
A Convergence rate for translation-invariant kernels

Theorem 2. (Rotation-invariant kernels) For the RI recurrent kernel defined in Eq. (9), under the assumptions
detailed above, and with Λ = 2σ2

rL (note the factor 2 compared to Theorem 1). For all t ∈ N, the following
inequality is satisfied for any δ > 0 with probability at least 1− 2(t+ 1)δ:∣∣∣〈x(t+1), y(t+1)〉 − kt+1(∆(t), ...,∆(0))

∣∣∣ ≤ 1− Λt+1

1− Λ
Θ(N) if Λ 6= 1 (20)

≤ (t+ 1)Θ(N) if Λ = 1 (21)

with Θ(N) =
4κ2 log 1

δ
3N

+ 2κ2

√
2 log 1

δ
N

.

Proof. Under the assumptions, Proposition 1 yields with probability greater than 1− 2δ:

∣∣∣〈x(t+1), y(t+1)〉 − k([x(t), i(t)], [y(t), j(t)])
∣∣∣ ≤ 4κ2 log 1

δ

3N
+ 2κ2

√
2 log 1

δ

N
= Θ(N) (22)

It means the larger the reservoir, the more Random Features N we sample, and the more the inner product of
reservoir states concentrates towards its expectation value, at a rate O(1/

√
N). We now apply this inequality

recursively to complete the proof, based on the observation that both Eq. (11) and (12) are equivalent to:∣∣∣〈x(t+1), y(t+1)〉 − kt+1(∆(t), ...,∆(0))
∣∣∣ ≤ (1 + Λ + Λ2 + ...+ Λt)Θ(N).

For t = 0, provided x(0) = y(0) = 0, we have, according to Eq. 14, with probability at least 1− 2δ:∣∣∣〈x(1), y(1)〉 − k1(∆(0))
∣∣∣ ≤ Θ(N) (23)

For any time t ∈ N∗, let us assume the following event At is true with probability P(At) ≥ 1− 2tδ:∣∣∣〈x(t), y(t)〉 − kt(∆(t−1), ...,∆(0))
∣∣∣ ≤ (1 + . . .+ Λt−1)Θ(N) (24)

Using the Lipschitz-continuity of k, this inequality is equivalent to:∣∣∣k(2σ2
r(1− 〈x(t), y(t)〉) + ∆(t))− k(2σ2

r(1− kt(∆(t−1), ...,∆(0))) + ∆(t))
∣∣∣ ≤ (Λ+. . .+Λt)Θ(N) (25)

With Eq. (14), the following event Bt is true with probability P(Bt) ≥ 1− 2δ:∣∣∣∣〈x(t+1), y(t+1)〉 − k
(
2σ2

r(1− 〈x(t), y(t)〉) + ∆(t))∣∣∣∣ ≤ Θ(N) (26)

Summing Eq. (25) and (26), with the triangular inequality and a union bound, the following event At+1 is true
with probability P(At+1) ≥ P(Bt∩At) = P(Bt)+P(At)−P(Bt∪At) ≥ 1−2δ+1−2tδ−1 = 1−2(t+1)δ:∣∣∣〈x(t+1), y(t+1)〉 − kt+1(∆(t), ...,∆(0))

∣∣∣ ≤ (1 + . . .+ Λt)Θ(N) (27)

B Explicit Recurrent Kernel formulas

We have defined so far the general formulas of RI and TI Recurrent Kernels in Eq. (8) and (9). We will give now
their explicit formulas for specific activation functions that one may encounter in Reservoir Computing.

Two reservoirs x(t) and y(t) are driven by two respective input time series i(t) and j(t). They obey Eq. (1) and
in the infinite-size limit, their inner product converges towards an explicit Recurrent Kernel. In practice, one
needs to compute the inner products for each pair of input time series, from the training or testing sets, that we
concatenate to construct a kernel matrix.

A list of different activation functions and their associated kernels is provided in Table 3. Without recurrence, it
is always possible to write the corresponding kernel as an integral that one may evaluate:

k(u, v) =

∫
dwρ(w)f(〈w, u〉)f(〈w, v〉) (28)

where ρ(w) is the distribution of the weights, usually an i.i.d. gaussian distribution. However, in all the
cases presented here, k(u, v) happens to contain inner products 〈u, v〉, which makes it possible to define the
corresponding Recurrent Kernel.

