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In this supplemental material we provide the remaining mathematical proofs and several additional
details not discussed in the main part of the paper. Moreover, we complement the numerical section
with many other examples.

A Order of Accuracy of the General Integrators

It is known that a composition of the type ΨA
h ◦ ΨB

h , where A and B represents the components
of distinct vector fields, leads to an integrator of order r = 1, whereas a composition in the form
ΨA
h/2 ◦ΨB

h ◦ΨA
h/2 leads to an integrator of order r = 2 [30]—the latter is known as Strang splitting.

However, here we provide an explicit and direct proof of these facts for the generic integrators (10)
and (11), respectively.

Proof of Theorem 4. From the equations of motion (3) and Taylor expansions:

x(tk + h) = x+ hẋ+ h2

2 ẍ+O(h3)

= x+ h∇pH + h2

2

(
∇2
xpHẋ+∇2

ppHṗ
)

+O(h3)

= x+ h∇pH + h2

2 ∇2
xpH∇pH − h2

2 ∇2
xp∇xH − h2

2 γ∇2
ppHp+O(h3),

(26)

and

p(tk + h) = p+ hṗ+ h2

2 p̈+O(h3)

= p− h∇xH − hγp+ h2

2

(
−∇2

xxHẋ−∇2
xpHṗ− γṗ

)
+O(h3)

= p− h∇xH − hγp− h2

2 ∇2
xxH∇pH + h2

2 ∇2
xpH∇xH + h2

2 γ∇2
xxHp

+ h2

2 γ∇xH + h2

2 γ
2p+O(h3),

(27)

where we denote x ≡ x(tk) and p ≡ p(tk) for tk = kh (k = 0, 1, . . . ), and it is implicit that all
gradients and Hessians of H are being computed at (x, p).

Consider (10). Under one step of this map, starting from the point (x, p), upon using Taylor expan-
sions we have

xk+1 = x+ h∇pH +O(h2) (28)
and

pk+1 = e−γhp− h∇xH +O(h2) = p− γhp− h∇xH(x, p) +O(h2). (29)
Comparing these last two equations with (26) and (27) we conclude that

xk+1 = x(tk + h) +O(h2), pk+1 = p(tk + h) +O(h2). (30)

Therefore, the discrete state approximates the continuous state up to an error of O(h2), obeying
Definition 1 with r = 1.

The same approach is applicable to the numerical map (11). Expanding the first update:

X̃ = x+ h
2∇pH

(
x+ h

2∇pH, p− h
2γp

)
+O(h3),

= x+ h
2∇pH + h2

4 ∇2
xpH∇pH − h2

4 γ∇2
ppHp+O(h3).

(31)

Expanding the second update:

P̃ = e−γh/2p− h
2∇xH

(
x+ h

2∇pH, p− h
2γp

)
− h

2∇xH
(
x+ h

2∇pH, p− h
2γp− h∇xH

)
+O(h3),

= e−γh/2p− h∇xH − h2

2 ∇2
xxH∇pH + h2

2 γ∇2
xpHp+ h2

2 ∇2
xpH∇xH +O(h3).

(32)

12



Making use of (31) and (32) we thus find:

X = X̃ + h
2∇pH(X̃, P̃ )

= x+ h
2∇pH + h2

4 ∇2
xpH∇pH − h2

4 γ∇2
ppHp

+ h
2∇H

(
x+ h

2∇pH, p− h
2γp− h∇xH

)
+O(h3)

= x+ h∇pH + h2

2 ∇2
xpH∇pH − h2

2 γ∇2
ppHp− h2

2 ∇2
ppH∇xH +O(h3).

(33)

Comparing with (26) we conclude that

xk+1 = x(tk + h) +O(h3). (34)

Finally, from (32) we have

P = e−γh/2P̃

= eγhp− e−γh/2
{
h∇xH + h2

2 ∇2
xxH∇pH + h2

2 γ∇2
xpHp− h2

2 ∇2
xpH∇xH

}
+O(h3)

= p− γhp+ h2

2 γ
2p− h∇xH − h2

2 ∇2
xxH∇pH + h2

2 γ∇2
xpHp

+ h2

2 ∇2
xpH∇xH + h2

2 γ∇xH +O(h3).

