## A Section 3 details

We prove Lemma 4.
Lemma 4 (restated). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ be a class of multi-class hypotheses.

1. $\operatorname{Ldim}_{\tau}(\mathcal{H})$ is decreasing in $\tau$.
2. $\mathrm{SOA}_{\tau}\left(\right.$ Algorithm 1) makes at most $\operatorname{Ldim}_{\tau}(\mathcal{H})$ mistakes with respect to $\ell_{\tau}^{0-1}$.
3. For any deterministic learning algorithm, an adversary can force $\operatorname{Ldim}_{2 \tau}(\mathcal{H})$ mistakes with respect to $\ell_{\tau}^{0-1}$.

Proof. Part 1 follows by observing that if $T$ is a binary shattered tree with tolerance $\tau$, then so is it with tolerance $\tau^{\prime}<\tau$.

For part 2, assume $\mathrm{SOA}_{\tau}$ makes a mistake at round $t$. We claim that $\operatorname{Ldim}_{\tau}\left(V_{t+1}\right)<\operatorname{Ldim}_{\tau}\left(V_{t}\right)$. If $\operatorname{Ldim}_{\tau}$ does not decrease, we can infer that

$$
\operatorname{Ldim}_{\tau}\left(V_{t}^{\left(\hat{y}_{t}\right)}\right)=\operatorname{Ldim}_{\tau}\left(V_{t}^{\left(y_{t}\right)}\right)=\operatorname{Ldim}_{\tau}\left(V_{t}\right)=: d .
$$

Then we can find binary trees $T_{1}$ and $T_{2}$ of height $d$ that are shattered by $V_{t}^{\left(\hat{y}_{t}\right)}$ and $V_{t}^{\left(y_{t}\right)}$, respectively. By concatenating $T_{1}$ and $T_{2}$ with a root node $x_{t}$ and its edges labeled by $\hat{y}_{t}$ and $y_{t}$, we can obtain a binary tree $T$ of height $d+1$ that is shattered by $V_{t}$. This contradicts to $\operatorname{Ldim}_{\tau}\left(V_{t}\right)=d$ and proves our assertion.
To prove part 3 , let $T$ be a binary shattered tree of height $\operatorname{Ldim}_{2 \tau}(\mathcal{H})$. For a given node $x$, suppose the adversary shows $x$ to the learner. Since the descending edges have labels apart from each other by more than $2 \tau$, the adversary can choose a label that incurs a mistake with respect to $\ell_{\tau}^{0-1}$. Thus by following down the tree $T$ from the root node, the adversary can force $\operatorname{Ldim}_{2 \tau}(\mathcal{H})$ mistakes.

## B Section 4 details

In this section, the proofs omitted in Section 4 are presented.

## B. 1 Proof of Theorem 8

We first define sub-trees. Let $T$ be a binary tree. Any node of $T$ becomes its sub-tree of height 1 . For $h>1$, choose a node $x$ and let $T_{1}$ and $T_{2}$ be the trees that are rooted at its two children. A sub-tree of height $h$ is obtained by aggregating a sub-tree of height $h-1$ of $T_{1}$ and a sub-tree of height $h-1$ of $T_{2}$ at the root node $x$. Note that if the original tree $T$ is shattered by some hypothesis class, then so is any sub-tree of it.

Next we prove a helper lemma.
Lemma 16. Suppose there are n colors $C=\left\{c_{i}\right\}_{1: n}$ and $n$ positive integers $\left\{d_{i}\right\}_{1: n}$. Let $T$ be a binary tree of height $-(n-1)+\sum_{i=1}^{n} d_{i}$ whose vertices are colored by $C$. Then there exists a color $c_{i}$ such that $T$ has a sub-tree of height $d_{i}$ in which all internal vertices are colored by $c_{i}$.

Proof. We will prove by induction on $\sum_{i=1}^{n} d_{i}$. If $d_{i}=1$ for all $i$, then the height of $T$ becomes 1 , and the statement holds trivially. Now suppose the lemma holds for any $d_{i}$ 's whose summation is less than $N$ and let $T$ have the height $N-n+1$. Without loss of generality, we may assume that the root node $x_{0}$ is colored by $c_{1}$. We consider two sub-trees $T_{1}, T_{2}$ of height $N-n$ whose root nodes are children of $x_{0}$. Let $e_{1}=d_{1}-1$ and $e_{i}=d_{i}$ for $i>1$. Since $\sum_{i=1}^{n} e_{i}=N-1$, by the inductive assumption each $T_{j}$ has a sub-tree of height $e_{i_{j}}$ in which all internal vertices are colored by $c_{i_{j}}$. If $i_{j} \neq 1$ for some $j$, then we are done because $e_{i_{j}}=d_{i_{j}}$. If $i_{j}=1$ for all $j=1,2$, then merging these two trees with the node $x_{0}$ forms a sub-tree of height $e_{1}+1=d_{1}$ of color $c_{1}$. This completes the inductive argument.

Now we are ready to prove Theorem 8.
Theorem 8 (restated). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ and $\mathcal{F} \subset[-1,1]^{\mathcal{X}}$ be multi-class and regression hypothesis classes, respectively.

1. If $\operatorname{Ldim}_{2 \tau}(\mathcal{H}) \geq d$, then $\mathcal{H}$ contains $\left\lfloor\frac{\log _{K} d}{K^{2}}\right\rfloor$ thresholds with a gap $\tau$.
2. If $\operatorname{fat}_{\gamma}(\mathcal{F}) \geq d$, then $\mathcal{F}$ contains $\left\lfloor\frac{\gamma^{2}}{10^{4}} \log _{100 / \gamma} d\right\rfloor$ thresholds with a margin $\frac{\gamma}{5}$.

