
A Beyond Dobrushin’s Conditions.

All of our previous results are under the high temperature condition (3), where we rely of special
properties of Ising models namely sub-Gaussianity of Ising models random variables. Following this
effort, we attempt to analyze classes of Ising models where this condition doesn’t hold to present an
even more general analysis. Towards this end, we present moduli of continuity bounds as presented
in Theorem 1. Here, we look out for dependence in the model width parameter in addition to the
effective dimensionality of the problem (d in the case of Gp,d and k in the case of Gp,k, and the
tolerance parameter �.

Theorem 3. Consider two Ising models defined over two graphs G(1) and G(2) over p vertices with
parameters θ(1) and θ(2) respectively, satisfying ω(θ(1)),ω(θ(2)) ≤ ω. If dTV(Pθ(1) ,Pθ(2)) ≤ �, then
we have the following results for all i ∈ [p]:

(a) If G(1), G(2) ∈ Gp,d, then

�θ(2)(i)− θ(1)(i)�2 � min{√�, �
√
d} ω exp(O(ω)). (11a)

(b) If G1, G2 ∈ Gp,k, then

�θ(2)(i)− θ(1)(i)�2 � min{√�, �
√
k} ω exp(O(ω)). (11b)

Similar to Theorem 3, we get a modulus of continuity bound for the loss function defined by the
(2,∞)-norm. Note that as � tends to 0, the bounds also tend to 0. However, it is worth noting that
our primitive analysis contains an additional factor in d/k based on the graph class considered. The
sub-optimality is clear when we set ω = O(1), and the bounds while retaining a optimal dependence
on � have an additional dependence with d/k when compared to the result in Theorem 1. Our analysis
of the Yatracos estimator (7) does not depend of any specific bounds on the model width, and hence
with the derived modulus of continuity bound, we arrive at the following corollary for the estimation
error of the Yatracos estimate:
Corollary 4. Given n samples from the distribution P� = (1− �)Pθ� + �Q, where Pθ� ∈ Gp,k(λ,ω)
and Q is an arbitrary distribution supported over {−1,+1}p, the parameter of Yatracos estimate (7)
satisfies:

��θ(i)− θ�(i)�2 �
√
kωeO(ω)�+O

�
kωeO(ω)

�
log(p

2e/k)

n
+

�
log(1/δ)

n

�
for all i ∈ [p].

Note that as n → ∞, the bias of the estimator has optimal dependence on �, but incurs an addi-
tional dependence of

√
k. For � = 0 i.e. no contamination, the rate we achieve is approximately

ωeO(ω)k
�

log(p)
n , which leads to the number of samples n ≥ O

�
k2ω2eO(ω) log(p)

λ2

�
required to re-

cover the true edge set E(θ�), and this is comparable to existing sample complexity results for
learning Ising models belonging to Gp,k(λ,ω) [46]. We present the proof of Theorem 3 in Section F.
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B Useful Properties of Ising models

In this section, we summarize some useful properties of Ising models which we use judiciously in our
proofs. These results have appeared in previous work, but we state them for the sake of completeness.

B.1 Sub-Gaussianity of Ising model distributions in the high temperature regime

First, we present a result from [26], which states that a random variable distributed according to an
Ising model in the high temperature regime is sub-Gaussian.
Proposition 3 ([26, Theorem 1.4]). Let z ∼ P be a random variable whose distribution P is an Ising
model over p nodes in the high temperature regime (3) with constant α. Then for v ∼ Rp:

Pr
z∼P

(|�v, z�| > t) ≤ 2 exp

�
− t2

C(α)||v||22

�
, (12)

where C(α) is a constant depending on α.

B.2 Strong convexity of the negative conditional log-likelihood

Here we present a proposition that states that the population negative conditional log-likelihood is
strongly convex. This proposition is obtained using a result by Dagan et al. [11]. We first state the
result by Dagan et al. [11] below, and then use it to show that the population negative condition
log-likelihood is strongly convex.
Proposition 4 ([11, Lemma 10]). Let z be a random variable distributed w.r.t. an Ising model
over p nodes whose parameter θ satisfies maxi∈[p] �θ(i)�∞ ≤ ω and mini∈[p] Pθ(Xi = 1|X−i =
x−i)(1− Pθ(Xi = 1|X−i = x−i)) ≥ γ. Then for any v ∈ Rp, we have that:

Var[�v, z�] ≥ C1γ
2||v||22
ω

,

where C1 is a universal constant.