(35)

Comparing this with (27) implies

pk+1 = p(tk + h) +O(h3). (36)

Therefore, in this case we satisfy Definition 1 with r = 2.

From the above general results it is immediate that:

• CM (1)—or equivalently (13) which is more appropriate to make connections with the
continuous system—is a first order integrator to the conformal Hamiltonian system (3)
with the classical Hamiltonian (4); the equations of motion are explicitly given by (38).

• The relativistic extension of CM given by (23) is a first order integrator to the conformal
relativistic Hamiltonian system (22).

• RGD (24) with α = 1—also equivalently written as Algorithm. 1—is a second order inte-
grator to system (22).

B Insights into Nesterov and Heavy Ball Methods

Here we prove Theorem 6, but additionally provide several other details which give insights into
Nesterov’s method (NAG) and heavy ball or classical momentum (CM), such as their underlying
“modified equations” and “shadow Hamiltonians.”

B.1 Order of Accuracy

We work on phase space variables (x, p) thus NAG should be considered in the form (18), which we
repeat below for convenience:

xk+1/2 = xk + h
me
−γhpk, (37a)

pk+1 = e−γhpk − h∇f(xk+1/2), (37b)

xk+1 = xk + h
mpk+1. (37c)

Recall that this is precisely (2) under the change of variables (14). Let us now derive the order of
accuracy of this method with respect to its underlying continuous Hamiltonian system:

ẋ = p/m, ṗ = −∇f(x)− γp. (38)

Proof of Theorem 6: part (i). Denoting x = x(tk) and p = p(tk), we expand the exponential in
(37a) to obtain

xk+1/2 = x+ h
mp− h2

m γp+O(h3). (39)
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Using this and Taylor expansions in the last two updates (37b) and (37c) yield

pk+1 = p− hγp− h∇f(x) + h2

2 γ
2p− h2

m∇2f(x)pk +O(h3), (40a)

xk+1 = x+ h
mp− h2

m γp− h2

m∇f(x) +O(h3). (40b)

It is implicit that ∇f and ∇2f are computed at (x, p). From the equations of motion (38), i.e.
replacing the Hamiltonian (4) into the general approximations (26) and (27), we obtain

p(tk + h) = p− h∇f − hγp− h2

2m∇2fp+ h2

2 γ∇2fp+ h2

2 γ∇f + h2

2 γ
2p+O(h3), (41a)

x(tk + h) = x+ h
mp− h2

2mγp+O(h3). (41b)

Hence, by comparison with (40), we have xk+1 = x(tk+h)+O(h2) and pk+1 = p(tk+h)+O(h2),
which according to Definition 1 means that NAG is an integrator of order r = 1, as claimed.

Both NAG and CM are first order integrators to the same continuous-time system (38). We already
know that CM is conformal symplectic. Next we investigate the how NAG deforms the symplectic
structure.

B.2 Spurious Contraction of the Symplectic Form

Proof of Theorem 6, part (ii). Consider the variational form of (37) (the notation is standard in nu-
merical analysis [30]):

dxk+1/2 = dxk + h
me
−γhdpk, (42a)

dpk+1 = e−γhdpk − h∇2f(xk+1/2)dxk+1/2, (42b)

dxk+1 = dxk + h
mdpk+1. (42c)

Using these, bilinearity and the antisymmety of the wedge product, together the fact that ∇2f is
symmetric, we obtain

dxk+1 ∧ dpk+1 = dxk ∧ dpk+1

= e−γhdxk ∧ dpk − hdxk ∧∇2f
(
xk+1/2)dxk+1/2

= e−γhdxk ∧ dpk − h2

m e
−γhdxk ∧∇2f(xk+1/2)dpk

= e−γhdxk ∧ dpk − h2

m e
−γhdxk ∧∇2f(xk)dpk +O(h3),

(43)

where in the last passage we used a Taylor approximation for xk+1/2. Thus, dxk+1 ∧ dpk+1 6=
e−γhdxk ∧ dpk, showing that the method is not conformal symplectic (see Definition 2). Moreover,
using the symmetry of ∇2f we can write (43) as

ωk+1 = e−γh
[
I − h2

m∇2f(xk)
]
ωk +O(h3), (44)

which is exactly (19).