Proof. We begin with the multi-class setting. Suppose $d=K^{K^{2} t}$. It suffices to show $\mathcal{H}$ contains $t$ thresholds. Let $T$ be a shattered binary tree of height $d$ and tolerance $2 \tau$. Letting $\mathcal{H}_{0}=\mathcal{H}$ and $T_{0}=T$, we iteratively apply ColorAndChoose (Algorithm 2). Namely, we write

$$
\begin{equation*}
k_{n}, k_{n}^{\prime}, h_{n}, x_{n}, \mathcal{H}_{n}, T_{n}=\operatorname{ColorAndChoose}\left(\mathcal{H}_{n-1}, T_{n-1}, 2 \tau\right) \tag{2}
\end{equation*}
$$

Observe that for all $n$, we can infer $h_{n}\left(x_{n}\right)=h_{n}(x)=k_{n}$ for all internal vertices $x$ of $T_{n}(\because$ line 4 of Algorithm 2) and $h\left(x_{n}\right)=k_{n}^{\prime}$ for all $h \in \mathcal{H}_{n}(\because$ line 8 of Algorithm 2).
Additionally, Lemma 16 ensures that the height of $T_{n}$ is no less than $\frac{1}{K}$ times the height of $T_{n-1}$. This means that the iterative step (2) can be repeated $K^{2} t$ times since $d=K^{K^{2} t}$. Then there exist $k, k^{\prime}$ and indices $\left\{n_{i}\right\}_{i=1}^{t}$ such that $k_{n_{i}}=k$ and $k_{n_{i}}^{\prime}=k^{\prime}$ for all $i$.

It is not hard to check that the functions $\left\{h_{n_{i}}\right\}_{1: t}$ and the arguments $\left\{x_{n_{i}}\right\}_{1: t}$ form thresholds with labels $k, k^{\prime}$. Since $\left|k-k^{\prime}\right|>\tau(\because$ line 6 of Algorithm 2), this completes the proof.
Now we move on to the regression setting. Proposition 5 implies that $\operatorname{Ldim}_{20}\left([\mathcal{F}]_{\gamma / 50}\right) \geq$ $\operatorname{Ldim}_{24}\left([\mathcal{F}]_{\gamma / 50}\right) \geq d$. Then using the previous result in the multi-class setting, we can deduce that $[\mathcal{F}]_{\gamma / 50}$ contains $n:=\left\lfloor\frac{\gamma^{2}}{10^{4}} \log _{100 / \gamma} d\right\rfloor$ thresholds with a gap 10 . This means that there exist $k, k^{\prime} \in\left[\frac{100}{\gamma}\right],\left\{x_{i}\right\}_{1: n} \subset \mathcal{X}$, and $\left\{\left[f_{i}\right]_{\gamma / 50}\right\}_{1: n} \subset \mathcal{H}$ such that $\left|k-k^{\prime}\right| \geq 10$ and

$$
\left[f_{i}\right]_{\gamma / 50}\left(x_{j}\right)= \begin{cases}k & \text { if } i \leq j \\ k^{\prime} & \text { if } i>j\end{cases}
$$

Let $u, u^{\prime}$ be the middles points of the intervals that correspond to the labels $k, k^{\prime}$. Then it is easy to check that $\left|u-u^{\prime}\right| \geq \gamma / 5$ and

$$
f_{i}\left(x_{j}\right) \in\left\{\begin{array}{ll}
{\left[u-\frac{\gamma}{100}, u+\frac{\gamma}{100}\right)} & \text { if } i \leq j \\
{\left[u^{\prime}-\frac{\gamma}{100}, u^{\prime}+\frac{\gamma}{100}\right)} & \text { if } i>j
\end{array} .\right.
$$

This proves the theorem.

## B. 2 Proof of Theorem 9

Theorem 9 (restated). Let $\mathcal{F}=\left\{f_{i}\right\}_{1: n} \subset[-1,1]^{\mathcal{X}}$ be a set of threshold functions with a margin $\gamma$ on a domain $\left\{x_{i}\right\}_{1: n} \subset \mathcal{X}$ along with bounds $u, u^{\prime} \in[-1,1]$. Suppose $\mathcal{A}$ is a $\left(\frac{\gamma}{200}, \frac{\gamma}{200}\right)$ accurate learning algorithm for $\mathcal{F}$ with sample complexity $m$. If $\mathcal{A}$ is $(\epsilon, \delta)-D P$ with $\epsilon=0.1$ and $\delta=O\left(\frac{1}{m^{2} \log m}\right)$, then it can be shown that $m \geq \Omega\left(\log ^{*} n\right)$.

Proof. The proof consists of two main lemmas. Lemma 19 proves that there is a large homogeneous set (see Definition 17). Then Lemma 21 yields the lower bound of the sample complexity when there exists a large homogeneous set. In particular, from these two lemmas, we can deduce that

$$
\frac{\log ^{(m)} n}{2^{O(m \log m)}} \leq 2^{O\left(m^{2} \log ^{(2)} m\right)}
$$

This means that there exists a constant $c$ such that

$$
\log ^{(m)} n \leq e^{c m^{2} \log m}
$$

Observing that $\log ^{*}\left(\log ^{(m)} n\right) \geq\left(\log ^{*} n\right)-m$ and $\log ^{*}\left(2^{O\left(m^{2} \log ^{(2)} m\right)}\right)=O\left(\log ^{*} m\right)$, we can check the desired inequality $m \geq \Omega\left(\log ^{*} n\right)$.

## B.2.1 Existence of a large homogenous set

Suppose $\mathcal{A}$ is a learning algorithm over a finite domain $D$. The hypothesis class consists of threshold functions over $D$ with bounds $u, u^{\prime}$. According to Definition $7, u$ and $u^{\prime}$ can be in an arbitrary order as long as $\left|u-u^{\prime}\right|>\gamma$. But for simpler presentation, without loss of generality, we will assume $u>u^{\prime}$. Also, let $\bar{u}=\frac{u+u^{\prime}}{2}$. We define the following quantity:

$$
\mathcal{A}_{S}(x)=\mathbb{P}_{f \sim \mathcal{A}(S)}(f(x) \geq \bar{u})
$$

The definition of homogenous sets (Definition 17) and Lemma 19 are adopted from Alon et al. [4]. Assume that $\mathcal{X}$ is linearly ordered. Given a training set $S=\left(\left(x_{i}, y_{i}\right)\right)_{1: m}$, we say $S$ is increasing if $x_{1} \leq \cdots \leq x_{m}$. Additionally, we say $S$ is balanced if $y_{i}=u^{\prime}$ for all $i \leq \frac{m}{2}$ and $y_{i}=u$ for all $i>\frac{m}{2}$. Given $x \in \mathcal{X}$, we define $\operatorname{ord}_{S}(x)=\left|\left\{i \mid x_{i} \leq x\right\}\right|$. Lastly, we use $S_{\mathcal{X}}$ to denote $\left(x_{i}\right)_{1: m}$.
Definition 17 ( $m$-homogeneous set). A set $D^{\prime} \subset D$ is m-homogeneous with respect to a learning algorithm $\mathcal{A}$ if there are numbers $p_{i} \in[0,1]$ for $0 \leq i \leq m$ such that for every increasing balanced sample $S \in\left(D^{\prime} \times\left\{u, u^{\prime}\right\}\right)^{m}$ and for every $x \in D^{\prime} \backslash S_{\mathcal{X}}$