Now, let Lθ,i(w) be the population negative conditional log-likelihood for node Xi, where X is
sampled from the Ising model distribution Pθ. Formally, Lθ,i(w) = −Ez∼Pθ

[�i(w; z)], where
�i(w; z) is the conditional log-likelihood of z under Pθ with respect to the ith node. As stated earlier,
by the maximum likelihood principle, ∇Lθ,i(2θ(i)) = 0. With this definition, we have the Hessian
of the population negative conditional log-likelihood as ∇2Lθ,i(w) = Ez∼Pθ

[∇2�i(w; z)]. Then, we
have the following result.
Proposition 5. Let Pθ be an Ising model over p nodes whose parameter satisfies maxi∈[p] �θ(i)�∞ ≤
ω, and let w ∈ Rp−1 be such that �w�1 ≤ 2ω. Then, for any vector v ∈ Rp−1, there exists a universal
constant C > 0 such that:

vT∇2Lθ,i(w)v ≥ C
exp(−O(ω))

ω
�v�22.

Proof. First, observe that

∇2Lθ,i(w) = Ez∼Pθ

�
σ(zi�w, z−i�)(1− σ(zi�w, z−i�))z−iz

T
−i

�

⇒ vT∇2Lθ,i(w)v = Ez∼Pθ

�
σ(zi�w, z−i�)(1− σ(zi�w, z−i�))�z−i, v�2

�
.

In Lemma 6, we show that for any �w�1 ≤ 2ω, we have that

σ(zi�w, z−i�)(1− σ(zi�w, z−i�)) ≥
exp(−2ω)

4
. (13)

We now lower bound E[�z−i, v�2]. Since Ising model has zero mean field, we have that E[�z−i, v�2] =
Var[�z−i, v�]. Furthermore, due the assumptions placed on the parameter of the Ising model, we
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obtain that for any x ∈ {−1,+1}p−1, Pθ(Xi = 1|X−i = x)(1 − Pθ(Xi = 1|X−i = x)) ≥
1
4 exp(−4ω). This can be shown as follows. For any z ∈ {−1,+1} and x ∈ {−1,+1}p−1, we have
that:

Pθ(Xi = z|X−i = x) =
1

1 + exp(−z �2θ(i,−i), x�)
(i)

≥ 1

1 + exp(2ω)

≥ 1

2 exp(2ω)
=

exp(−2ω)

2

⇒ Pθ(Xi = 1|X−i = x)Pθ(Xi = 0|X−i = x) ≥ exp(−2ω)

2

exp(−2ω)

2

=
exp(−4ω)

4

where Step (i) uses Hölder’s inequality as: | �2θ(i,−i), x� | ≤ 2ω ⇒ −z �2θ(i,−i), x� ≤ 2ω.

Using this in Proposition 4, we have that:

Var[�v, z−i�] ≥ C
exp(−8ω)�v�22

ω
(14)

where C is a universal constant.

Combining (13) and (14), we obtain the statement of the lemma.

B.2.1 Auxiliary Lemmata

Lemma 6. If w ∈ Rp−1 such that ||w||1 ≤ 2ω, then for x, y ∈ {−1,+1}p−1 × {−1,+1}:

σ(y�w, x�)(1− σ(y�w, x�)) = exp(−y�w, x�)
(1 + exp(−y�w, x�))2 ≥ exp(−|y�w, x�|)

4
≥ exp(−2ω)

4
(15)

Proof. Consider f(a) = σ(a)(1− σ(a)) = exp(−a)
(1+exp(−a))2 = exp(a)

(1+exp(a))2 . Now for a > 0:

e−a < 1 ⇔ e−a + 1 < 2 ⇔ (e−a + 1)2 < 4 ⇔ exp(−a)

(1 + exp(−a))2
≥ exp(−a)

4

For a < 0:

ea < 1 ⇔ ea + 1 < 2 ⇔ (ea + 1)2 < 4 ⇔ exp(a)

(1 + exp(a))2
≥ exp(a)

4

Therefore:

f(a) ≥ exp(−|a|)
4

By Hölder’s inequality, |y�w, x�| ≤ ||w||1||x||∞ ≤ 2ω. This implies that

σ(y�w, x�)(1− σ(y�w, x�)) = f(y�w, x�) ≥ exp(−|y�w, x�|)
4

≥ exp(−2ω)

4
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C Proofs of Propositions in Section 2

In this section, we present the proofs for Theorem 1 and Lemma 1.

