p
n), kout = O(✏�1n�1/2), KCE(n, ✏) = O(n + ✏�1

p
n) and

KOpt(n, ✏) = O(✏�1).

Case a < c. When n ! 1, µ?(kin, b) = O(n(c�a)/2). Choose ↵ 2 (0, vmin/µ?(kin, b)) such
that ↵ = O(n�d) for some d � (c� a)/2.

The RHS in (15) is lower than ✏ by choosing

kout = O

✓
✏�1n�c

✓
nd +

1

nd+a�c

◆◆
;

we also have

KCE(n, ✏) = O
�
n+ (n+ na+c)kout

�
, KOpt(n, ✏) = O (1 + (1 + nc)kout) .

In order to make kout as small as possible, we choose d = (c � a)/2 so kout = O(✏�1n�(a+c)/2),
and then we choose c+a as large as possible. Hence This implies that KOpt(n, ✏) = O(✏�1n(c�a)/2)
and KOpt(n, ✏) is optimized by choosing c�a as small as possible. Finally, KCE(n, ✏) is optimized
with a+ c  1. Hence, the conclusion is: choose � > 0 and set

a = (1� �)/2, c = (1 + �)/2, d = �/2,

which yields b = O(n1/2��/2), kin = O(n1/2+�/2), kout = O(✏�1n�1/2), KCE(n, ✏) = O(n +
✏�1
p
n) and KOpt(n, ✏) = O(✏�1n�/2).

Conclusion. The above discussion shows that the best complexity in terms of the number of com-
putations of per-sample conditional expectations and the one in terms of number of parameter up-
dates are both optimized in the case a = c = 1/2.

10 Linear convergence rate of SPIDER-EM-PL

In this section, we establish a linear convergence rate of a slightly modified version of SPIDER-EM,
see algorithm 8, the main modification being in the initialization. The proof is adapted from [27,
Theorem 5].

Data: kin 2 N?, kout 2 N?, bSinit 2 Rq , {�t,k+1, t = 1, · · · , kout and k = 0, · · · , kin � 1}
positive sequence.

Result: A SPIDER-EM-PL sequence: bSt,k, t = 1, · · · , kout, k = 0, . . . , kin � 1

1 S1,0 = s̄ � T(bSinit), bS1,0 = bS1,�1 = bSinit ;
2 for t = 1, . . . , kout do
3 Sample ⇠t a uniform random variable on {1, · · · , kin � 1} ;
4 for k = 0, · · · , ⇠t � 1 do
5 Sample a mini-batch Bt,k+1 in {1, . . . , n} of size b, with or without replacement ;
6 St,k+1 = St,k + s̄Bt,k+1 � T(bSt,k)� s̄Bt,k+1 � T(bSt,k�1) ;
7 bSt,k+1 = bSt,k + �t,k+1

�
St,k+1 �

bSt,k

�

8 bSt+1,0 = bSt+1,�1 = bSt,⇠t ;
9 St+1,0 = s̄ � T(bSt,⇠t)

Algorithm 8: The SPIDER-EM-PL algorithm.

By Proposition 8, we have
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Proposition 16. Assume H1, H2, H3 and H4 and H5. Set L2 def
= n�1

Pn
i=1

L2

i . For any integers
t � 1 and K � 2

K�1X

`=1

�t,` E
h
kbSt,` �

bSt,`�1k
2
|Ft,0

i
+

vmin

2

K�2X

k=0

�t,k+1E
h
kh(bSt,k)k

2
|Ft,0

i

 E
h
W(bSt,0)�W(bSt,K�1)|Ft,0

i
,

where (by convention,
PK�2

`=K�1
= 0),

�t,`
def
=

 
vmin

2�t,`
�

LrW

2
�

vmax

2

L2

b

K�2X

k=`

�t,k+1

!
.

Corollary 17 (of Proposition 16). For any � > 0 such that

�2 +
LrW b

vmaxL2(K � 1)
� �

vminb

vmaxL2(K � 1)
< 0 ,

we have

vmin�

2

K�1X

k=0

E
h
kh(bSt,k)k

2
|Ft,0

i
 E

h
W(bSt,0)�W(bSt,K)|Ft,0

i
.

As a consequence of Corollary 17, if ⇠t is a uniform random variable on {1, · · · , kin�1} independent
of the other random variables, then

E
h
kh(bSt,⇠t)k

2

i


2

vmin�(kin � 1)
E
h
W(bSt,0)�minW

i
.