$$
\left|\mathcal{A}_{S}(x)-p_{i}\right| \leq \frac{1}{100 m}
$$

where $i=\operatorname{ord}_{S}(x)$.
The following theorem is a well-known result in Ramsey theory. It was originally introduced by Erdos and Rado [15] and rephrased by Alon et al. [4].
Theorem 18 (Alon et al. [4, Theorem 11]). Let $s>t \geq 2$ and $q$ be integers, and let $N \geq$ $\operatorname{twr}_{t}(3 s q \log q)$. Then for every coloring of the subsets of size $t$ of a universe of size $N$ using $q$ colors, there is a homogeneous subset ${ }^{2}$ of size s.

The next lemma states that we can find a large homogeneous set.
Lemma 19 (Existence of a large homogeneous set). Let $\mathcal{A}$ be a learning algorithm over a domain $D$ with $|D|=n$. Then there exists a set $D^{\prime} \subset D$ which is $m$-homogeneous with respect to $\mathcal{A}$ such that

$$
\left|D^{\prime}\right| \geq \frac{\log ^{(m)} n}{2^{O(m \log m)}}
$$

Proof. We first define a coloring on the ( $m+1$ )-subsets of $D$. Let $B=\left\{x_{1}<x_{2}<\cdots<x_{m+1}\right\}$ be an $(m+1)$-subset. For each $i \in[m+1]$, let $B^{(i)}=B \backslash\left\{x_{i}\right\}$. Then by labeling the first half of $B^{(i)}$ by $u^{\prime}$ and the second half by $u$, we get a balanced increasing training set $S^{(i)}$. Then we compute $p_{i}$ that is of the form $\frac{t}{100 m}$ and closest to $\mathcal{A}_{S^{(i)}}\left(x_{i}\right)$ (in case of ties, choose the smaller one). Then we color $B$ by the tuple $\left(p_{i}\right)_{1: m+1}$.
This scheme includes $(100 m+1)^{m+1}$ colors, and Theorem 18 provides that there exists a set $D^{\prime}$ of size larger than

$$
\frac{\log ^{(m)} n}{3(100 m+1)^{m+1}(m+1) \log (100 m+1)}=\frac{\log ^{(m)} n}{2^{O(m \log m)}}
$$

such that all $(m+1)$-subsets of $D^{\prime}$ have the same color. It is easy to verify that this set is indeed $m$-homogeneous with respect to $\mathcal{A}$ according to Definition 17.

## B.2.2 Large homogeneous set implies the lower bound

Recall that PAC learning is defined with respect to $\operatorname{loss}_{\mathcal{D}}$ (see Definition 1). When $\operatorname{loss}_{\mathcal{D}}$ is replaced by $\operatorname{loss}_{S}$, we say an algorithm $\mathcal{A}$ empirically learns a training set $S$. Bun et al. [9, Lemma 5.9] prove that if a hypothesis class is PAC learnable, then there exists an empirical learner as well.
Lemma 20 (Empirical learner). Suppose $\mathcal{A}$ is an $(\epsilon, \delta)$-DP PAC learner for a hypothesis class $\mathcal{H}$ that is $(\alpha, \beta)$-accurate and has sample complexity $m$. Then there is an $(\epsilon, \delta)$-DP and $(\alpha, \beta)$-accurate empirical learner for $\mathcal{H}$ with sample complexity 9 m .

[^0]The next is the main lemma.
Lemma 21 (Large homogeneous sets imply lower bounds on sample complexity). Suppose a learning algorithm $\mathcal{A}$ is $(\epsilon, \delta)$-DP with sample complexity $m$. Let $X=[N]$ be $m$-homogeneous with respect to $\mathcal{A}$. If $\epsilon=0.1, \delta \leq \frac{1}{1000 m^{2} \log m}$, and $\mathcal{A}$ empirically learns the threshold functions with a margin $\gamma$ over $X$ with $\left(\frac{\gamma}{200}, \frac{\gamma}{200}\right)$-accuracy, then

$$
N \leq 2^{O\left(m^{2} \log ^{(2)} m\right)}
$$

Proof. The proof is done by combining Lemma 22 and Lemma 23, which come below.
This is the first helper lemma to prove Lemma 21. It adopts Alon et al. [4, Lemma 12].
Lemma 22. Let $\mathcal{A}, X, m, N$ as in Lemma 21 and assume $N>2 m$. Then there exists a family $\mathcal{P}=\left\{P_{i}\right\}_{1: N-m}$ of distributions over $\{-1,1\}^{N-m}$ that satisfies the following two properties.

1. $P_{i}$ and $P_{j}$ are $(\epsilon, \delta)$-indistinguishable for all $i \neq j$.
2. There exists $r \in[0,1]$ such that for all $i, j \in[N-m]$,

$$
\mathbb{P}_{v \sim P_{i}}\left(v_{j}=1\right) \begin{cases}\leq r-\frac{1}{10 m} & \text { if } j<i \\ \geq r+\frac{1}{10 m} & \text { if } j>i\end{cases}
$$

Proof. Let $\left(p_{i}\right)_{0: m}$ be the probability list associated with $m$-homogeneous set $X=[N]$. We first prove that there exists $i^{*}$ such that $p_{i^{*}}-p_{i^{*}-1} \geq \frac{1}{4 m}$. Fix an increasing balanced training set $S:=\left(\left(x_{i}, y_{i}\right)\right)_{1: m} \in\left(X \times\left\{u, u^{\prime}\right\}\right)^{m}$ such that $x_{i}-x_{i-1} \geq 2$ for all $i$, which is possible by the assumption $N>2 m$. By the definition of threshold functions with a margin $\gamma$, we can infer

$$
\min _{f} \operatorname{loss}_{S}(f) \leq \frac{\gamma}{20}=0.05 \gamma
$$

where the minimum is taken over the threshold functions with a margin $\gamma$.
Furthermore, since $\mathcal{A}$ is an $\left(\alpha=\frac{\gamma}{200}, \beta=\frac{\gamma}{200}\right)$-accurate empirical learner, we can bound the expected loss of $\mathcal{A}(S)$ as

$$
\begin{equation*}
\mathbb{E}_{f \sim \mathcal{A}(S)} \operatorname{loss}_{S}(f) \leq \alpha+\beta+\min _{f} \operatorname{loss}_{S}(f) \leq 0.06 \gamma \tag{3}
\end{equation*}
$$