Thus, while CM exactly preserve the same dissipation found in the continuous-time system, NAG
introduces some extra contraction or expansion of the symplectic form, depending whether ∇2f is
positive definite or not. From (44), in k iterations of NAG, and neglecting the O(h3) error term, we
have

ωk ≈ e−γtk
k∏
i=1

[
I − h2

m∇2f(xk−i)
]
ω0

≈ e−γtk
[
I − h2

m

(
∇2f(xk−1)−∇2f(xk−2)− · · · − ∇2f(x0)

)]
ω0.

(45)

This depends on the entire history of the Hessians from the initial point. Therefore, NAG contracts
the symplectic form slightly more than the underlying conformal Hamiltonian system—assuming
∇2f is positive definite—and it does so in a way that depends on the Hessian of the objective
function. Note that this is a small effect of O(h2). Moreover, if ∇2f has negative eigenvalues, e.g.

14



f is nonconvex and has saddle points, then NAG actually introduces some spurious excitation in that
direction. To gain some intuition, let us consider the simple case of a quadratic function:8

f(x) = (λ/2)x2 (46)

for some constant λ. Thus (44) becomes

ωk+1 ≈ e−γh+log(1−h2λ/m)ωk ≈ e−(γ+hλ/m)hωk =⇒ ωk ≈ e−(γ+hλ/m)tkω0. (47)

This suggests that effectively the original damping of the system is being replaced by γ → γ+hλ/m.
Thus if λ > 0 there is some spurious damping, whereas if λ < 0 there is some spurious excitation.

B.3 Modified Equations and Shadow Hamiltonian

We have seen above that NAG is a first order integrator to the conformal Hamiltonian system (38),
however it changes slightly the behaviour of the original system since it introduces spurious damping
or excitation. To understand its behaviour more closely, one can ask the following question: for
which continuous dynamical system, NAG turns out to be a second order integrator? In other words,
we can look for a modified system that captures the behaviour of NAG more closely, up to O(h3).
Every numerical method is known to have a modified or perturbed differential equation [30] (the
brief discussion in [18] may also be useful). In answering this question, we thus find the following.
Theorem 7 (Shadow dynamical system for Nesterov’s method). NAG (2), or its equivalent phase
space representation (37), is a second order integrator to the following modified or perturbed equa-
tions:

ẋ =
1

m
p− γh

2m
p− h

2m
∇f(x), ṗ = −∇f(x)− γp− hγ

2
∇f − h

2m
∇2f(x)p. (48)

Proof. We look for vector fields F (q, p;h) and G(q, p;h) for the modified system

ẋ = p/m+ hF, ṗ = −∇f(x)− γp+ hG, (49)

such that (37) is an integrator of order r = 2. This can be done by computing [30]

F = lim
h→0

xk+1 − x(tk + h)

h2
, G = lim

h→0

pk+1 − p(tk + h)

h2
. (50)

From (40) and (41) we obtain precisely (48). By the previously discussed approach through Taylor
expansions one can also readily check that NAG is indeed an integrator of order r = 2 to this
perturbed system.