When the Polyak-Lojasiewicz inequality holds

9⌧? > 0 such that 8s,W(s)�minW  ⌧? krW(s)k2 , (29)

this yields by H5-Item (a)

E
h
kh(bSt,⇠t)k

2

i


2

vmin�(kin � 1)
E
h
W(bSt,0)�minW

i


2⌧?v2
max

vmin�(kin � 1)
E
h
kh(bSt,0)k

2

i
.

The above discussion establishes the following result.

Theorem 18. Assume H1, H2, H3, H4 and H5 and set L2 def
= n�1

Pn
i=1

L2

i . Assume also that
the Polyak-Lojasiewicz inequality (29) holds. Fix kout, kin 2 N?, b 2 N?; set �t,k+1

def
= � for any

t � 1, k � 0 for some � > 0 satisfying

�2 +
LrW b

vmaxL2(kin � 1)
� �

vminb

vmaxL2(kin � 1)
< 0 .

Let {bSt,k, t = 1, · · · , kout, k = 0, · · · , ⇠t} be the sequence given by algorithm 8. Then

E
h
kh(bSt+1,0)k

2

i
= E

h
kh(bSt,⇠t)k

2

i


2⌧?v2
max

vmin�(kin � 1)
E
h
kh(bSt,0)k

2

i
.

11 Mixture of Gaussian distributions

In this section, we use the common notation {bS`, ` � 0} for a path. For sEM-vr and SPIDER-EM,
bS` stands for bSt`,k` where t` � 1 and k` 2 {0, · · · , kin � 1} are the unique integers such that
` = (t` � 1)kin + k`.
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11.1 The model

Consider a mixture of Gaussian distributions on Rp,

y 7!
gX

`=1

↵` Np (µ`,⌃) [y] ; (30)

Np (µ`,⌃) [y] denotes the density of a Rp-valued Gaussian distribution with expectation µ`, covari-
ance matrix ⌃ and evaluated at y 2 Rp. We consider a parametric statistical model indexed by
✓

def
= (↵1, . . . ,↵g, µ1, . . . , µg,⌃) in ⇥ where

⇥
def
=

(
↵` � 0,

gX

`=1

↵` = 1

)
⇥ Rpg

⇥M
+

p ; (31)

M
+
p denotes the set of positive definite p⇥ p matrices.

Given n examples y1, . . . , yn modeled as independent realizations of a mixture of Gaussian distri-
butions as described by (30), the log-likelihood is

✓ 7!
nX

i=1

log
gX

`=1

↵` Np (µ`,⌃) [yi] .

Proposition 19 shows that the minimization of the negative log-likelihood on ⇥ is covered by the
optimization problem addressed in the paper.

Proposition 19. Set � def
= ⌃�1, and define for y 2 Rp and z 2 {1, . . . , g},

Ay
def
=


Ig

Ig ⌦ y

�
2 Rg(1+p)⇥g , ⇢(z)

def
=

"
z=1

. . .
z=g

#
.

The negative normalized log-likelihood is of the form (2) with ⇢(y, z) = 1, s(y, z) def
= Ay ⇢(z) and

�(✓)
def
=

2

666664

ln↵1 � 0.5µT
1
�µ1

. . .
ln↵g � 0.5µT

g �µg

�µ1

. . .
�µg

3

777775
, (32)

 (✓)
def
=

p

2
ln(2⇡) +

1

2
Tr

 
�

n

nX

i=1

yiy
T
i

!
�

1

2
ln det(�) . (33)

Proof. The likelihood of a single observation yi is given by

✓ 7!
1
p
2⇡

p

gX

z=1

↵z

p
det(�) exp

✓
�
1

2
(yi � µz)

T�(yi � µz)

◆

=

p
det(�)
p
2⇡

p exp

✓
�
1

2
yTi �yi

◆ gX

z=1

exp

 
gX

`=1

z=`

�
ln↵` � 0.5µT

` �µ` + µT
` �yi

 
!

=

p
det(�)
p
2⇡

p exp

✓
�
1

2
Tr(�yiy

T
i )

◆ gX

z=1

exp

 
gX

`=1

z=`{ln↵` � 0.5µT
` �µ`}+

gX

`=1

h�µ`, yi z=`i

!