Also, we can lower bound the expected empirical loss by using the quantity $\mathcal{A}_{S}\left(x_{i}\right)$ as follows (recall that we assumed $u>u^{\prime}$ )

$$
\begin{equation*}
\mathbb{E}_{f \sim \mathcal{A}(S)} \operatorname{loss}_{S}(h) \geq \frac{1}{m} \cdot \frac{\gamma}{2}\left(\sum_{i=1}^{m / 2}\left[\mathcal{A}_{S}\left(x_{i}\right)\right]+\sum_{i=m / 2+1}^{m}\left[1-\mathcal{A}_{S}\left(x_{i}\right)\right]\right) \tag{4}
\end{equation*}
$$

Combining (3) and (4), we can show that there exists $j \leq \frac{m}{2}$ such that $\mathcal{A}_{S}\left(x_{j}\right) \leq \frac{1}{4}$. Let $S^{\prime}=$ $\left(S \backslash\left\{\left(x_{j}, y_{j}\right)\right\}\right) \cup\left\{\left(x_{j}+1, y_{j}\right)\right\}$. Since $\mathcal{A}$ is $\left(\epsilon=0.1, \delta \leq \frac{1}{1000 m^{2} \log m}\right)$-DP, we have

$$
p_{j-1}-\frac{1}{100 m} \leq \mathcal{A}_{S^{\prime}}\left(x_{j}\right) \leq \frac{1}{4} e^{\epsilon}+\delta \leq 0.3
$$

which implies that $p_{j-1} \leq 0.3+\frac{1}{100 m} \leq \frac{1}{3}$. Similarly, we can find $k>\frac{m}{2}$ such that $p_{k+1} \geq \frac{2}{3}$. Then we can find $i^{*} \in[j, k+1]$ such that $p_{i^{*}}-p_{i^{*}-1} \geq \frac{1}{4 m}$, which proves our assertion.
Now we construct $\mathcal{P}=\left\{P_{i}\right\}_{1: N-m}$. Given $i$, let

$$
B^{(i)}=\left\{1, \cdots, i^{*}-1\right\} \cup\left\{i^{*}+i\right\} \cup\left\{i^{*}+N-m+1, \cdots, N\right\} \subset X
$$

Observe that $B^{(i)}$ and $B^{(j)}$ only differ by one item at the position $i^{*}$. Then define $S^{(i)}$ to be the balanced increasing training set built upon $B^{(i)}$. Given a hypothesis $f$, we can compute a $N-m$ dimensional binary vector $v \in\{-1,1\}^{N-m}$ such that

$$
v_{j}=\mathbb{I}\left(f\left(i^{*}-1+j\right) \geq \bar{u}\right), \text { where } \bar{u}=\frac{u+u^{\prime}}{2}
$$

This mapping induces a distribution over $\{-1,1\}^{N-m}$ from $\mathcal{A}\left(S^{(i)}\right)$, which we define to be $P_{i}$.
Due to DP property of $\mathcal{A}, P_{i}$ and $P_{j}$ are $(\epsilon, \delta)$-indistinguishable. Furthermore, our construction of $i^{*}$ ensures the second property with $r=\frac{p_{i-1}+p_{i}}{2}$. This completes the proof.

The second helper lemma is shown by Alon et al. [4, Lemma 13].
Lemma 23. Suppose the family $\mathcal{P}$ as in Lemma 22 exists. Then $N-m \leq 2^{1000 m^{2} \log ^{(2)} m}$.

## C Section 5 details

We provide details omitted in Section 5.

## C. 1 Proof of Theorem 13

Let $\mathcal{H}$ be a multi-class hypothesis class with $\operatorname{Ldim}(\mathcal{H})=d$ and $\mathcal{D}$ be a realizable distribution over examples $(x, c(x))$ where $c \in \mathcal{H}$ is an unknown target hypothesis. The globally-stable (GS) leaner $G$ for $\mathcal{H}$ will make use of the Standard Optimal Algorithm ( $\mathrm{SOA}_{0}$, Algorithm 1).
$\mathrm{SOA}_{0}$ can be simply extended to non-realizable sequences as follows.
Definition 24 (Extending the $\mathrm{SOA}_{0}$ to non-realizable sequences). Consider a run of $\mathrm{SOA}_{0}$ on examples $\left(\left(x_{i}, y_{i}\right)\right)_{1: m}$, and let $h_{t}$ denote the predictor used by the $\mathrm{SOA}_{0}$ after observing the first $t$ examples. Then after observing $\left(x_{t+1}, y_{t+1}\right)$, proceed as below.

- If $\left(\left(x_{i}, y_{i}\right)\right)_{1: t+1}$ is realizable by some $h \in \mathcal{H}$, then apply the usual update rule of the $\mathrm{SOA}_{0}$ to obtain $h_{t+1}$.
- Else, set $h_{t+1}$ as $h_{t+1}\left(x_{t+1}\right)=y_{t+1}$, and $h_{t+1}(x)=h_{t}(x)$ for every $x \neq x_{t+1}$. That is to say, $h_{t+1}$ no longer belongs to $\mathcal{H}$.

