
Supplementary Material
This document contains the proofs of the results presented in the paper: Robustness Analysis of
Non-Convex Stochastic Gradient Descent using Biased Expectations.

Proof of Proposition 2. If s = 0, the result is trivial. Otherwise, we have µs(X + Y ) =
1
s lnE

[
es(X+Y )

]
= 1

s ln
(
E
[
esX

]
E
[
esY
])

= µs(X) + µs(Y ), where the second equality fol-
lows from the independence of esX and esY .

Proof of Proposition 3. First, note that µs(X) = −µ−s(−X), and thus 2 implies 1 (as
−ess sup(−X) = ess inf X). Moreover, Lp-norms of probability spaces are both non-decreasing and
tend to the essential supremum (i.e., p 7→ ‖Y ‖p is non-decreasing and limp→+∞ ‖Y ‖p = ess supY ).
Hence, using the alternative formulation µs(X) = ln ‖eX‖s, we get that s 7→ µs(X) is non-
decreasing, and lims→+∞ µs(X) = ln(ess sup(eX)) = ess supX . Finally, note that the function
(s, x) 7→ φs(x) = esx−1

s is continuous. Let s0, s1 ∈ IX , and s0 < s < s1. By definition
of IX , φs0(X) and φs1(X) are integrable. Moreover, |φs(X)| = max{−φs(X), φs(X)} ≤
max{−φs0(X), φs1(X)} ≤ −φs0(X) + φs1(X) ≤ |φs0(X)| + |φs1(X)| by monotonicity of
s 7→ φs(x). As |φs0(X)| + |φs1(X)| is integrable and independent of s, dominated convergence
implies continuity of E [φs(X)], and thus of µs(X), in (s1, s2).

Proof of Proposition 4. A simple rewriting of µs(µs(X|F)) leads to the desired re-
sult: µs(µs(X|F)) = φ−1

s

(
E
[
φs ◦ φ−1

s (E [φs(X)|F])
])

= φ−1
s (E [E [φs(X)|F]]) =

φ−1
s (E [φs(X)]) = µs(X).

Proof of Proposition 5. Eq. (3) follows from the Chernoff bound P (X ≥ a) ≤ E
[
esX

]
e−sa for

a = µs(X) + x. Moreover, if X ≥ 0 a.s., using Markov’s inequality on φs(X) ≥ 0 a.s. gives,
∀x > 0,

P (X ≥ x) ≤ φs (µs(X))

φs(x)
. (15)

When s < 0, we can further simplify Eq. (15) by using φs(µs(X)) ≤ µs(X) (as φs is concave), and
φs(x) ≥ x

1−sx , which concludes the proof.

Proof of Theorem 8. The result follows from standard analysis of non-convex gradient descent.
More specifically, using the β-smoothness of f , we have

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+ β
2 ‖xt+1 − xt‖2

≤ f(xt)− η〈∇f(xt), Gt〉+ βη2

2 ‖Gt‖2
≤ f(xt)− η‖∇f(xt)‖2 − η〈∇f(xt), Xt〉+ βη2

2 ‖∇f(xt) +Xt‖2
≤ f(xt)− η

(
1− βη

2

)
‖∇f(xt)‖2 − η (1− βη) 〈∇f(xt), Xt〉+ βη2

2 ‖Xt‖2
(16)

Rearranging Eq. (16) and summing over all times t ∈ {0, T − 1} leads to

η

(
1− βη

2

)∑
t<T

‖∇f(xt)‖2 ≤ ∆− η (1− βη)
∑
t<T

〈Xt,∇f(xt)〉+
βη2

2

∑
t<T

‖Xt‖2 , (17)

where ∆ = f(x0) − minx∈Rd f(x). Finally, using the assumption η ∈ (0, 1/β] we obtain η
2 ≤

η
(

1− βη
2

)
, and thus dividing by ηT/2 gives that

1

T

∑
t=1...T

‖∇f(xt)‖2 ≤
2∆

ηT
− 2 (1− βη)

T

∑
t<T

〈Xt,∇f(xt)〉+
βη

T

∑
t<T

‖Xt‖2 . (18)

To conclude, we apply biased expectation to both sides of Eq. (18). As 〈Xt,∇f(xt)〉 and ‖Xt‖2 are
not independent, Proposition 2 does not apply. We thus use the following Lemma to decompose the
error.
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Lemma 18. Let X,Y be two (possibly dependent) random variables and s ∈ R. If s ≥ 0, then

µs(X + Y ) ≤ µ2s(X) + µ2s(Y ). Otherwise, µs(X + Y ) ≤ µs(X) +
E[Y esX ]
E[esX ]

, whenever the
right-hand sides are well-defined.