=

p
det(�)
p
2⇡

p exp

✓
�
1

2
Tr(�yiy

T
i )

◆ gX

z=1

exp (hs(yi, z),�(✓)i)

where we used that Tr(AuuT ) = uTAu. Since the observations are modeled as independent, the
log-likelihood of the n observations y1, . . . , yn is

✓ 7!
n

2
(log det(�)� p log(2⇡))�

1

2
Tr(�

nX

i=1

yiy
T
i ) +

nX

i=1

log
gX

z=1

exp (hs(yi, z),�(✓)i) .

This yields the expression of the negative normalized log-likeliood.
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The following statement gives the expression of the optimization map T. It relies on standard com-
putations; the proof is omitted.

Proposition 20. Let �, and ⇥ resp. given by Proposition 19 and (31). For any s =
(s1, . . . , sg+pg) 2 Rg+pg in the set
 
s1 > 0, . . . , sg > 0,

1

n

nX

i=1

yiy
T
i �

gX

`=1

s�1

` sg+(`�1)p+1:g+`p s
T
g+(`�1)p+1:g+`p positive definite

!

the minimizer of ✓ 7! � hs,�(✓)i+  (✓) under the constraint that ✓ 2 ⇥, exists and is unique and
is given by

↵`
def
=

s`Pg
u=1

su
, ` = 1, . . . , g ,

µ`
def
=

1

s`
sg+(`�1)p+1:g+`p , ` = 1, . . . , g ,

⌃�1 def
=

1

n

nX

i=1

yiy
T
i �

gX

`=1

s`µ`µ
T
` .

Proposition 21 provides the expression of the conditional probabilities z 7! p(z|yi; ✓) on {1, . . . , g};
as a corollary of this statement, we also have the expression of the per sample conditional expecta-
tions

s̄i(✓)
def
=

gX

z=1

s(yi, z) p(z|yi; ✓) ,

for all i = 1, . . . , n.

Proposition 21. For any y 2 Rp, z 2 {1, . . . , g} and ✓ 2 ⇥ where ⇥ is defined by (31), we have

p(z|y; ✓)
def
=

↵z Np(µz,⌃)[y]Pg
u=1

↵u Np(µu,⌃)[y]
, (34)

and

gX

z=1

s(y, z) p(z|y; ✓) =

2

666664

p(1|y; ✓)
. . .

p(g|y; ✓)
y p(1|y; ✓)

. . .
y p(g|y; ✓)

3

777775
,

where s(y, z) is defined in Proposition 19.

As a corollary of this statement, we have

s̄i(✓)
def
=

2

666664

p(1|yi; ✓)
. . .

p(g|yi; ✓)
yi p(1|yi; ✓)

. . .
yi p(g|yi; ✓)

3

777775
= Ayi

"
p(1|yi; ✓)

. . .
p(g|yi; ✓)

#
,

s̄(✓)
def
=

2

666664

n�1
Pn

i=1
p(1|yi; ✓)

. . .
n�1

Pn
i=1

p(g|yi; ✓)
n�1

Pn
i=1

yi p(1|yi; ✓)
. . .

n�1
Pn

i=1
yi p(g|yi; ✓)

3

777775
=

1

n

nX

i=1

Ayi

"
p(1|yi; ✓)

. . .
p(g|yi; ✓)

#
, (35)

where the probability p(·|y; ✓) is given by (34).
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11.2 On the Assumption H3

Let Ay be the matrix defined in Proposition 19. It is proved in [12, Section 5] that T(s) 2 ⇥ if

s 2 S
def
=

(
s =

1

n

nX

i=1

Ayi ⇢i, ⇢i = (⇢i,1, . . . , ⇢i,g) 2 (R+)
g,

gX

`=1

⇢i,` = 1

)
.

The following statement shows that the SPIDER-EM sequence {bSk, k � 0} is at least in

eS def
=

(
s =

1

n

nX

i=1

Ayi ⇢i, ⇢i = (⇢i,1, . . . , ⇢i,g) 2 Rg,
gX

`=1

⇢i,` = 1

)
.

Proposition 22. Assume that bSinit 2 S . Then, for any t 2 N, St,0 2 S and for any k � 0, bSt,k 2
eS

and St,k 2 eS .

Proof. It is trivially seen from (35) that St,0 2 S for any t 2 N. Define ⇢(t,0)i 2 (R+)g and
⇢̂(t,0)i 2 (R+)g such that

St,0 =
1

n

nX

i=1

Ayi ⇢
(t,0)
i , bSt,0 =

1

n

nX

i=1

Ayi ⇢̂
(t,0)
i ;

note that by (35),
Pg

`=1
⇢(t,0)i,` = 1 and by assumption,

Pg
`=1

⇢̂(t,0)i,` = 1.