This update rule keeps updating the predictor $h_{t}$ to agree with the last example while observing the sequences which are not necessarily realized by a hypothesis in $\mathcal{H}$. Due to this extension, our resulting algorithm possibly becomes improper.
The finite Littlestone class is online learnable by $\mathrm{SOA}_{0}$ (Algorithm 1) with at most $d$ mistakes on any realizable sequence. Prior to building a GS learner $G$, we define a distribution $\mathcal{D}_{k}$ as in Algorithm 3.

```
Algorithm 3 Distribution \(\mathcal{D}_{k}\)
    \(\mathcal{D}_{0}\) : output an empty set with probability 1
    2: Let \(k \geq 1\). If there exists an \(f\) satisfying \(\mathbb{P}_{S \sim \mathcal{D}_{k-1}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}_{0}(S \circ T)=f\right) \geq K^{-d}\),
    or if \(\mathcal{D}_{k-1}\) is undefined, then \(\mathcal{D}_{k}\) is undefined
    Else, \(\mathcal{D}_{k}\) is defined recursively as follows
        (i) Randomly sample \(S_{0}, S_{1} \sim \mathcal{D}_{k-1}\) and \(T_{0}, T_{1} \sim \mathcal{D}^{n}\)
        (ii) Let \(f_{0}=\operatorname{SOA}_{0}\left(S_{0} \circ T_{0}\right)\) and \(f_{1}=\operatorname{SOA}_{0}\left(S_{1} \circ T_{1}\right)\)
        (iii) If \(f_{0}=f_{1}\), go back to step (i)
        (iv) Else, pick \(x \in\left\{x \mid f_{0}(x) \neq f_{1}(x)\right\}\) and sample \(y \sim[K]\) uniformly at random
        (v) If \(f_{0}(x) \neq y\), output \(S_{0} \circ T_{0} \circ(x, y)\) and \(S_{1} \circ T_{1} \circ(x, y)\) otherwise
```

Let $k$ be such that $\mathcal{D}_{k}$ is well-defined and consider a sample $S$ drawn from $\mathcal{D}_{k}$. The size of $\mathcal{D}_{k}$ is $k \cdot(n+1)$, and they consist of $k \cdot n$ instances randomly drawn from $\mathcal{D}$ and $k$ examples generated in Item 3(iv) of Algorithm 3. We call these $k$ examples tournament examples. Due to the construction of $\mathcal{D}_{k}, \mathrm{SOA}_{0}$ always errs in tournament rounds, which means that $\mathrm{SOA}_{0}$ makes at least $k$ mistakes when run on $S \circ T$ where $S \sim \mathcal{D}_{k}, T \sim \mathcal{D}^{n}$.

A natural way to obtain a GS learning algorithm $G$ is to run the $\mathrm{SOA}_{0}$ on this carefully chosen sample $S \circ T$. In fact, the output enjoys both global stability in multi-class learning and good generalization as follows.

Lemma 25 (Global Stability). There exist $k \leq d$ and a hypothesis $f: \mathcal{X} \rightarrow[K]$ such that

$$
\mathbb{P}_{S \sim \mathcal{D}_{k}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}_{0}(S \circ T)=f\right) \geq K^{-d}
$$

Proof. Assume for contradiction that $\mathcal{D}_{d}$ is well-defined and for every $f$,

$$
\mathbb{P}_{S \sim \mathcal{D}_{k}, T \sim \mathcal{D}^{n}}\left(\mathrm{SOA}_{0}(S \circ T)=f\right)<K^{-d}
$$

In each tournament example $\left(x_{i}, y_{i}\right)$, the label $y_{i}$ is drawn uniformly at random from $[K]$. Accordingly, with probability $K^{-d}$ over $S \sim \mathcal{D}_{d}$, all $d$ tournament examples are consistent with the true labeling function $c$ and thus $S \circ T$ becomes consistent with $c$. Since the number of total mistakes of $\mathrm{SOA}_{0}$ should be no more than $d$, we can deduce that $\mathrm{SOA}_{0}(S \circ T)=c$. This implies that

$$
\mathbb{P}_{S \sim \mathcal{D}_{k}, T \sim \mathcal{D}^{n}}\left(\mathrm{SOA}_{0}(S \circ T)=c\right) \geq K^{-d},
$$

which is a contradiction, and hence completes the proof.
Lemma 26 (Generalization). Let $k$ be such that $\mathcal{D}_{k}$ is well-defined. Then for every $f$ such that

$$
\mathbb{P}_{S \sim \mathcal{D}_{k}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}_{0}(S \circ T)=f\right) \geq K^{-d}
$$

satisfies $\operatorname{loss}_{\mathcal{D}}(f) \leq \frac{d \log K}{n}$.
Proof. Let $f$ be such hypothesis and let $\alpha=\operatorname{loss}_{\mathcal{D}}(f)$. We will argue that $K^{-d} \leq(1-\alpha)^{n}$. Then the following result is derived, $\alpha \leq \frac{d \log K}{n}$ using the fact that $(1-\alpha)^{n} \leq e^{-n \alpha}$.
By the property of $\mathrm{SOA}_{0}, \mathrm{SOA}_{0}(S \circ T)$ is consistent with $T$. Thus, if $\mathrm{SOA}_{0}(S \circ T)=f$, then it must be the case that $f$ is consistent with $T$. By assumption, $\mathrm{SOA}_{0}(S \circ T)=f$ holds with probability at least $K^{-d}$ and $f$ is consistent with $T$ with probability $(1-\alpha)^{n}$ where $n$ is the size of $T$. This gives the desired inequality.

One challenge associated with the distribution $\mathcal{D}_{k}$ is computational limitation. It may require an unbounded number of samples from the target distribution $\mathcal{D}$, since during generation of tournament examples the number of samples drawn from $\mathcal{D}$ depends on how many times Item 3(i)-(iii) will be repeated. To handle this practical issue, we suggest a Monte-Carlo Variant of $\mathcal{D}_{k}, \tilde{\mathcal{D}}_{k}$, by setting an upper bound $N$ of random samples drawn from $\mathcal{D}$ as an input parameter. Algorithm 4 summarizes how we construct the distribution $\tilde{\mathcal{D}}_{k}$.

```
Algorithm 4 Distribution \(\tilde{\mathcal{D}}_{k}\)
    Let \(n\) be the auxiliary sample size and \(N\) be an upper bound on the number of samples from \(\mathcal{D}\)
    \(\tilde{\mathcal{D}}_{0}\) : output an empty set with probability 1
    Let \(k \geq 1 . \tilde{\mathcal{D}}_{k}\) is defined recursively by the following processes
        ( \(\star\) ) Throughout the process, if more than \(N\) examples are drawn from \(\mathcal{D}\), then output "Fail"
        (i) Randomly sample \(S_{0}, S_{1} \sim \tilde{\mathcal{D}}_{k-1}\) and \(T_{0}, T_{1} \sim \mathcal{D}^{n}\)
        (ii) Let \(f_{0}=\operatorname{SOA}_{0}\left(S_{0} \circ T_{0}\right)\) and \(f_{1}=\operatorname{SOA}_{0}\left(S_{1} \circ T_{1}\right)\)
        (iii) If \(f_{0}=f_{1}\), go back to step (i)
        (iv) Else, pick \(x \in\left\{x \mid f_{0}(x) \neq f_{1}(x)\right\}\) and sample \(y \sim[K]\) uniformly at random
        (v) If \(f_{0}(x) \neq y\), output \(S_{0} \circ T_{0} \circ(x, y)\) and \(S_{1} \circ T_{1} \circ(x, y)\) otherwise
```