We can also combine (48) into a second order differential equation:

mẍ+m

(
γI +

h

m
∇2f(x)

)
ẋ = −

(
I +

hγ

2
I − h2γ2

4
I +

h2

4m
∇2f(x)

)
∇f(x), (51)

where I is the n×n identity matrix. We see that this equation has several new ingredients compared
to

ẍ+ γẋ = −(1/m)∇f(x), (52)
which is equivalent to (38). First, when h → 0 the system (51) recovers (52), as it should since
both must agree to leading order. Second, the spurious change in the damping coefficient reflects
the behaviour of the symplectic form (44) (see also (47)). Third, we see that the gradient ∇f is
rescaled by the contribution of several terms, including the Hessian∇2f , making explicit a curvature
dependent behaviour, which also appears in the damping coefficient. Note that the modified equation
(51), or equivalently (48), depends on the step size h, hence it captures an intrinsic behaviour of the
discrete-time algorithm that is not captured by (38).

Since CM is also a first order integrator to (38), which is actually conformal symplectic, it is natural
to consider its modified equation and compare with the one for NAG (48). We thus obtain the
following.

8 This quadratic function is actually enough to capture the behaviour when close to a critical point x? since
f(x) ≈ f(x?) + 1

2
∇2f(x?)x and one can work on rotated coordinates where∇2f(x?) = diag(λ1, . . . , λn).
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Theorem 8 (Shadow Hamiltonian for Heavy Ball). The heavy ball or CM method (1), equivalently
written in phase space as (13), is a second order integrator to the following modified conformal
Hamiltonian system:

ẋ =
1

m
p− hγ

2m
p− h

2m
∇f(x), ṗ = −∇f(x)− γp− hγ

2
∇f(x) +

h

2m
∇2f(x)p. (53)

Such a system admits the shadow or perturbed Hamiltonian

H̃ =
1

2m
‖p‖2 + f(x)− hγ

4m
‖p‖2 − h

2m
〈∇f(x), p〉+

hγ

2
f. (54)

Proof. It follows exactly as in Theorem 7. Also, one can readily verify that replacing (54) into (3)
gives (54).

We note the striking similarity between (53) and (48); the only difference is the sign of the last
term in the second equation. Up to this level of resolution, the difference is that NAG introduces a
spurious damping compared to CM, in agreement with the derivation of the symplectic form (44).
On the other hand, notice that the perturbed system (53) for CM is conformal Hamiltonian, contrary
to (48) that cannot be written in Hamiltonian form; this is the reason why structure-preserving
discretizations tend to be more stable since the perturbed trajectories are always close, i.e. within a
bounded error, from the original Hamiltonian dynamics. We can also combine (53) into

mẍ+mγẋ = −
(
I +

hγ

2
I − h2γ2

4
I − h2

4m
∇2f(x)

)
∇f(x). (55)

Again, this is strikingly similar to (51). Note that this equation does not have the spurious damping
term (h/m)∇2f(x) as in (51), making even more explicit that it preserves exactly the dissipation of
the original continuous system. As we will show below, there is a balance between preserving such
a dissipation and the stability of the method. While NAG introduces an extra damping, and may
slightly help in an improved convergence since it dissipates more energy, this comes at the price in
a decreased stability.

C Tradeoff Between Stability and Convergence Rate

Here we illustrate an interesting phenomenon: there is a tradeoff between stability versus conver-
gence rate. Intuitively, an improved rate is associated to a higher “contraction,” i.e. the introduction
of spurious dissipation in the numerical method. However, this makes the method less stable, and
ultimately very sensitive to parameter tuning. On the other hand, a geometric or structure-preserving
integrator may have slightly less contraction, since it preserves the original dissipation of the contin-
uous system exactly, but it is more stable and able to operate with larger step sizes. Furthermore, a
structure-preserving method is guaranteed to reproduce very closely, perhaps even up to a negligible
error, the continuous-time rates of convergence [18]. This indicates that there may have benefits in
considering this class of methods for optimization, such as conformal symplectic integrators that are
being advocated in this paper.

