
Path Integral Based Convolution and Pooling for
Graph Neural Networks: Supplementary Material

Zheng Ma
Department of Physics
Princeton University

mazhengparnassum@gmail.com

Junyu Xuan
Centre for Artificial Intelligence

Faculty of Engineering and Information Technology
University of Technology Sydney

junyu.xuan@uts.edu.au

Yu Guang Wang
Max Planck Institute for Mathematics in the Sciences

& School of Mathematics and Statistics
University of New South Wales
yuguang.wang@mis.mpg.de

Ming Li
Department of Educational Technology

Zhejiang Normal University
mingli@zjnu.edu.cn

Pietro Liò
Department of Computer Science and Technology

University of Cambridge
Pietro.Lio@cl.cam.ac.uk

1 Variations of PANPool

In the main text, we discussed the relation between the diagonal of the MET matrix and subgraph
centrality, as well as the idea of combining structural information and signals to develop pooling
methods. We study several alternatives of the Hybrid PANPool proposed in the paper and report
experimental results on benchmark datasets.

First, we consider the subgraph centrality’s direct counterpart under the PAN framework, i.e., the
weighted sum of powers of A. Formally, we consider the score as the diagonal of the MET matrix
before normalization, it writes as

score = diag(Z
1
2MZ

1
2). (1)

Similarly, we can also combine this unnormalized MET matrix with projected features, i.e.,

score = Xp+ βdiag(Z
1
2MZ

1
2). (2)

This method also considers both graph structures and signals, while the measure of structural
importance is at a global rather than local level.

We can also take simple approaches to mix structural information with signals. Most straightforwardly,
we can employ the readily calculated convoluted feature MX to define the score. For example, the
`2-norm of each row of MX can define a score vector. The score for node i can be written as

score = ||(MX)i||2. (3)

Finally, instead of using a parameterized linear combination of the MET matrix and projected signals,
we can apply the Hadamard product of the two contributions. The score then becomes

score = Xp ◦ diag(M). (4)

We use PANUMPool, PANXUMPool, PANMPool, and PANXHMPool to denote these variations of
PANPool corresponding to (1)–(4) in the following experimental results.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 Datasets and extended experiments

We put the PyTorch codes for experiments in the folder “codes” with dataset downloading and
program execution instructions in “README.md”.

2.1 PointPatterns

All simulations are performed in square simulation boxes with periodic boundary conditions. For
hard disks, we use corresponding RSA configurations as initial conditions. We then perform an
average of 10,000 Monte Carlo steps per particle to equilibrate the system. In the following step of
converting a point pattern to a graph, we do not consider the images of the simulation boxes; that is,
we do not connect particles across the boundaries. The choice of the threshold is inevitably subjective.
Here we use 4R as the threshold, where R is the radius of the corresponding hard disks with the same
number density at volume fraction 0.5. This threshold is of the same order of the typical distance
between two neighboring particles, which guarantees that the resulting graph is connected.

We list the summary statistics of the three datasets of PointPattern used in the main text with
φRSA = 0.3, 0.35, 0.4 in Table 1. The datasets can be downloaded from Google Drive at

https://drive.google.com/file/d/1C3ciJsteqsKFVGF8JI8-KnXhe4zY41Ss/view?usp=
sharing
https://drive.google.com/file/d/1rsTh09FzGxHculBVrYyl5tOHD9mxqc0G/view?usp=
sharing
https://drive.google.com/file/d/16pI974P8WzanBUPrMHIaGfeSLoksviBk/view?usp=
sharing

We also show an example in README.md of running PAN on PointPattern, which includes down-
loading and preprocessing PointPattern datasets.

Table 1: Summary information of PointPattern datasets.