C.1 Proof of Theorem 1

Here, we derive bounds on the modulus of continuity defined in (4) with the loss function given by
the �2,∞ norm of the parameters.

Proof Sketch. We begin by giving a brief proof outline. Pθ(1) and Pθ(2) are two Ising models in the
high temperature regime (3) with constant α, and additionally satisfy dTV(Pθ(1) ,Pθ(2)) ≤ �. Consider
Lθ(1),i to be the population negative conditional log-likelihood for the ith node with respect to Pθ(1)

defined earlier. We earlier noted that ∇Lθ(1),i(2θ
(1)(i)) = 0 by the maximum likelihood principle.

In Lemma 7, we show that under these conditions, the gradient ∇Lθ(1),i(2θ
(2)(i)) satisfies

�∇Lθ(1),i(2θ
(2)(i))�2 ≤

�
C(α)�

�
log(1/�), where C(α) is a universal constant only depending on

α. With this intermediate result, we complete the proof of the theorem as follows. Considering the
Taylor series expansion of Lθ(1),i around 2θ(2)(i), we get

Lθ(1),i(2θ
(1)(i)) = Lθ(1),i(2θ

(2)(i)) +
�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

�
+

1

2
ΔT

i ∇2Lθ(1),i( �w)Δi

(i)

≥ Lθ(1),i(2θ
(2)(i)) +

�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

�
+

C

2

exp(−O(ω))

ω
�Δi�22

(ii)

≥ Lθ(1),i(2θ
(2)(i)) +

�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

�
+ C � exp(−c(1− α))

1− α
�Δi�22,

where �w lies between 2θ(2)(i) and 2θ(1)(i), and Δi = 2θ(1)(i)− 2θ(2)(i). In step (i), we have used
the result in Proposition 5 and in step (ii) we use the fact that ω ≤ 1− α.

We also know by the maximum likelihood principle that Lθ(1),i(2θ
(1)(i)) ≤ Lθ(1),i(2θ

(2)(i)), and
substituting this in the inequality above yields

C � exp(−c(1− α))

1− α
�Δi�22 ≤ −

�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

�
≤
���
�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

���� .

Finally, we bound the right hand side using the Cauchy-Schwarz inequality and the result from
Lemma 7 to get

���
�
∇Lθ(1)(i)(2θ

(2)(i)),Δi

���� ≤ �∇Lθ(1),i(2θ
(2)(i))�2�Δi�2 ≤

�
C(α)�

�
log(1/�)�Δi�2,

and substituting this in the quadratic bound above gives

�Δi�2 ≤ C1(α)�
�
log(1/�), C1(α) =

1

C � (1− α) exp(c(1− α))
�
C(α).

We now state Lemma 7 and prove it below.
Lemma 7. Let Pθ(1) and Pθ(2) be two Ising models in the high temperature regime (3) with constant
α that satisfies dTV(Pθ(1) ,Pθ(2)) ≤ �. Then, there exists a universal constant C(α) that only depends
on α such that

�∇Lθ(1),i(2θ
(2)(i))�2 ≤

�
C(α)�

�
log (1/�) for all i ∈ [p]

Proof. Recall that Lθ(1),i(w) = Ez∼P
θ(1)

[�i(w; z)]. By the maximum likelihood principle, we know
that

∇Lθ(1),i(2θ
(1)(i)) = 0 ∇Lθ(2),i(2θ

(2)(i)) = 0
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Since dTV(Pθ(1) ,Pθ(2)) ≤ �, there exists an �-coupling C between Pθ(1) and Pθ(2) . In particular, C is
a joint distribution over z1, z2 such that the respective marginals are z1 ∼ Pθ(1) and z2 ∼ Pθ(2) , and
Ez1,z2∼C [I {z1 �= z2}] ≤ �.