From line 5 of algorithm 1, we have when k < kin � 1,

St,k+1 =
1

n

nX

i=1

Ayi

⇣
⇢(t,k)i +

n

b
i2Bt,k+1

n
p(·|yi;T(bSt,k))� p(·|yi;T(bSt,k�1))

o⌘

where p(·|y; ✓) is defined by (34), thus implying that

⇢(t,k+1)

i = ⇢(t,k)i +
n

b
i2Bt,k+1

n
p(·|yi;T(bSt,k))� p(·|yi;T(bSt,k�1))

o
.

Hence by a trivial induction,
Pg

`=1
⇢(t,k+1)

i,` = 1 for any i = 1, . . . , n. From ?? and line 9 of
algorithm 1, we have for any k � 0,

bSt,k+1 =
1

n

nX

i=1

Ayi

⇣
(1� �t,k+1)⇢̂

(t,k)
i + �t,k+1⇢

(t,k+1)

i

⌘

thus implying that

⇢̂(t,k+1)

i = (1� �t,k+1)⇢̂
(t,k)
i + �t,k+1⇢

(t,k+1)

i .

Here again, by a trivial induction, we have
Pg

`=1
⇢̂(t,k+1)

i,` = 1 for any i = 1, . . . , n.

11.3 Numerical Analysis

11.3.1 The data set

We consider n = 6 ⇥ 104 observations in Rp, p = 20; modeled as independent observations from
a mixture of Gaussian distributions with g = 12 components. These data are obtained from the
MNIST data training set available at http://yann.lecun.com/exdb/mnist.

The set contains n = 6⇥ 104 examples of size 28⇥ 28; among these pixels, 67 are constant over all
the images and are removed yielding to observations of length 717. A PCA is performed in order to
reduce the dimensionality to p = 20 features.
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11.3.2 The algorithms

We compare EM, iEM, Online EM, FIEM and sEM-vr implemented as described in algorithm 2 to
algorithm 6. The map T is given by Proposition 20.

The design parameters b, �t,k+1 are fixed to

• b = 100,
• for all the algorithms except iEM, the step size is constant and equal to 5 10�3. In iEM,
�k+1 = 1.

Initialization. For all the algorithms and all the paths, the same initial value bSinit is considered. It is
obtained as follows: we run the random initialization technique described in [19] in order to obtain
✓init 2 ⇥, and then we set bSinit

def
= s̄(✓init). Below, bSinit is such that �W(bSinit) = �58.3097 (the

constant term p log(2⇡)/2 is omitted in this evaluation, and in any evaluation of the log-likelihood
given below).

Mini-batch. The mini-batches are independent, and sampled at random in {1, . . . , n} with replace-
ment. For a fair comparison of the algorithms, they share the same seed; another seed is used for
FIEM which requires a second sequence of minibatches {Bk+1, k � 0}.

An epoch. In the analyses below, an epoch is defined as the selection of n examples:

• For EM, an epoch is one iteration bSk !
bSk+1. It necessitates the computation of n condi-

tional expectations s̄i and of a single optimization T(bS).
• For iEM and Online EM, an epoch is n/b iterations bSk !

bSk+1. It necessitates the com-
putation of n conditional expectations s̄i and of n/b optimizations T(bS).

• For FIEM, an epoch is n/b iterations bSk !
bSk+1. It necessitates the computation of 2n

conditional expectations s̄i and of n/b optimizations T(bS).
• For sEM-vr and SPIDER-EM, an epoch is either one iteration bSt,�1 !

bSt,0 or n/b iterations
bSt,k !

bSt,k+1 for k < kin � 1. They resp. necessitate the computation of n and 2n/b

conditional expectations s̄i and of 1 and n/b optimizations T(bS).

Hybrid methods. Since FIEM, sEM-vr and SPIDER-EM are variance reduction methods w.r.t.
Online EM, we advocate to combine them with few steps of Online EM. Here, we start with
kswitch = 2 epochs of Online EM and obtain bS1, bS2; before switching to FIEM, sEM-vr and
SPIDER-EM.

Value of kmax. The number kmax is fixed in order to compare the algorithms with the same number
of epochs equal to 150. For EM, kmax = 150; for Online EM and iEM, kmax = 150n/b; for FIEM,
kmax = (150� kswitch)n/b; for sEM-vr, kout = (150� kswitch)/2 and kin = 1 + n/b; and for
SPIDER-EM, kout = (150� kswitch)/2 and kin = 1 + n/b.