The next step is to specify the upper bound $N$. The following lemma characterizes the expected sample complexity of sampling from $\mathcal{D}_{k}$.
Lemma 27 (Expected sample complexity of sampling from $\mathcal{D}_{k}$ ). Let $k$ be such that $\mathcal{D}_{k}$ is well-defined and $M_{k}$ be the number of samples from $\mathcal{D}$ when generating $S \sim \mathcal{D}_{k}$. Then we have $\mathbb{E} M_{k} \leq 4^{k+1} \cdot n$.

Proof. Initially, $\mathbb{E} M_{0}=0$ since $\mathcal{D}_{0}$ outputs an empty set with probability 1 . It suffices to show that for all $0<i<k, \mathbb{E} M_{i+1} \leq 4 \mathbb{E} M_{i}+4 n$ to conclude the desired inequality by induction.

Let $R$ be the number of times Item 3(i) was executed during generation of $S \sim \mathcal{D}_{i+1}$, and $R$ is distributed geometrically with a success probability $\theta$, where

$$
\begin{aligned}
\theta & =1-\mathbb{P}_{S_{0}, S_{1}, T_{0}, T_{1}}\left(\mathrm{SOA}_{0}\left(S_{0} \circ T_{0}\right)=\mathrm{SOA}_{0}\left(S_{1} \circ T_{1}\right)\right) \\
& =1-\sum_{f}\left(\mathbb{P}_{S, T}\left(\operatorname{SOA}_{0}(S \circ T)=f\right)\right)^{2} \\
& \geq 1-K^{-d}
\end{aligned}
$$

The last inequality holds because $i<k$ and hence $\mathcal{D}_{i}$ is well-defined, which implies that $\mathbb{P}_{S, T}\left(\mathrm{SOA}_{0}(S \circ T)=f\right) \leq K^{-d}$ for all $f$.

Let $M_{i+1}$ be a random variable expressed as $M_{i+1}=\sum_{j=1}^{\infty} M_{i+1}^{(j)}$ where

$$
M_{i+1}^{(j)}= \begin{cases}0, & \text { if } R<j \\ \text { the number of examples from } \mathcal{D} \text { in the } j \text {-th execution of Item } 3(\mathrm{i}), & \text { if } R \geq j\end{cases}
$$

Thus, we have

$$
\begin{aligned}
\mathbb{E} M_{i+1} & =\sum_{j=1}^{\infty} \mathbb{E} M_{i+1}^{(j)}=\sum_{j=1}^{\infty}(1-\theta)^{j-1} \cdot\left(2 \mathbb{E} M_{i}+2 n\right) \\
& =\frac{1}{\theta} \cdot\left(2 \mathbb{E} M_{i}+2 n\right) \leq 4 \mathbb{E} M_{i}+4 n
\end{aligned}
$$

where the last inequality holds since $\theta \geq 1-K^{-d} \geq 1 / 2$ since $K \geq 2$ and $d \geq 1$.

Equipped with Lemma 25,26, and 27, we are ready to prove Theorem 13.
Theorem 13 (restated). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ be a MC hypothesis class with $\operatorname{Ldim}(\mathcal{H})=d$. Let $\alpha>0$, and $m=\left((4 K)^{d+1}+1\right) \times\left[\frac{d \log K}{\alpha}\right]$. Then there exists a randomized algorithm $G:(\mathcal{X} \times[K])^{m} \rightarrow[K]^{\mathcal{X}}$ such that for a realizable distribution $\mathcal{D}$ and an input sample $S \sim \mathcal{D}^{m}$, there exists a $h$ such that

$$
\mathbb{P}(G(S)=h) \geq \frac{K-1}{(d+1) K^{d+1}} \quad \text { and } \quad \operatorname{loss}_{\mathcal{D}}(h) \leq \alpha
$$

Proof. The globally-stable algorithm $G$ is defined in Algorithm 5.

```
Algorithm 5 Algorithm \(G\)
    Input : target distribution \(\tilde{\mathcal{D}}_{k}\), auxiliary sample size \(n=\left[\frac{d \log K}{\alpha}\right]\), and the sample complexity
    upper bound \(N=(4 K)^{d+1} \cdot n\)
    Draw \(k \in\{0,1, \cdots, d\}\) uniformly at random
    Output : \(h=\operatorname{SOA}_{0}(S \circ T)\), where \(T \sim \mathcal{D}^{n}, S \sim \tilde{\mathcal{D}}_{k}\)
```

The sample complexity of $G$ is $|S|+|T| \leq N+n=\left((4 K)^{d+1}+1\right) \times\left[\frac{d \log K}{n}\right]$. By Lemma 25 and 26, there exists $k^{\star} \leq d$ and $f^{\star}$ such that

$$
\mathbb{P}_{S \sim \mathcal{D}_{k^{\star}}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}(S \circ T)=f^{\star}\right) \geq \frac{1}{K^{d}}, \quad \operatorname{loss}_{\mathcal{D}}\left(f^{\star}\right) \leq \frac{d \log K}{n} \leq \alpha
$$

Let $M_{k^{\star}}$ denote the number of random examples from $\mathcal{D}$ during generation of $S \sim \mathcal{D}_{k^{\star}}$. We obtain the following inequality from Lemma 27 and Markov's inequality,

$$
\mathbb{P}\left(M_{k^{\star}}>(4 K)^{d+1} \cdot n\right) \leq \mathbb{P}\left(M_{k^{\star}}>K^{d+1} \cdot 4^{k^{\star}+1} \cdot n\right) \leq K^{-(d+1)}
$$