The rest of the proof begins by making the observation that ∇Lθ(1),i(2θ
(2)(i)) =

Ez1,z2∼C [∇�i(2θ
(2)(i); z1)]. By introducing indicator random variables for the cases when z1 and z2

are equal or not, we have

∇Lθ(1),i(2θ
(2)(i)) = Ez1,z2∼C [∇�i(2θ

(2)(i); z1)I {z1 �= z2}] + Ez1,z2∼C [∇�i(2θ
(2)(i); z1)I {z1 = z2}]

= Ez1,z2∼C [∇�i(2θ
(2)(i); z1)I {z1 �= z2}] + Ez1,z2∼C [∇�i(2θ

(2)(i); z2)I {z1 = z2}]
(a)
= Ez1,z2∼C [∇�i(2θ

(2)(i); z1)I {z1 �= z2}]− Ez1,z2∼C [∇�i(2θ
(2)(i); z2)I {z1 �= z2}],

where step (a) follows from the stationarity of 2θ(2)(i) under Pθ(2) like so.

0 = ∇Lθ(2),i(2θ
(2)(i))

= Ez1,z2∼C [∇�i(2θ
(2)(i); z2)]

= Ez1,z2∼C [∇�i(2θ
(2)(i); z2)I {z1 = z2}] + Ez1,z2∼C [∇�i(2θ

(2)(i); z2)I {z1 �= z2}].

Therefore, for any vector v ∈ Sp−2, we have that

���
�
v,∇Lθ(1),i(2θ

(2)(i))
���� =

���Ez1,z2∼C [
�
v,∇�i(2θ

(2)(i); z1)
�
I {z1 �= z2}]

−Ez1,z2∼C [
�
v,∇�i(2θ

(2)(i); z2)
�
I {z1 �= z2}]

���

≤
���Ez1,z2∼C [

�
v,∇�i(2θ

(2)(i); z1)
�
I {z1 �= z2}]

���
� �� �

T1

+
���Ez1,z2∼C [

�
v,∇�i(2θ

(2)(i); z2)
�
I {z1 �= z2}]

���
� �� �

T2

.

Bounding T2: Note that ∇�i(w; z1) = (σ(�w, z1(−i)�z1(i)) − 1)z1(−i)z1(i). Since z1 ∼
{−1,+1}p, we have that |(σ(�w, z1(−i)�z1(i))−1)z1(i)| < 1, and hence we get |�v,∇�i(w; z1)| <
|�v, z1(−i)|.
This in turn implies

Pr(|�v,∇�i(w; z1)�| > t) ≤ Pr(|�v, z1(−i)�| > t)
(b)

≤ 2 exp

�
− t2

C(α)

�

where step (b) follows from the sub-Gaussianity of random variables distributed with respect to an
Ising model in the high temperature regime (Proposition 3). Using standard tail bounds (see [49,
Chapter 2]), we obtain that E[exp(λ(�v,∇�i(w; z1)�))] ≤ exp

�
Cλ2C(α)

2

�
. To finally bound T2, we

use the following result from [39].

Proposition 8 ([39, Lemma 2.3]). Let Z be a random variable such that E[exp(λZ)] ≤ e
λ2σ2

2 . For
any measurable event A, we have

|E[Z · I {A}]| ≤ σP (A)
�
log(1/P (A)).

In T2, the event A is z1 �= z2 and this occurs with probability less than �. Hence, we get T2 ≤
C
�

C(α)�
�
log(1/�).
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Bounding T1: This can be bounded in an analogous manner as T2, thus yielding T1 ≤
C
�

C(α)�
�
log(2/�).

Plugging these bounds above, we get

�∇Lθ(1),i(2θ
(2)(i))�2 ≤ C

�
C(α)�

�
log(1/�,

which proves the statement of the lemma.

C.2 Proof of Lemma 1

Proof. Consider two Ising models with p vertices. For the first Ising model, consider one edge with
parameter 2�. The second Ising model has no edges.

Via a simple calculation, the TV distance between these Ising models can be computed to be
1
2 tanh(2�) ≤ �. Consequently, the �2,∞ norm of the difference in parameters is �, and this proves
the lower bound.
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D Proofs of Propositions in Section 3

D.1 A general result for estimators based on Yatracos classes

Here, we present a result for estimators of the form

Pest = argmin
P∈P

sup
A∈A

���P(A)− �Pn,�(A)
��� , (16)

where �Pn,� the empirical distribution of n samples from the mixture model P� defined in (1) and P is
the class of all distributions. Recall that A is defined as

A = {A(P1,P2) : P1,P2 ∈ P}, and A(P1,P2) = {x : P1(x) > P2(x)}

The result in formally stated in Proposition 2.