Proof. For s > 0, applying the Cauchy-Schwartz inequality to esX and esY gives µs(X + Y ) =
1
s ln

(
E
[
esXesY

])
≤ 1

2s ln
(
E
[
e2sX

]
E
[
e2sY

])
= µ2s(X) + µ2s(Y ). For s < 0, we obtain that

µs(X + Y ) = µs(X) + 1
s lnE

[
esY esX

E[esX ]

]
by a direct rewriting. Now, introducing the random

variable Y ′ with density esx

E[esX ]
w.r.t. the probability measure of (X,Y ) and using Jensen’s inequality

on the function x 7→ 1
s ln(x), we obtain that 1

s lnE
[
esY esX

E[esX ]

]
= 1

s lnE
[
esY

′
]
≤ E

[
1
s ln esY

′
]

=

E [Y ′] = E
[
Y esX

E[esX ]

]
which proves the result.

Moreover, note that, for any a ∈ R, µs(aX) = aµas(X). Then, using Proposition 2 to remove the
deterministic error, we have

µs
(

1
T

∑
t=1...T ‖∇f(xt)‖2

)
≤ µs

(
2∆
ηT −

2(1−βη)
T

∑
t<T 〈Xt,∇f(xt)〉+ βη

T

∑
t<T ‖Xt‖2

)
≤ 2∆

ηT + µs
(∑

t<T At
)
,

(19)
where At = − 2(1−βη)

T 〈Xt,∇f(xt)〉 + βη
T ‖Xt‖2. Using Lemma 18 with X = βη

T ‖Xt‖2 and
Y = − 2(1−βη)

T 〈Xt,∇f(xt)〉, we have µs(At | Ft) ≤ 2(1−βη)
T mu + βη

T σ
2
v , where u, v are defined

as in Theorem 8 and ms, σ
2
s as in Assumption 6 and Assumption 7. Finally, we use Proposition 4 to

bound the sums over iterations:

µs
(∑

t<T At
)

= µs
(
µs
(∑

t<T At | FT−1

))
= µs

(∑
t<T−1At + µs (AT−1 | FT−1)

)
≤ µs

(∑
t<T−1At + 2(1−βη)

T mu + βη
T σ

2
v

)
= µs

(∑
t<T−1At

)
+ 2(1−βη)

T mu + βη
T σ

2
v

≤ 2 (1− βη)mu + βησ2
v ,

(20)

which concludes the proof.

In order to simplify our convergence rates, we will use the following lemma.

Lemma 19. Let a, b, c, p > 0 and f(x) = axp + b/x. Then, with x∗ = min

{(
b
pa

) 1
1+p

, c

}
, we

have
f(x∗) ≤ (1 + p−1)bc−1 + (1 + p)p

−p
1+p a

1
1+p b

p
1+p . (21)

Proof. When b < pac1+p, we have x∗ =
(
b
pa

) 1
1+p

and f(x∗) =
(
b
pa

) 1
1+p

. Otherwise, we have

x∗ = c and f(x∗) = acp + b/c ≤ (1 + p−1)b/c. Hence, f(x∗) is inferior to the sum of both
terms.

Proof of Theorem 11. First, note that all the r.v. are integrable since the variance of the noise is
bounded. Hence, for all the considered r.v. X , we have µ0(X) = E [X] (see Proposition 3), and
Theorem 8 gives us that E

[
(1/T ) ·∑T

t=1 ‖∇f(xt)‖2
]
≤ 2∆

ηT + βησ2 when s = 0. Minimizing the
right-hand side term over η ∈ (0, 1/β] using Lemma 19 leads to the desired result.

