
Dynamic allocation of limited memory resources
in reinforcement learning – Appendix

Nisheet Patel∗
Department of Basic Neurosciences

University of Geneva
nisheet.patel@unige.ch

Luigi Acerbi
Department of Computer Science

University of Helsinki
luigi.acerbi@helsinki.fi

Alexandre Pouget
Department of Basic Neurosciences

University of Geneva
alexandre.pouget@unige.ch

A Computing the gradient to maximize the objective function

A.1 Gradient of the log policy

In order to compute ∇σ log(π(a|s)), we first note that we can rewrite draws from the memory
distribution, q̃sa ∼ N

(
q̄sa, σ

2
sa

)
, as q̃sa = q̄sa + ζsaσsa, where ζsa ∼ N (0, 1) [1]. In this section,

we abuse the notation slightly to omit the explicit dependence on the state-action pair (s, a) for clarity,
and instead place it in the subscript. With this, we can write our policy π as a probability vector for
all actions a in a given state s:

π(a|s) = δ
(
a, arg max

a′
(q̄sa′ + ζsa′σsa′)

)
π(·|s) = lim

β→∞
softmax(q̄s + ζsσs, β)

= lim
β→∞

1∑
a expβ(q̄sa + ζsaσsa)

 expβ(q̄sa1 + ζsa1σsa1)
...

expβ(q̄san + ζsanσsan)

 , (A.1)

where in the first line we applied the Thompson sampling rule (that is, pick the action with maximal
sampled value), in the second line we rewrote it as the limit of a softmax with inverse temperature
β →∞, and in the last line we wrote the softmax explicitly (as a vector for each entry of π(·|s)).

Next, we relax the limit β →∞ in Eq. A.1 so as to differentiate the logarithm of the policy log π for
β > 0 with respect to the relevant elements of the resource allocation vector σ(s, a) as follows:

∂

∂σsa
log π(·|s) = − ∂

∂σsa
log
(∑

a

expβ(q̄sa + ζsaσsa)
)

+
∂

∂σsa

β(q̄sa1 + ζsa1σsa1)
...

β(q̄san + ζsanσsan)

= − expβ(q̄sa + ζsaσsa)∑

a expβ(q̄sa + ζsaσsa)
βζsa + βζsaδ(a, ai)

= βζsa
(
δ(a, ai)− π(a|s)

)
(A.2)

∗Current address: Département des neurosciences fondamentales, Université de Genève, CMU, 1 rue
Michel-Servet, 1206 Genève, Switzerland. Alternative e-mail: nisheet.pat@gmail.com.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

where the final step follows from rewriting the softmax function as the (soft) policy π(a|s) in Eq. A.1,
i.e. with some β > 0 but not β →∞.

Thus, the gradient of the logarithm of the policy log π(a|s) with respect to the resource allocation
vector σ can be written as:

∂

∂σs′a′
log π(a|s) =

βζsa(1− π(a|s)) for s′ = s, a′ = a

−βζsa′π(a′|s) for s′ = s, a′ 6= a

0 for s′ 6= s

, (A.3)

which is reported as Eq. 5 in the main text.

A.2 Gradient of the cost

In this section, we show how to compute ∇σDKL(Q ‖ P), where Q = N (q̄,σ2I) and P =
N (q̄, σ2

baseI), and I is the identity matrix. Since the covariance matrix is diagonal, we can take the
gradient with respect to elements of the resource allocation vector σ individually. In other words, we
can take the gradient of each memory’s marginal normal distribution with its standard deviation:

∂

∂σ
DKL

(
N
(
q̄, σ2

)
‖ N

(
q̄, σ2

base

))
=

∂

∂σ
EQ
[

log

(
Q

P

)]
=

∂

∂σ
EQ[log(Q)]− ∂

∂σ
EQ[log(P)]. (A.4)

We can expand the first of the two terms as:

∂

∂σ
EQ[log(Q)] =

∂

∂σ
Ex∼N (q̄,σ2)

[
log

(
1√

2πσ2
exp−1

2

(
x− q̄
σ

)2
)]

=
∂

∂σ
Ex∼N (q̄,σ2)

[
− 1

2
log(2π)− log(σ)− 1

2

(
x− q̄
σ

)2
]

= −1

2��
�
��
�*0

∂

∂σ
log(2π)− ∂

∂σ
log(σ)− 1

2

∂

∂σ
Ex∼N (q̄,σ2)

[(
x− q̄
σ

)2
]

= − 1

σ
− 1

2

∂

∂σ
Ez∼N (0,1)

[
z2
]

= − 1

σ
(A.5)

where we use the variable transformation z = (x− q̄)/σ in the penultimate step. We can follow a
similar approach for the second term to get:

∂

∂σ
EQ[log(P)] =

∂

∂σ
Ex∼N (q̄,σ2)

[
log

(
1√

2πσ2
base

exp−1

2

(
x− q̄
σbase

)2
)]

=
∂

∂σ
Ex∼N (q̄,σ2)

[
− 1

2
log
(
2πσ2

base

)
− 1

2

(
x− q̄
σ

)2
σ2

σ2
base

]

= −1

2��
���

���:
0

∂

∂σ
log
(
2πσ2

base

)
− 1

2

∂

∂σ
Ex∼N (q̄,σ2)

[(
x− q̄
σ

)2
]
σ2

σ2
base

= −1

2

∂

∂σ
Ez∼N (0,1)

[
z2
] σ2

σ2
base

= −1

2

∂

∂σ

σ2

σ2
base

= − σ

σ2
base

. (A.6)

2

Combining Eqs. A.4, A.5, and A.6, we can write our analytically obtained gradient of the cost term
with respect to individual elements of the resource allocation vector σ(s, a) as:

∂

∂σsa
DKL

(
N
(
q̄,σ2I

)
‖ N (q̄, σ2

baseI)
)

=
σsa
σ2

base
− 1

σsa
. (A.7)

A.3 Justification for our choice of the gradient of expected reward

A potential concern regarding our method of allocating resources may be our choice of the advantage
function to compute the gradient of the expected rewards (Eqs. 3-4 in the main text). Crucially, the
advantage gradient uses the means of the q-value distributions of the relevant memories. However,
our main assumption in the paper is that agents do not have direct access to the mean of the q-value
distribution. According to our assumption, the agent could only estimate the mean by averaging over
a large number of samples from the distribution, a process which could take a considerable amount of
time (because sequential samples from memory would be highly correlated [2]).