13



f(·) Associated kernel k(u, v)

Erf(·) 2
π arcsin

(
2〈u,v〉√

(1+2‖u‖2)(1+2‖v‖2)

)
RFFs: [cos(·), sin(·)] exp

(
−‖u−v‖

2

2

)
= exp

(
−‖u‖

2+‖v‖2−2〈u,v〉
2

)
Sign(·) 2

π arcsin
(
〈u,v〉
‖u‖‖v‖

)
Heaviside(·) 1

2 −
1
2π arccos

(
〈u,v〉
‖u‖‖v‖

)
ReLU(·) 1

2π

(
〈u, v〉 arccos(− 〈u,v〉

‖u‖‖v‖ ) + ‖u‖‖v‖
√

1−
(
〈u,v〉
‖u‖‖v‖

)2)
Table 3: Table of point-wise non-linearities f and their approximated kernels. For any u, v ∈ Rp the
kernel k(u, v) is the limit when N goes to infinity of 1

N 〈f(Wu), f(Wv)〉 with W ∈ RN×p an i.i.d.
normal random matrix. In the case of Reservoir Computing, we have u = u(t) = [σrx

(t), σii
(t)] and

v = v(t) = [σry
(t), σij

(t)]. We observe that in this table, all kernel formulas depend only on 〈u, v〉,
‖u‖, and ‖v‖, which makes it possible to easily derive the Recurrent Kernel equations.

In our case, u(t) = [σrx
(t), σii

(t)] and v(t) = [σry
(t), σij

(t)] so that:

〈u(t), v(t)〉 = σ2
r〈x(t), y(t)〉+ σ2

i 〈i(t), j(t)〉 → σ2
rkt(l

(t−1), . . . , l(0)) + l(t) (29)

when the reservoir size N →∞. Similarly, ‖u(t)‖2 = 〈u(t), u(t)〉 and ‖v(t)‖2 are symmetric inner products
that can similarly be expressed as in Eq. (29). Hence, the Recurrent Kernel formulas are derived from the
previous one by noting that:

lim
N→∞

〈x(t+1), y(t+1)〉 = kt+1(l(t), . . . , l(0)) ≡ k(u(t), v(t)) (30)

Analytic formulas in more general cases may not exist and they would need to be replaced by successive integrals.
In this work, we restricted ourselves to functions described in Table 1 with simple analytic formulas, to speed up
the RK computation. For instance, the error function is very close but not equal to the hyperbolic tangent in our
implementations of Reservoir Computing, and performance in practice is very similar.

The successive integrals can still be explicitly defined. Eq. (28) describes the asymptotic kernel limit for any
arbitrary (u, v). To define recurrent kernels, we need to express it as a function of 〈u, v〉, ‖u‖2, and ‖v‖2 only.
This is possible thanks to the invariance by rotation of the gaussian distribution of w. Without loss of generality,
we can thus assume that u = ‖u‖e1 and v = ‖v‖(cos θe1 + sin θe2) with e1 and e2 the first two vectors of
the canonical basis and θ = 〈u, v〉/(‖u‖‖v‖) (which is a function of the three quantities of interest). The
multidimensional integral boils down to a two dimensional integral:

k(u, v) =

∫ ∫
dw1dw2ρ(w1)ρ(w2)f(w1‖u‖)f(‖v‖(w1 cos θ + w2 sin θ)) (31)

where w1 and w2 are gaussian random variables, projections of w on e1 and e2. Hence it is possible to
iterate Recurrent Kernels numerically, that are the large-size limit of any Reservoir Computing algorithm for
every activation function f . Each component of the square kernel matrix would require the evaluation of this
two-dimensional integral, it may be possible to use tabular values to speed up computation.

C Numerical study of the independence hypothesis

One assumption for the previous convergence theorems states the weight matricesWr andWi have to be redrawn
at each iteration. This independence hypothesis is required in Eq. (18) and Eq. (26), to ensure that x(t) and
y(t) are uncorrelated with the weight matrices. This is necessary in the theoretical study to properly define the
expectations and ensure the i.i.d. requirement for the random variables in the Bernstein inequality.

However, this assumption is unrealistic for practical Reservoir Computing. Resampling weight matrices at each
timestep is computationally demanding and output weights would depend on the realization of these random
matrices: one would need to keep the same random matrices in memory for testing.

However, in Fig. 3, we investigate the convergence with and without redrawing weights at each iteration, and
this independence hypothesis does not seem to be necessary: convergence is still achieved with fixed weight

14



Figure 3: Mean-Squared error between the kernel matrix obtained with RC/SRC with the asymptotic
kernel limit, with and without resampling the random matrices at each iteration, to test the indepen-
dence hypothesis of the theorem. 50 × 50 kernel matrices have been generated for all pairs of 50
random input time series of length 10. Several activation functions and their corresponding recurrent
kernels are presented here. We observe that the hypothesis does not seem to be necessary since RC
and SRC without resampling also converge to the RK limit at sensibly the same speed.

matrices. We show the Mean-Squared Error ‖K1 −K2‖22/n2 between the kernel matrix K1 from the explicit
RK formula and K̂2 the one obtained with RC and SRC, with and without redrawing the random matrices at
every timestep. Each kernel matrix is of size 50× 50, as we use n = 50 random i.i.d gaussian input time series
of dimension 50 and time length 10. Each curve is an average over 10 realizations and the reservoir scale is set
to σ2

r = 0.25 to ensure stability.