Proof of Theorem 12. Using Proposition 3, we have lims→+∞ µs
(
‖Xt‖2 | Ft

)
= ess sup ‖Xt‖2 ≤

B2. Theorem 8 with s → +∞ and η = 1/β thus gives ess sup
(

(1/T )
∑T
t=1 ‖∇f(xt)‖2

)
≤

2β∆
T +B2.
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Proof of Theorem 14. By definition of sub-exponential r.v., we have, ∀s ∈ (0, 1/c],
µs(−〈Xt,∇f(xt)〉 | Ft) ≤ aσ2s/2 and µs(‖Xt‖2 | Ft) ≤ (1 + b/2c)σ2. Using Proposition 5
and Theorem 8 we thus have, ∀x, s > 0 such that u = 4s

T ≤ 1/c and v = 2βηs
T ≤ 1/c,

P

(
1

T

T−1∑
t=0

‖∇f(xt)‖2 ≥
2∆

ηT
+ 2(1− βη)mu + βησ2

v + x

)
≤ e−sx , (22)

where mu = aσ2u/2 and σ2
v = (1 + b/2c)σ2. Hence, if η ∈ (0, 1/β], we have, with probability at

least 1− δ,

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
2∆

ηT
+

4aσ2s

T
+ (1 + b/2c)βησ2 +

1

s
ln(1/δ) . (23)

Optimizing over η and s gives βη = min
{√

2β∆
(1+b/2c)Tσ2 , 1

}
and 4cs

T = min

{√
4c2 ln(1/δ)
aσ2T , 1

}
.

Using Lemma 19, Eq. (23) thus becomes

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
4β∆ + 8c ln(1/δ)

T
+

√
8(1 + b/2c)β∆σ2

T
+ 4σ

√
a ln(1/δ)

T
. (24)

Proof of Proposition 16. Using the second concentration inequality of Proposition 5, we have,
∀x ≥ √c,

P (‖Xt‖ ≥ x | Ft) = P
(
‖Xt‖2 ≥ x2 | Ft

)
≤ 2µ−1/x2(‖Xt‖2 | Ft)

x2
≤ 2ax−b . (25)

Proof of Theorem 17. We first bound the biased mean in both settings. If the noise is symmetric, then
E
[
−〈Xt,∇f(xt)〉es‖Xt‖2 | Ft

]
= 0 and, for s > 0, m−s = 0 verifies Assumption 7. Otherwise,

we use the following Lemma.

Lemma 20. If f is L-Lipschitz and Assumption 15 is verified, then, ∀s ∈ [0, 1/c],

E
[
−〈Xt,∇f(xt)〉e−s‖Xt‖2 | Ft

]
E
[
e−s‖Xt‖2 | Ft

] ≤ κ6Ls
b−1
2 , (26)

where κ6 = (1− ac−b/2)−1
(
c

b
2 + 4ab

(b−1)(3−b)

)
.

Proof. First, we have

E
[
e−s‖Xt‖2 | Ft

]
= e−sµ−s(‖Xt‖2 | Ft)

≥ 1− sµ−s(‖Xt‖2 | Ft)
≥ 1− asb/2
≥ 1− ac−b/2 .

(27)

Then, let Y = −〈Xt,∇f(xt)〉. As E [Y | Ft] = 0, we have

E
[
Y e−s‖Xt‖2 | Ft

]
= E

[
Y+e

−s‖Xt‖2 | Ft
]
− E

[
Y−e

−s‖Xt‖2 | Ft
]

≤ E [Y+ | Ft]− E
[
Y−e

−s‖Xt‖2 | Ft
]

= E
[
Y−

(
1− e−s‖Xt‖2

)
| Ft
]

≤ LE
[
‖Xt‖

(
1− e−s‖Xt‖2

)
| Ft
]
,

(28)
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as Y− ≤ |〈Xt,∇f(xt)〉| ≤ L‖Xt‖. Finally, we bound E
[
‖Xt‖

(
1− e−s‖Xt‖2

)
| Ft
]

by using the

function g(x) = x
(

1− e−sx2
)

. As g is monotonically increasing, we have

E
[
‖Xt‖

(
1− e−s‖Xt‖2

)
| Ft
]

= E [g (‖Xt‖)]
=

∫ +∞
0

P (g(X) > x) dx

=
∫ +∞

0
P
(
X > g−1(x)

)
dx

=
∫ g(√c)