Stability of a numerical integrator means the region of hyperparameters, e.g. values of the step size,
such that the method is able to converge. The larger this region, more stable is the method. The
convergence rate is a measure of how fast the method tends to the minimum, and this is related to
the amount of contraction between subsequent states, or subsequent values of the objective function.
For instance, since NAG introduces some spurious dissipation (recall (44)) we expect that it may
have a slightly higher contraction compared to CM, which exactly preserves the dissipation of the
continuous system. Thus, such a spurious dissipation can induce a slightly improved convergence
rate, but as we will show below, at the cost of making the method more unstable and thus requiring
smaller step sizes.

Let us consider a standard linear stability analysis, which involves a quadratic function (46) such
that the previous methods can be treated analytically. Thus, replacing (46) into CM in the form (13)
it is possible to write the algorithm as a linear system:

zk+1 = TCMzk, TCM =

[
1− h2λ/m (h/m)e−γh

−hλ e−γh

]
, (56)
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Figure 3: Stability of CM (13) (blue), NAG (18) (green), and RGD (24) with c → ∞ and α = 1
(black)—in this case it becomes a dissipative version of the Leapfrog to system (38). We plot the
eigenvalues in the complex plane; x-axis is the real part, y-axis is the imaginary part. The unit
circle represent the stability region, i.e. once an eigenvalue leaves the gray area the corresponding
method becomes unstable. Both CM and RGD are symplectic thus their eigenvalues always move
on a circle of radius e−γh/2 centered at the origin. NAG has eigenvalues in the smaller circle with
radius 1/(eγh+ 1) and centered at 1/(eγh+ 1) on the x-axis; the circle is dislocated from the origin
precisely due to spurious dissipation. From left to right we increase the step size h while keeping
γ, m, and λ fixed. As h increases the eigenvalues move on the circles in the counterclockwise
direction until they fall on the real line. Eventually they leave the unit circle and the associated
method becomes unstable. Note how CM has higher stability than NAG, and RGD has even higher
stability than CM.

where we denote z =
[ x
p

]
. Similarly, NAG in the form (18) yields

zk+1 = TNAGzk, TNAG =

[
1− h2λ/m (h/m)e−γh(1− h2λ/m)
−hλ e−γh(1− h2λ/m)

]
, (57)

while RGD (24), with c→∞ and α = 1, yields9

zk+1 = TRGDzk, TRGD =

[
1− h2λ/(2m) h/(2m)e−γh/2(2− h2λ/(2m))
−hλe−γh/2 e−γh(1− h2λ/(2m))

]
. (58)

A linear system is stable if the spectral radius of its transition matrix is ρ(T ) ≤ 1. We can compute
the eigenvalues of the above matrices and check for which range of parameters they remain inside
the unit circle; e.g. for given γ, m, and λ we can find the allowed range of the step size h for which
the maximum eigenvalue in absolute value is |λmax| ≤ 1. Instead of showing the explicit formulas
for these eigenvalues, which can be obtained quite simply but are cumbersome, let us illustrate what
happens graphically.

In Fig. 3, the shaded gray area represents the unit circle. Any eigenvalue that leaves this area makes
the associated algorithm unstable. Here we fix m = λ = γ = 1 (other choices are equivalent) and
we vary the step size h > 0. These eigenvalues are in general complex and lie on a circle which
is determined by the amount of friction in the system. Note how for CM and RGD this circle is
centered at the origin, with radius

√
µ ≡ e−γh/2, since these methods are conformal symplectic and

exactly preserve the dissipation of the underlying continuous system. However, NAG introduces
a spurious damping which is reflected as the circle being translated from the center, at a distance
1/(eγh + 1), and moreover this circle has a smaller radius of 1/(eγh + 1) compared to CM and
RGD; since this radius is smaller, NAG may have a faster convergence when these eigenvalues are
complex. As we increase h (left to right in Fig. 3), the eigenvalues move counterclockwise on the
circles until falling on the real line, where one of them goes to the left while the other goes to the
right. Eventually, the leftmost eigenvalue leaves the unit circle for a large enough h (third panel in
Fig. 3). Note that NAG becomes unstable first, followed by CM, and only then by RGD. The main
point is that CM and RGD can still be stable for much larger step sizes compared to NAG, and RGD
is even more stable than CM as seen in the rightmost plot in Fig. 3; this is a consequence of RGD
being an integrator of order r = 2 whereas CM is of order r = 1. Hence, even though NAG may