We confirm the observation from Fig. 1 that the larger the reservoir dimension, the closer we are from the RK
asymptotic limit. This is valid for several activation functions, the ones presented in Table 3. We also confirm
that SRC generally converges faster than RC.

Convergence is still achieved when resampling the weights at each iteration, and speed of convergence is not
significantly different than for the fixed random matrix case. Thus convergence seems to be much more robust in
practice, and this may call for further theoretical studies.

D Stability of Reservoir Computing and Recurrent Kernels

As the reservoir is itself a dynamical system, it can be stable (differences in initial conditions vanish with time)
or chaotic (differences in initial conditions explode exponentially). This is linked with the Echo-State Property,
extensively studied for Reservoir Computing. It states that two reservoirs initialized differently need to converge
to the same trajectory, provided they share the same weights (at each time step if weights are resampled). This
property is important so that the reservoir state after a large enough time τ does not depend on the arbitrary
reservoir initialization. Stability or chaos can be tuned depending on a set of hyperparameters. An important
one is the scale of the reservoir weights: when small, initial differences get damped exponentially with time,
whereas they may explode if reservoir weights are large.

We verify this Echo-State Property here for Reservoir Computing. In Fig. 4 we present the squared distance
‖x(t)1 − x

(t)
2 ‖2 as a function of time t between two randomly initialized reservoirs x1 and x2, for the same input

time series from the Kuramoto-Sivashinsky dataset. A normalization factor has been added to normalize this
distance to 1 at t = 0 and each curve is an average over 100 realizations. The activation is the error function, the
input scale is set to a small value σ2

i = 0.01, and we vary the reservoir scale σ2
r . For σ2

r = 0.49 and 1, dynamics
are stable and the two reservoir states converge quite quickly to the same trajectory. When σ2

r = 2.25, dynamics
becomes chaotic and the two reservoirs follow very different dynamics due to their different initial conditions.

15



Figure 4: Stability analysis of Reservoir Computing and Recurrent Kernels. We compute the
normalized square distance between two reservoirs or recurrent kernels fed with the same input time
series and different initializations. For RK or RC when σ2

r ≤ 1 we see that trajectories converge
to a single one after some time. This means that initial conditions are forgotten after a number of
iterations. On the other hand, when σ2

r = 2.25 for Reservoir Computing, the reservoir is in a chaotic
regime and always depend on initial conditions. It is interesting to observe that Recurrent Kernels are
generally more stable than RC.

Recurrent Kernels may also present this transition from stability to chaos. Moreover, this stability property is
important for Recurrent Kernels in practice. RKs need to be iterated a certain number of times, and thanks to
stability this number of iterations can be reduced to the finite memory τ and not on the full length of the time
series. This change reduces considerably the computational costs.

We thus also investigate numerically the stability of Recurrent Kernels, i.e. how they depend on the initial
conditions. In Fig. 4, we present the normalized difference between two kernel matrices ‖K(t)

1 −K
(t)
2 ‖22 as a

function of time, for two recurrent kernels K1 and K2 initialized with a matrix full of ones or of zeros, and fed
with the same input time series, for the arcsine Recurrent Kernel corresponding to the erf activation function. We
observe that Recurrent Kernels are in general a lot more stable than Reservoir Computing. This characteristic
may be interesting to investigate further.

We may now draw an interesting parallel between this study and, as we unroll the Recurrent Neural Network
through time, multilayer perceptrons with random weights, linked with compositional kernels. They correspond
to our case, i(t) = 0 for t ≥ 1 and i(0) ∈ Rd is the time-independent input. This stability property corresponds
to a final layer that does not depend on i(0), and as such information does not flow in the deep network. Hence,
whereas it is advantageous in Reservoir Computing to be stable, it may be detrimental for deep neural networks.

E Implementation details for Reservoir Computing

Several tweaks are useful to improve the performance of Reservoir Computing for time series prediction. We used
the erf activation function as it is the closest from the hyperbolic tangent already used in Reservoir Computing,
that still possess a simple Recurrent Kernel formula.

First, we add a random additive bias b ∈ RN sampled from an i.i.d. normal distributionN (0, σ2
b ). The variance

of this bias vector σ2
b is a hyperparameter to tune, like the variance of the reservoir or input weights. This bias

helps to diversify the neuron activations in the reservoir. Hence, the reservoir update equation becomes:

x(t+1) =
1√
N
f
(
Wr x

(t) +Wi i
(t) + b

)
(32)

As stated previously, we concatenate the reservoir state with the last value of the time series we have received.
Information about the past is still encoded in the reservoir, but with this simple change, the reservoir is rather
used to compute perturbations on the current value, and does not have to reconstruct the whole spatial profile.
We add a renormalization hyperparameter r for this concatenation, in order to control the weight of the reservoir
versus current input.