PointPattern φRSA = 0.3 φRSA = 0.35 φRSA = 0.4

#classes 3 3 3
#graphs 15,000 15,000 15,000
max #nodes 1000 1000 1000
min #nodes 100 100 100
avg #nodes 478 474 475
avg #edges 3265 3223 3220

2.2 PAN on Classification Benchmarks

Extended experiments on Classification Benchmark We list the summary statistics of bench-
mark graph classification datasets in Table 2. In Table 3, we report the classification test accuracy for
variations of PAN compared with other methods. All networks utilize the same architecture. The
PAN model, in general, has excellent performance on all datasets. The table shows the variations of
PAN models can achieve the state of the art performance on a variety of graph classification tasks, and
in some cases, improve state of the art by a few percentage points. In particular, PANConv+PANPool
tends to perform better than other methods or variations on average, as presented in the main text.
While among alternative PAN pooling methods, PANConv+PANMPool tends to have the least SD.

2.3 Quantum Chemistry Regression

QM7 In this section, we test the performance of the PAN model on the QM7 dataset. The QM7
has been utilized to measure the efficacy of machine-learning methods for quantum chemistry [2, 9].
The dataset contains 7,165 molecules, each represented by the Coulomb (energy) matrix, and labeled
with the value of atomization energy. The molecules have varying node size and structure with
up to 23 atoms. We view each molecule as a weighted graph: atoms are nodes, and the Coulomb
matrix of the molecule is the adjacency matrix. Since the node (atom) itself does not have feature
information, we set the node feature to a constant vector with components all one, so that features

2

https://drive.google.com/file/d/1C3ciJsteqsKFVGF8JI8-KnXhe4zY41Ss/view?usp=sharing
https://drive.google.com/file/d/1C3ciJsteqsKFVGF8JI8-KnXhe4zY41Ss/view?usp=sharing
https://drive.google.com/file/d/1rsTh09FzGxHculBVrYyl5tOHD9mxqc0G/view?usp=sharing
https://drive.google.com/file/d/1rsTh09FzGxHculBVrYyl5tOHD9mxqc0G/view?usp=sharing
https://drive.google.com/file/d/16pI974P8WzanBUPrMHIaGfeSLoksviBk/view?usp=sharing
https://drive.google.com/file/d/16pI974P8WzanBUPrMHIaGfeSLoksviBk/view?usp=sharing

Table 2: Summary statistics of benchmark graph classification datasets.

Dataset MUTAG PROTEINS PROTEINSF NCI1 AIDS MUTAGEN

max #nodes 28 620 620 111 95 417
min #nodes 10 4 4 3 2 4
avg #nodes 17.93 39.06 39.06 29.87 15.69 30.32
node attributes - 1 29 - 4 -
avg #edges 19.79 72.82 72.82 32.30 16.20 30.77
#graphs 188 1,113 1,113 4,110 2,000 4,337
#classes 2 2 2 2 2 2

Table 3: Performance comparison for graph classification tasks (test accuracy in percentage; bold
font is used to highlight the best performance in the list; the L of all PAN-models on five datasets are
{3, 1, 3, 3, 3}, respectively).

Method PROTEINS PROTEINSF NCI1 AIDS MUTAGEN

GCNConv + TopKPool 64.0±0.40 69.6±6.03 49.9±0.50 81.2±1.00 63.5±6.69
SAGEConv + SAGPool 70.5±3.95 63.0±2.34 64.0±3.61 79.5±2.02 67.6±3.24
GATConv + EdgePool 72.4±1.46 71.3±3.16 60.1±1.76 80.5±0.72 71.5±1.09

SGConv + TopKPooling 73.6±1.70 65.9±1.25 61.5±5.11 81.0±0.01 66.3±2.08
GATConv + ASAPooling 64.8±5.43 67.3±4.37 53.9±4.11 84.7 ±6.21 58.4±5.19
SGConv + EdgePooling 69.0±1.74 70.5±2.48 58.4±1.96 76.7±1.12 70.7±0.69

SAGEConv + ASAPooling 59.2±5.84 63.9±2.44 53.5±2.91 80.6±6.39 63.1±3.74
GCNConv + SAGPooling 71.5±2.72 68.6±2.25 52.2±8.87 83.1±1.10 68.9±5.80