9The case of finite c is nonlinear and not amenable to such an analysis. However, this c → ∞ already
provide useful insights.
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have a slightly faster convergence (due to a stronger contraction), it requires a smaller step sizes and
its stability is more sensitive compared to a conformal symplectic method. On the other hand, both
CM and RGD can operate with larger step sizes, which in practice may even result in a faster solver
compared to NAG.

To provide a more quantitative statement, after computing the eigenvalues of the above transition
matrices for given µ ≡ e−γh, m, and λ, we find the following threshold for stability:

hCM ≤
√
m(1 + µ+ µ2 + µ3)

/
(µ
√
λ), (59)

hNAG ≤
√
m(1 + µ+ µ2 + µ3)

/√
µλ(1 + µ+ µ2), (60)

hRGD ≤
√

2m(1 + µ+ µ2 + µ3)
/√

µλ(1 + µ). (61)

We can clearly see that RGD has the largest region for h, followed by CM, then by NAG, in agree-
ment with the results of Fig. 3.

D Additional Numerical Experiments

Here we compare RGD (Algorithm 1) with CM (1) and NAG (2) on several additional test func-
tions; for details on these functions see e.g. [39] and references therein. We follow the procedure
already described in Section 6 where we optimized the hyperparameters of these algorithm using
Bayesian optimization.10 We report the convergence rate using the best parameters found together
with histograms of the parameter search. In all cases we initialize the velocity as v0 = 0. The initial
position x0 was chosen inside the range where the corresponding test function is usually considered.

First we consider functions with a quadratic growth. These results are shown in Figs. 4–7. In this
case RGD performed similarly to CM and NAG, although with some improvement. In any case
RGD proved to be more stable, i.e. it worked well for a wider range of hyperparameters.

We expect that RGD stands out on settings with large gradients or objective functions with fast
growing tails. Therefore, in the remaining figures, i.e. Fig. 8–15, we consider more challenging op-
timization problems with functions that grow stronger than a quadratic. For some of these problems
the minimum lies on a flat valley, making it hard for an algorithm to stop around the minimum after
gaining a lot of speed from a very steep descent direction. Note that in all these cases the improve-
ment of RGD over CM and NAG is significant, and the parameter δ—which controls relativistic
effects—had an important role. The conformal symplecticity, which is indicated by the tendency
α → 1, also brings an improved stability in the discretization. These results provide compelling
evidence for the benefits of RGD.
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Figure 4: Booth function: f(x, y) ≡ (x+2y−7)2 +(2x+y−5)2. Global minimum at f(1, 3) = 0.
We initialize at x0 = (10, 10). This function is usually evaluated on the region −10 ≤ x, y ≤ 10.
All methods perform well on this problem which is not challenging.

10We provide the actual code used in our numerical simulations in [34].
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Figure 5: Matyas function: f(x, y) ≡ 0.26(x2 + y2)− 0.48xy. Global minimum is at f(0, 0) = 0.
We initialize at x0 = (10,−7). This function is usually evaluated on the region −10 ≤ x, y ≤ 10.
Even though the function has a—not so strong—quadratic growth, we see a slight improvement of
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this function is nonconvex, the optimization problem is not very challenging. However, we noticed
that CM and NAG got stuck on a local minimum more often than RGD when running this example
multiple times.

x

−7.5−5.0
−2.5

0.0
2.5

5.0
7.5y

−7.5−5.0−2.50.0 2.5 5.0 7.5

f

0

50

100

150

200

0 50 100 150 200 250 300

k

10−40

10−32

10−24

10−16

10−8

100

108

f
(x

)
−
f
?