A hyperparameter search was performed, for a total of 5 hyperparameters (the reservoir scale, input scale, bias
scale, the previous concatenation factor, regularization constant). Since there is a large number of hyperparame-
ters to tune, we perform it on one hyperparameter at a time, going through the set of parameters several times.
The final set of hyperparameters of Fig. 2 is {σi, σr, σb, r, α} = {0.4, 0.9, 0.4, 1.1, 10−2}.

16



Figure 5: How to use Recurrent Kernels for time series prediction. In Reservoir Computing, the
input is continuously fed to the reservoir and all the reservoir states for every timestep t are stored for
training. With Recurrent Kernels, we construct n small windows of the time series of length τ and
compute scalar products between each pair using τ iteration of Eq. (8) or (9).

For completeness, we give here the exact definition of the Mean-Squared Error of Fig. 2. The target output
O(t) ∈ Rd for t = 1, . . . , Tpred corresponds to the next states of the chaotic systems, and for each t, we evaluate
the MSE between O(t) and the prediction of the algorithm Ô(t), which is simply ‖O(t)− Ô(t)‖2/d.

F Implementation details for Recurrent Kernels

We also used a Recurrent Kernel to perform chaotic time series prediction. We chose an arcsine rotation-invariant
kernel, the asymptotic limit of a reservoir with error function activations. We use the principle described in
Section B, with the addition of a random gaussian bias that corresponds to adding a constant dimension to the
vector u(t) = [σrx

(t), σii
(t), σb].

Additionally, we have introduced for Reservoir Computing a concatenation step we need to reproduce with
Recurrent Kernels. In RC, we concatenate the reservoir and the current input before computing the prediction.
The corresponding operation for Recurrent Kernels is the addition of a linear kernel computed from all pairs of
input points: K+

kl = 〈i(t)k , i
(t)
l 〉. This kernel matrix K+ is added to the Recurrent Kernel after the iterations and

before the linear model for prediction.

We also expand more on the process of generating the input data for Recurrent Kernels. In time series prediction,
each reservoir state (neglecting a warm-up phase) is used during training to learn output weights to predict the
future states of the system. Since there are n training examples, this corresponds to an n× n kernel matrix. In
the Recurrent Kernel setting, we train a linear model on the final kernel matrix. We thus construct n time series
of length τ = 50 for each time step of the training data (neglecting the effect of edges), where the length τ is
determined by the stability of the Recurrent Kernel. This process is depicted in Fig. 5.

G Recursive vs non-recursive prediction

Following previous strategies developed for chaotic time series prediction with Reservoir, RC, SRC, and RK
algorithms were trained only to perform next-time-step prediction. To predict further in the future, this prediction
is then fed back into the algorithm to iterate further in time. As explained previously, this defines an autonomous
dynamical system that should be synchronized with the chaotic time series if training is successful.

Another possible strategy would be to use a given reservoir state to predict Tpred time steps in the future. The
output dimension c = d Tpred is larger and the learning task becomes more difficult.

We show here the usefulness of this strategy based on autonomous dynamics. In Fig. 6, we show the performance
of Reservoir Computing prediction on the Kuramoto-Sivashinsky dataset, with and without recursive prediction.
With recursive prediction (left), this corresponds to the strategy already presented in Fig. 2, and it is not
surprising that prediction up to at least 2 Lyapunov exponents is possible. Without recursive prediction (right),
the algorithm has a much harder time to predict the future of the chaotic system. Instead, after a short while, it
only returns the average value of the time series.

Note that the same hyperparameters were used in both cases. While it may be possible to improve the performance
of the direct prediction strategy, by increasing the size of the reservoir or playing with regularization parameter,
but we show here the simplicity and effectiveness of the recursive prediction strategy.

17



Figure 6: Comparison of recursive and non-recursive prediction. We see that with recursive prediction
(left), Reservoir Computing is able to predict quite precisely up to at least 2 characteristic times. On
the other hand, without recursive prediction, Reservoir Computing quickly has a hard time to guess
the future of the KS system and outputs its mean for long prediction times.

18


	Convergence rate for translation-invariant kernels
	Explicit Recurrent Kernel formulas
	Numerical study of the independence hypothesis
	Stability of Reservoir Computing and Recurrent Kernels
	Implementation details for Reservoir Computing
	Implementation details for Recurrent Kernels
	Recursive vs non-recursive prediction