0
P
(
X > g−1(x)

)
dx+

∫ +∞
g(
√
c)
P
(
X > g−1(x)

)
dx

≤ g(
√
c) + 2a

∫ +∞
0

(
g−1(x)

)−b
dx

≤ sc3/2 + 2a
∫ +∞

0
min

{
x, (x/s)1/3

}−b
dx

≤ sc3/2 + 4ab
(b−1)(3−b)s

b−1
2

≤
(
c

b
2 + 4ab

(b−1)(3−b)

)
s

b−1
2 ,

(29)
where the second inequality comes from g(x) ≤ sx3 and g(x) ≥ min

{
x, (x/s)1/3

}
, and the last

inequality from s ≤ 1/c.

Hence, we can use m−s = κ6Ls
b−1
2 , with the special case L = 0 if Xt is symmetric, in order to

describe both settings. Using Theorem 8 and Assumption 15, we thus have, for s ∈
[
0, T

βηc

]
,

µ−s

(
1

T

T∑
t=1

‖∇f(xt)‖2
)
≤ 2∆

ηT
+ βηa

(
βηs

T

) b−2
2

+ κ6L

(
βηs

T

) b−1
2

. (30)

We obtain a concentration inequality using Proposition 5, leading to, ∀x > 0,

P

(
1

T

T∑
t=1

‖∇f(xt)‖2 ≥ x
)
≤ 1 + sx

x

[
2∆

ηT
+ βηa

(
βηs

T

) b−2
2

+ κ6L

(
βηs

T

) b−1
2

]
. (31)

Choosing s = min
{

1
x ,

T
βηc

}
gives 1+sx

x ≤ 2
x ,
(
βηs
T

) b−1
2 ≤

(
βη
Tx

) b−1
2

(as b ≥ 1) and
(
βηs
T

) b−2
2 ≤(

βη
Tx

) b−2
2

+ c
2−b
2 . Hence, with y = βη

Tx , we have

P

(
1

T

T∑
t=1

‖∇f(xt)‖2 ≥ x
)
≤ 2

x

[
2β∆

T 2xy
+ aTxy

b
2 + ac

2−b
2 Txy + κ6Ly

b−1
2

]
, (32)

and optimizing the first two terms over y (and thus η) gives y = min

{(
4β∆
abT 3x2

) 2
2+b

, 1
Tx

}
.

Lemma 19 then gives

P

(
1

T

T∑
t=1

‖∇f(xt)‖2 ≥ x
)
≤ A+B + C +D , (33)

where
A = 4(2+b)β∆

bTx

B = (2 + b)
(
b
2

) −b
2+b x−1(aTx)

2
2+b

(
2β∆
T 2x

) b
2+b

C = 2ac
2−b
2 T

(
4β∆
abT 3x2

) 2
2+b

D = 2κ6L
x

(
4β∆
abT 3x2

) b−1
2+b

.

(34)

Using A+B+C +D ≤ max{4A, 4B, 4C, 4D} and bounding the previous term by δ, we get, with
probability 1− δ,

1

T

T∑
t=1

‖∇f(xt)‖2 ≤
κ2β∆

Tδ
+

κ3

√
β∆

T
4−b
4 δ

2+b
4

+
κ4L

2+b
3b (β∆)

b−1
3b

T
b−1
b δ

2+b
3b

+
κ5

√
β∆

T
b−1
b δ

2+b
2b

, (35)

4



where

κ2 = 16(2 + b)/b ≤ 36

κ3 = 2 · 8 2+b
4 c

4−b2

8 b−
1
2 a

b
4 ≤ 12c

4−b2

8 a
b
4

κ4 = 2
5b+4
3b κ

2+b
3b

6 (ab)
1−b
3b ≤ 8κ

2+b
3b

6 a
1−b
3b

κ5 = 2 · (4 · (2 + b))
2+b
2b b−1/2a1/b ≤ 84a1/b

κ6 = (1− ac−b/2)−1
(
c

b
2 + 4ab

(b−1)(3−b)

)
≤ (1− ac−b/2)−1

(
c

b
2 + 8a

b−1

) (36)
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