CM

NAG

RGD

0.000 0.005 0.010
0

200

400

ε

0.6 0.8 1.0
0.0

2.5

5.0

µ

0 5 10
0.0

0.2

0.4

δ

0.0 0.5 1.0
0

2

4

α

Figure 7: Sum of squares: f(x) ≡∑n
i=1 ix

2
i . The minimum is at f(0) = 0. We consider n = 100

dimensions and initialize at x0 = (10, . . . , 10). The usual region of study is −10 ≤ xi ≤ 10. Note
that there is a clear tendency towards α→ 1 in this case, i.e. in being conformal symplectic.
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Figure 8: Beale function: f(x, y) ≡ (1.5−x+xy)2 +(2.25−x+xy2)2 +(2.625−x+xy3)2. The
global minimum is at f(3, 1/2) = 0, lying on a flat and narrow valley which makes optimization
challenging. Note also that this functions grows stronger than a quadratic. This function is usually
considered on the region −4.5 ≤ x, y ≤ 4.5. We initialize at x0 = (−3,−3). Note how CM and
NAG were unable to minimize the function, while RGD was able to find the global minimum to
high accuracy; δ � 0 played a predominant role, indicating benefits from “relativistic effects.”
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Figure 9: Chung-Reynolds function: f(x) ≡
(∑n

i=1 x
2
i

)2
. The global minimum is at f(0) =

0. This function is usually considered on the region −100 ≤ xi ≤ 100. We consider n = 50
dimensions and initialize at x0 = (50, . . . , 50). Note that RGD was able to improve convergence by
controlling the kinetic energy with δ > 0. We also see the benefits of being conformal symplectic,
i.e. α→ 1.
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Figure 10: Quartic function: f(x) ≡∑n
i=1 ix

4
i . The global minimum is at f(0) = 0. This function

is usually considered over −1.28 ≤ xi ≤ 1.28. We choose n = 50 dimensions and initialize at
x0 = (2, . . . , 2).
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Figure 11: Schwefel function: f(x) ≡ ∑n
i=1 x

10
i . The minimum is at f(0) = 0. The function is

usually considered over −10 ≤ xi ≤ 10. This function grows even stronger than the previous two
cases. We consider n = 20 dimensions and initialize at x0 = (2, . . . , 2). Note that δ > 0 is essential
to control the kinetic energy and improve convergence.
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Figure 12: Qing function: f(x) ≡ ∑n
i=1(x2

i − i)2. This function is multimodal, with minimum
at x?i = ±

√
i, f(x?) = 0. The function is usually studied in the region −500 ≤ xi ≤ 500. We

consider n = 100 dimensions with initialization at x0 = (50, . . . , 50).
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Figure 13: Zakharov function: f(x) ≡∑n
i=1 x

2
i +
(

1
2

∑n
i=1 ixi

)2
+
(

1
2

∑n
i=1 ixi

)4
. The minimum

is at f(0) = 0. The region of interest is usually −5 ≤ xi ≤ 10. We consider n = 5 and initialize
at x0 = (1, . . . , 1). Note that δ > 0 played a dominant role here, and α → 1 as well. RGD
successfully minimized this function to high accuracy, contrary to CM and NAG that were unable to
get even close to the minimum.
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Figure 14: Three-hump camel back function: f(x, y) ≡ 2x2 − 1.05x4 + x6/6 + xy + y2. This
is a multimodal function with global minimum is at f(0, 0) = 0. The region of interest is usually
−5 ≤ x, y ≤ 5. We initialize at x0 = (5, 5). The two local minima are somewhat close to the global
minimum which makes optimization challenging. Only RGD was able to minimize the function.
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Figure 15: Rosenbrock function: f(x) ≡∑n−1
i−1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
. The global min-

imum is at f(1, . . . , 1) = 0. More details about this function was described in Section 6. Here we
consider n = 1000 dimensions and initialize at x0 = (2.048, . . . , 2.048). This function is usually
studied in the region −2.048 ≤ xi ≤ 2.048. Note that δ > 0 was important for the improved
convergence.
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