Accordingly,

$$
\begin{aligned}
\mathbb{P}_{S \sim \tilde{\mathcal{D}}_{k^{\star}}, T \sim \mathcal{D}^{n}} & \left(\mathrm{SOA}_{0}(S \circ T)=f^{\star}\right) \\
& \geq \mathbb{P}_{S \sim \mathcal{D}_{k^{\star}}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}_{0}(S \circ T)=f^{\star} \text { and } M_{k^{\star}} \leq(4 K)^{d+1} \cdot n\right) \\
& \geq \mathbb{P}_{S \sim \mathcal{D}_{k^{\star}}, T \sim \mathcal{D}^{n}}\left(\operatorname{SOA}_{0}(S \circ T)=f^{\star}\right)-\mathbb{P}\left(M_{k^{\star}}>(4 K)^{d+1} \cdot n\right) \\
& \geq K^{-d}-K^{-(d+1)}=(K-1) K^{-(d+1)}
\end{aligned}
$$

Since $k=k^{\star}$ with probability $\frac{1}{d+1}, G$ outputs $f^{\star}$ with probability at least $\frac{K-1}{(d+1) K^{d+1}}$.

## C. 2 Globally-stable learning implies private multi-class learning

In this section, we utilize the GS algorithm from the previous section to derive a DP learning algorithm with a finite sample complexity. Theorem 11 establishes that online multi-class learnability implies private multi-class learnability, which can be proved by combining Theorem 13 and Theorem 28.

Theorem 28 (Globally-stable learning implies private multi-class learning). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ be $a$ multi-class hypothesis class. Let $G:(\mathcal{X} \times[K])^{m} \rightarrow[K]^{\mathcal{X}}$ be a randomized algorithm such that for a realizable distribution $\mathcal{D}$ and $S \sim \mathcal{D}^{m}$, there exists a hypothesis $h$ such that $\mathbb{P}(G(S)=h) \geq \eta$ and $\operatorname{loss}_{\mathcal{D}}(h) \leq \alpha / 2$. Then for some $n=O\left(\frac{m \log (1 / \eta \beta \delta)}{\eta \epsilon}+\frac{\log (1 / \eta \beta)}{\alpha \epsilon}\right)$, there exists an $(\epsilon, \delta)-D P$ algorithm $M$ which for $n$ i.i.d. samples from $\mathcal{D}$, outputs a hypothesis $\hat{h}$ such that loss $\mathcal{D}(\hat{h}) \leq \alpha$ with probability at least $1-\beta$.

To construct a private learner $M$, we first introduce standard tools in the DP community such as Stable Histogram and Generic Private Learner.
Lemma 14 (Stable Histogram, restated). Let $X$ be any data domain. For $n \geq O\left(\frac{\log (1 / \eta \beta \delta)}{\eta \epsilon}\right)$, there exists an $(\epsilon, \delta)$-DP algorithm HIST which with probability at least $1-\beta$, on input $S=\left(x_{1}, \cdots, x_{n}\right)$ outputs a list $L \in X$ and a sequence of estimates $a \in[0,1]^{|L|}$ such that

1. Every $x$ with $\operatorname{Freq}_{S}(x) \geq \eta$ appears in $L$, and
2. For every $x \in L$, the estimate $a_{x}$ satisfies $\left|a_{x}-\operatorname{Freq}_{S}(x)\right| \leq \eta$,
where $\operatorname{Freq}_{S}(x)=\left|\left\{i \in[n] \mid x_{i}=x\right\}\right| / n$.
Lemma 29 (Generic Private Learner, [10]). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ be a collection of multi-class hypotheses. For $n=O\left(\frac{\log |\mathcal{H}|+\log (1 / \beta)}{\alpha \epsilon}\right)$, there exists an $(\epsilon, 0)-D P$ algorithm GENERICLEARNER : $(\mathcal{X} \times[K])^{n} \rightarrow$ $\mathcal{H}$ satisfying the following; let $\mathcal{D}$ be a distribution over $\mathcal{X} \times[K]$ such that there exists an $h^{\star} \in \mathcal{H}$ with $\operatorname{loss}_{\mathcal{D}}\left(h^{\star}\right) \leq \alpha$. Then on input $S \sim \mathcal{D}^{n}$, GENERICLEARNER outputs, with probability at least $1-\beta$, a hypothesis $\hat{h} \in \mathcal{H}$ such that $\operatorname{loss}_{S}(\hat{h}) \leq 2 \alpha$.

Now we are ready to prove Theorem 28.
Proof of Theorem 28. The learning algorithm $M$ is built on top of the Stable Historgram and the Generic Private Learner as described in Algorithm 6. According to Lemma 14 and 29, we choose parameters

$$
k=O\left(\frac{\log (1 / \eta \beta \delta)}{\eta \epsilon}\right), \quad n^{\prime}=O\left(\frac{\log (1 / \eta \beta)}{\alpha \epsilon}\right)
$$

```
Algorithm 6 Differentially-Private Learner \(M\)
    1: Let \(S_{1}, \cdots, S_{k}\) each consist of i.i.d. samples of size \(m\) from \(\mathcal{D}\). Run \(G\) on each batch of samples
    producing \(h_{1}=G\left(S_{1}\right), \cdots, h_{k}=G\left(S_{k}\right)\)
    2: Run the Stable Histogram algorithm Hist on input \(H=\left(h_{1}, \cdots, h_{k}\right)\) using privacy \((\epsilon / 2, \delta)\)
    and accuracy \((\eta / 8, \beta / 3)\), publishing a list \(L\) of frequent hypotheses
    3: Let \(S^{\prime}\) consist of \(n^{\prime}\) i.i.d. samples from \(\mathcal{D}\). Run GENERICLEARNER \(\left(S^{\prime}\right)\) using \(L\) with privacy
    \(\epsilon / 2\) and accuracy \((\alpha / 2, \beta / 3)\) to output a hypothesis \(\hat{h}\)
```

We show that the algorithm $M$ is $(\epsilon, \delta)$-DP. During the executions of $G\left(S_{1}\right), \cdots G\left(S_{k}\right)$, a change to one entry in a certain $S_{i}$ changes at most one outcome $h_{i} \in H$. Thus, differential privacy for this step is observed by taking expectations over the coin tosses of all the executions of $G$. Then the differential privacy for overall algorithm holds by simple composition of differentially-private HIST and GenericLearner.
Next, we prove that the algorithm $M$ is accurate. By standard generalization arguments, we have with probability at least $1-\beta / 3$,

$$
\left|\operatorname{Freq}_{H}(h)-\mathbb{P}_{S \sim \mathcal{D}^{m}}(G(S)=h)\right| \leq \frac{\eta}{8}
$$

for every $h \in[K]^{\mathcal{X}}$ as long as $k \geq O(\log (1 / \beta) / \eta)$. Conditioned on this event, by accuracy of Hist, with probability $1-\beta / 2$, it produces a list $L$ containing $h^{\star}$ together with a sequence of estimates that are accurate to within an additive error $\eta / 8$. Then, $h^{\star}$ appears in $L$ with an estimate $a_{h^{\star}} \geq \eta-\eta / 8-\eta / 8=3 \eta / 4$.