PANConv+PANUMPool (Eq 1) 67.8±0.82 69.1±1.21 59.2±0.69 82.7±7.82 70.0±2.11
PANConv+PANXUMPool (Eq 2) 69.7±1.60 72.6±3.20 60.1±1.74 86.9±3.64 69.4±1.08

PANConv+PANMPool (Eq 3) 66.8±0.78 71.0±0.60 51.9±1.39 80.6±0.44 68.4±1.01
PANConv+PANXHMPool (Eq 4) 68.8±5.23 69.7±1.97 55.9±1.81 91.4±3.39 70.2±1.08

PANConv+PANPool 76.6±2.06 71.7±6.05 60.8± 3.45 97.5±1.86 70.9±2.76

here are uninformative, and the learning is mainly concerned with identifying the molecule structure.
The task is to predict the atomization energy value of each molecule graph, which boils down to a
standard graph regression problem.

Table 4: Test mean absolute error (MAE) comparison on QM7, with the standard deviation over ten
repetitions of the experiments. The value in brackets is the cutoff L.

Method Test MAE

Multitask [8] 123.7±15.6∗

RF [3] 122.7±4.2∗

KRR [4] 110.3±4.7∗

GC [1] 77.9±2.1∗

GCNConv+TopKPool 43.6±0.98
PANConv+PANUMPool (Eq 1) 43.5±0.86 (1)

PANConv+PANXUMPool (Eq 2) 43.3±1.32 (2)
PANConv+PANMPool (Eq 3) 43.6±0.84 (2)

PANConv+PANXHMPool (Eq 4) 43.0±1.27 (1)
PANConv+PANPool 42.8±0.63 (1)

‘*’ indicates records retrieved from [10], and bold font is used to highlight the best performance in the list.

Experimental setting In the experiment, we normalize the label value by subtracting the mean
and scaling SD to 1. We then need to convert the predicted output to the original label domain (by
re-scaling and adding the mean back). Following [5], we use mean squared error (MSE) as the loss
for training and mean absolute error (MAE) as the evaluation metric for validation and test. We

3

use the splitting percentages of 80%, 10%, and 10% for training, validation, and testing. We set
the hidden dimension of the PANConv and GCN layers as 64, the learning rate 5.0e-4 for Adam
optimization, and the maximal epoch 50 with no early stop. For better comparison, we repeat all
experiments ten times with randomly shuffled datasets of different random seeds.

Comparison methods and results We test and compare the performance (test MAE and validation
loss) of PAN against the GNN model with GCNConv+SAGPool [6, 7] and other methods including
Multitask Networks (Multitask) [8], Random Forest (RF) [3], Kernel Ridge Regression (KRR) [4],
Graph Convolutional models (GC) [1]. In our test, each PAN model contains one PANConv layer
plus one PAN pooling layer, followed by two fully connected layers. The GCN model has two units
of GCNConv+SAGPool, followed by GCNConv plus global max pooling and one fully connected
layer. For other methods, we use their public results from [10] on QM7. In Table 4, we evaluate five
PAN models on QM7 compared to other methods. The PAN models achieve top average test MAE
and a smaller SD than other methods.

References
[1] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug

discovery with one-shot learning. ACS Central Science, 3(4):283–293, 2017.

[2] Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual
screening in the chemical universe database gdb-13. Journal of the American Chemical Society,
131(25):8732–8733, 2009.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

[5] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages 1263–1272, 2017.

[6] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[7] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, pages
3734–3743, 2019.

[8] Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, and Vijay
Pande. Massively multitask networks for drug discovery. arXiv preprint arXiv:1502.02072,
2015.

[9] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld.
Fast and accurate modeling of molecular atomization energies with machine learning. Physical
Review Letters, 108(5):058301, 2012.

[10] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical Science, 9(2):513–530, 2018.

4

	Variations of PANPool
	Datasets and extended experiments
	PointPatterns
	PAN on Classification Benchmarks
	Quantum Chemistry Regression