This concern is resolved by considering that in DRA the resource allocation vector is not updated
during the trial, but rather only offline, i.e. before or after the trial, or potentially during sleep. This
way, during the task, the agent draws single (Thompson) samples in order to act and does not waste
extra time in order to consolidate and reallocate resources across its memories.

While ‘offline sampling’ resolves the issue of how agents can access the mean of the distribution to
compute policy updates, and it is the approach followed in this work, it represents a binary solution
(i.e., either the agent takes one Thompson sample online, or a very large number of them offline).
We could generalize this approach by allowing an agent to take multiple samples from its q-value
distribution to get a better estimate of the expected return while performing the task. Taking additional
samples would cost them time, which they could potentially use to act in the environment and collect
rewards. If the opportunity cost is higher than the potential increase in rewards obtained by taking
more samples, they may not want to waste time sampling but instead make their memories (q-value
distributions) precise enough that fewer samples suffice to maximize reward given their storage
capacity. This is another example of the speed-accuracy trade-off we considered in Section 4.3 in the
main text, and which we leave to explore for future work.

B Task parameters and additional results

B.1 Additional results for the planning task

In the main article, we showed results for the planning task we adapted from Huys et al. [3] where
subjects had to plan sequences of M = 3 moves. More generally, we ran DRA for M ∈ {3, 4, 5},
showing that the algorithm allocates resources differentially depending on M (Fig. B.1).

20 60 100
0

1

2

3

4

5

6

Di�erence in cumulative reward
0 40 80 120 0 40 80 120

0

1

2

3

4

0

1

2

3

4

5

d’
 (

di
sc

rim
in

ab
ili

ty
)

M = 3 M = 4 M = 5

Figure B.1: Linear regression fits for the discriminability of memories as a function of their impact
on cumulative reward for the planning task with number of moves M ∈ {3, 4, 5}.

3

Table B.1: Parameters used for each task
Task

Parameter Grid-world Mountain Car Planning task

α1 0.1 0.1 0.1
α2 0.1 0.1 0.1
β 10 10 10
γ 1 1 1
λ 0.2 0.1 1
σbase 5 5 100
σ0 3 3 50
Ntraj 10 10 10
Nrestarts 5 5 5

B.2 Task parameters

In this section, we report (Table B.1) and briefly describe the (hyper-)parameters chosen for each
task. For the present study, we fixed the learning rates for the means and standard deviations of the
memory distribution, α1 and α2 respectively, to reasonably low values. We set the inverse temperature
parameter β to a reasonably high value (for the softmax approximation to the ‘hard’ max to hold,
as per Section A.1), but not too high to restrict the influence of individual updates on the resource
allocation. As mentioned in the main text, we exclude discounting for all the tasks and thus set γ = 1.
Perhaps the most important choice is the parameter λ that introduces a trade-off between the expected
reward and the cost of being precise. We chose λ that we best captured the difficulties faced by
memory-limited agents, but a range of nearby values yields qualitatively similar results, e.g. in the
mountain car task, λ ∈ [0, 0.4] allows agents to perform the task well with enough training. The other
equally important parameter would perhaps be σbase, which would represent the resources for some
base distribution of q-values in memory before training. σbase controls how discriminable different
actions would be from a given state, and we chose it appropriately given the reward structure of each
task. As mentioned in the main text, starting with a higher resource budget than the base distribution,
i.e. with σ0 < σbase, either by means of paying more attention or allocating more neurons, allows
agents to accelerate learning. We sampled Ntraj = 10 trajectories to update the resource allocation
vector at the end of each trial with adequate precision. As shown in Fig. 3c in the main text, sampling
more trajectories does not yield better performance, but less leads to variability in the stochastic
estimate of the gradient and thus hurts performance. Finally, we performed Nrestarts = 5 optimization
runs for each task to report an estimate of variability across runs (i.e., error bars), as mentioned in the
main text. In addition to the above parameters used to display the results, we systematically varied
the values of λ and σbase in all tasks and report that the qualitative results hold for a large range of
values of these parameters with σbase having a slightly stronger effect than λ.

References
[1] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,

2013.

[2] Edward Vul, Noah Goodman, Thomas L Griffiths, and Joshua B Tenenbaum. One and done? Optimal
decisions from very few samples. Cognitive science, 38(4):599–637, 2014.

[3] Quentin JM Huys, Níall Lally, Paul Faulkner, Neir Eshel, Erich Seifritz, Samuel J Gershman, Peter Dayan,
and Jonathan P Roiser. Interplay of approximate planning strategies. Proceedings of the National Academy
of Sciences, 112(10):3098–3103, 2015.

4

	Appendices
	Computing the gradient to maximize the objective function
	Gradient of the log policy
	Gradient of the cost
	Justification for our choice of the gradient of expected reward

	Task parameters and additional results
	Additional results for the planning task
	Task parameters