11.3.3 Experimental Results

We first analyze the behavior of the functional W along a path of the algorithm. We display on
Figure 4 a Monte Carlo approximation, computed from 40 independent runs, of the expectation
of the normalized log-likelihood as a function of the number of epochs. Different algorithms are
considered: EM remains trapped in a local extremum while the stochastic EM algorithms succeed
in exiting to a better limiting point. Online EM is far more variable than iEM, FIEM, sEM-vr and
SPIDER-EM. The convergence of iEM is longer, when compared to FIEM, sEM-vr and SPIDER-EM.

On Figure 5 and Figure 6, for each of the algorithms FIEM, sEM-vr and SPIDER-EM, four different
realizations of a path of the normalized likelihood are displayed as a function of the number of
epochs. These four sets of curves differ from the selection of the sequence of mini-batches. The
staircase behavior of the paths of sEM-vr and SPIDER-EM comes from the two successive kinds
of epoch: one corresponds to a single optimization and a full scan of the data set and the other
one corresponds to n/b optimizations and the use of n/b minibatches; the largest increase of W
corresponds to the second type of epoch. Based on this criterion, the three algorithms are equivalent.
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Figure 4: Monte Carlo approximation (computed over 40 independent runs) of �E[W(bS`)] =
�E[F � T(bS`)] against the number of epochs. [left] Epochs 1 to 25; [right] epochs 25 to 150.
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Figure 5: The objective function �W(bS`) = �F � T(bS`) against the number of epochs along two
(left, right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.

Figure 7 displays the evolution of the g = 12 iterates {↵1, . . . ,↵g} along a path of many algorithms.
Figure 8 display the evolution of the p = 20 eigenvalues of the covariance matrix ⌃ along a path of
many algorithms. Here again, we observe a strong variability of Online EM when compared to the
other algorithms.

Figure 9 and Figure 10 display 40 independent realizations of the squared norm of the mean field
h as a function of the number of epochs for different algorithms. It may be seen that Online EM
has a strong variability and FIEM, sEM-vr, SPIDER-EM succeed in reducing this variability. FIEM
converges more rapidly than iEM, and they achieve the same level of accuracy (here not better than
10�6). sEM-vr and SPIDER-EM have the same level of accuracy, which is most often far smaller
than the one reached by FIEM (more than 75% of the paths reached an accuracy level of 10�10 after
150 epochs). Based on this criterion, we will definitively advocate the use of sEM-vr or SPIDER-EM
when compared to iEM, Online EM and FIEM.

Figure 11 and Figure 12 display the boxplots of 40 independent realizations of kh(bS`)k2 at time
in {20, 40, 60, 80, 110} epochs for different algorithms. In Figure 12, Online EM is not displayed
since it is too large (compare the third plot on Figure 11 and the first one on Figure 12). The quan-
tities {kh(bS`)k2, ` � 0} are the key informations for deriving the complexity bounds in Theorem 2.
The plots below show again that for small, medium and large values of the number of epochs k,
sEM-vr and SPIDER-EM provide the best results.
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Figure 6: The objective function �W(bS`) = �F � T(bS`) against the number of epochs along two
(left,right) independent runs of FIEM, sEM-vr and SPIDER-EM. The first 25 epochs are discarded.
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Figure 7: Evolution of the g = 12 iterates ↵k = (↵k,1, . . . ,↵k,g) against the number of epochs, for
EM, iEM and Online EM on the top from left to right; FIEM, sEM-vr and SPIDER-EM on the bottom
from left ro right.
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Figure 9: [left] We display 40 independent realizations of the squared norm of the mean field ` 7!
kh(bS`)k2 as a function of the number of epochs, along a iEM path. [center] same analysis for Online
EM. [right] same analysis for FIEM.
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Figure 10: [left] We display 40 independent realizations of the squared norm of the mean field
` 7! kh(bS`)k2 as a function of the number of epochs, along a sEM-vr path. [right] same analysis
for SPIDER-EM.
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Figure 11: Boxplots of 40 independent points of kh(bS`)k2 [left] at time 20 epochs; [center] at time
40 epochs; [right] at time 60 epochs. The outliers are removed.
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Figure 12: Boxplots of 40 independent points of kh(bS`)k2 [left] at time 60 epochs; [center] at time
80 epochs; [right] at time 110 epochs. The outliers are removed.
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