Now remove from $L$ every item $h$ with $a_{h} \leq \frac{3 \eta}{4}$. Since every estimate is accurate within $\eta / 8$, $h$ appears in $L$ such that $\operatorname{Freq}_{H}(h) \geq \frac{3 \eta}{4}-\frac{\eta}{8}=\frac{5 \eta}{8}$. Since sum of frequencies is less than 1, the number of list $L$ should be less than $2 / \eta$ (i.e. $|L| \leq 2 / \eta$ ). This list contains $h^{\star}$ such that $\operatorname{loss}_{\mathcal{D}}\left(h^{\star}\right) \leq \alpha$. Hence the GENERICLEARNER identifies $h^{\star}$ with $\operatorname{loss}_{\mathcal{D}}\left(h^{\star}\right) \leq \alpha / 2$ with probability at least $1-\beta / 3$.

## C. 3 Extension to the Agnostic setting

Theorem 11 showed that online MC learnability continues to imply private MC learnability in the realizable setting. A similar result also holds even when the realizability assumption is violated, which is called agnostic setting.
Corollary 30 (Agnostic setting : Online MC learning implies private MC learning). Let $\mathcal{H} \subset[K]^{\mathcal{X}}$ be a MC hypothesis class with $\operatorname{Ldim}(\mathcal{H})=d$. Let $\epsilon, \delta \in(0,1)$ be privacy parameters and let $\alpha, \beta \in(0,1 / 2)$ be accuracy parameters. For $n=O_{d}\left(\frac{\log (1 / \beta \delta)}{\alpha^{2} \epsilon}\right)$, there exists $(\epsilon, \delta)$-DP learning algorithm such that for every distribution $\mathcal{D}$, given an input sample $S \sim \mathcal{D}^{n}$, the output hypothesis $f=\mathcal{A}(S)$ satisfies

$$
\operatorname{loss}_{\mathcal{D}}(f) \leq \min _{h \in \mathcal{H}} \operatorname{loss}_{\mathcal{D}}(h)+\alpha
$$

with probability at least $1-\beta$.
Proof. Alon et al. [5, Theorem 6] propose an algorithm, $\mathcal{A}_{\text {PrivateAgnostic }}$, which transforms a private learner in the realizable setting to a private learner that can operate in the agnostic setting. The main idea is based on the standard sub-sampling method, and as a result, the transformed agnostic learner has a larger sample complexity by a factor of $1 / \epsilon$. Then Corollary 30 is shown by applying $\mathcal{A}_{\text {PrivateAgnostic }}$ to the realizable learner used in Theorem 11.

## C. 4 Proof of Theorem 15

We complete the proof of Theorem 15. The proof for Condition 4 is given in the main body.
Theorem 15 (restated). Let $\mathcal{F} \subset \mathcal{Y}^{\mathcal{X}}$ be a real-valued function class such that $\mathrm{fat}_{\gamma}(\mathcal{F})<\infty$ for every $\gamma>0$. If one of the following conditions holds, then $\mathcal{F}$ is privately learnable.

1. Either $\mathcal{F}$ or $\mathcal{X}$ is finite.
2. The range of $\mathcal{F}$ over $\mathcal{X}$ is finite (i.e., $|\{f(x) \mid f \in \mathcal{F}, x \in \mathcal{X}\}|<\infty$ ).
3. $\mathcal{F}$ has a finite cover with respect to the sup-norm at every scale.

## 4. $\mathcal{F}$ has a finite sequential Pollard Pseudo-dimension.

Proof. 1. If $|\mathcal{F}|<\infty$, then for sample complexity $n=\mathcal{O}\left(\frac{\log |\mathcal{F}|+\log (1 / \beta)}{\alpha \epsilon}\right)$ we directly run the $\epsilon$-DP Generic Private Learner to output with probability at least $1-\beta$, a hypothesis $\hat{f} \in \mathcal{F}$ such that $\operatorname{loss}_{S}(\hat{f}) \leq \alpha$. Next, assume that $\mathcal{X}$ is finite. The finiteness of $\mathcal{X}$ does not imply finite $|\mathcal{F}|$ because $\mathcal{Y}$ is continuous, but we can discretize $\mathcal{F}$ at some scale $\gamma$, which gives us a finite MC hypothesis class $[\mathcal{F}]_{\gamma}$. It is private-learnable by $\epsilon$-DP Generic Private Learner, and then the original class $\mathcal{F}$ is also privately-learnable within accuracy $\gamma$.
2. Observe that this regression problem is essentially a MC problem. Furthermore, $\operatorname{Ldim}(\mathcal{F})$ by considering it as a MC problem is bounded above by fat ${ }_{\gamma}(\mathcal{F})$, where $\gamma$ is the minimal gap between consecutive values in the range of $\mathcal{F}$ over $\mathcal{X}$. This means that $\operatorname{Ldim}(\mathcal{F})$ is finite, and hence by the argument of Section $5.1, \mathcal{F}$ is privately learnable.
3. Given an accuracy $\alpha, \mathcal{F}$ has $n$ finite covers with a radius $r<\alpha$. We construct a set of representative function as $\mathcal{F}^{\prime}=\left\{f_{1}, \cdots, f_{n}\right\} \subset \mathcal{F}$ by arbitrarily choosing a representative $f_{i}$ from the $i$-th cover, and then run $\epsilon$-DP Generic Private Learner on $\mathcal{F}^{\prime}$ to output a hypothesis $\hat{f} \in \mathcal{F}$ with a small population loss.


[^0]:    ${ }^{2} \mathrm{~A}$ subset of the universe is homogeneous if all of its $t$-subsets have the same color.