Proposition 9. Given n samples from the mixture model P� = (1 − �)P� + �Q, the estimator Pest
defined in (16) satisfies

dTV(Pest,P�) ≤ 2�+ 2 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����

Proof. We begin by using 2dTV(Pest,P�) =
�
x∈X

|Pest(x)− P�(x)|. Consider the sets B = {x :

Pest(x) > P�(x)} and C = {x : Pest(x) ≤ P�(x)}.

This gives us:

�

x∈X
|Pest(x)− P�(x)| = 2 max

A∈{B,C}

�����
�

x∈A

Pest(x)− P�(x)

�����

≤ 2 sup
A∈A

�����
�

x∈A

Pest(x)−
�

x∈A

P�(x)

�����

= 2 sup
A∈A

�����
�

x∈A

Pest(x)−
�

x∈A

�Pn,�(x) +
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����

≤ 2 sup
A∈A

�����
�

x∈A

Pest(x)−
�

x∈A

�Pn,�(x)

�����+ 2 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����
(i)

≤ 4 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����

= 4 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x) +
�

x∈A

P�(x)−
�

x∈A

P�(x)

�����

≤ 4 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����+ 4 sup
A∈A

�����
�

x∈A

P�(x)−
�

x∈A

P�(x)

�����

= 4 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����+ 4dTV(P�,P�)

(ii)

≤ 4 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����+ 4�,

where in step (i) we have used the optimality of Pest and in step (ii) we have used the fact that
dTV(P�,P�) ≤ � and this completes the proof.
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D.2 Proof of Lemma 2

With the general result for estimators based on Yatracos classes, we state the proof of Lemma 2.

Proof. For the estimator in (7), the class of distributions is Gp,k. Via Proposition 9, we have that:

dTV(P�θ,Pθ�) ≤ 2�+ 2 sup
A∈A

�����
�

x∈A

�Pn,�(x)−
�

x∈A

P�(x)

�����
� �� �

T1

Note that distributions in Gp,k are Ising model distributions and are parameterized. Thus, we
can alternatively identify the sets A(P1,P2) via the parameters of Ising model distributions as
A(θ(1), θ(2)).

Bounding T1: The set A(θ(1), θ(2)) is equivalent to

A(θ(1), θ(2)) = {x : logPθ(1)(x) > logPθ(2)(x)}

Recalling the definitions of Pθ(1) and Pθ(2) , and flattening the parameters to R(
p
2), we have:

A(θ(1), θ(2)) =
�
y :
�
θ
(1)
flat − θ

(2)
flat, y

�
+ log(Z(θ(2)))− log(Z(θ(1))) > 0

�
= {y : �w, �y� > 0}

where w = [θ
(1)
flat − θ

(2)
flat, log(Z(θ(2))) − log(Z(θ(1)))] and ỹ = [y, 1]. Z(θ) is the normalization

constant of the probability mass function of an Ising model Pθ and y ∈ R(
p
2) is a vector of sufficient

statistics. Since θ(1), θ(2) ∈ Gp,k, both θ
(1)
flat and θ

(2)
flat can have at most k entries. Consequently, the

vector w can have at most 2k + 1 non-zero entries. Hence, A can be viewed as a collection of sets:

A = {I {�w, y� > 0} : w ∈ R(
p
2), ||w||0 ≤ 2k + 1}

The following proposition bounds the VC-dimension of sparse linear classifiers:

Proposition 10 ([1, Corollary 1]). Consider the class of linear predictors, defined by the set Ss =
{v : ||v||0 ≤ s, v ∈ Rm} i.e. the set of s-sparse vectors. The VC-dimension of this class is upper
bounded as: O(s log(em/s)).

Therefore, from the above proposition, we have that the VC-dimension of A is bounded from above by
O
�
2k + 1) log(ep

2
/4k+2

�
which is O(k log(ep/k)). Hence, by a concentration of measure argument,

we have that with probability at least 1− δ:

T1 �
�

k log(ep/k)

n
+

�
log(1/δ)

n
.

Finally, we obtain

dTV(P�θ,Pθ�) ≤ 2�+O
��

k log(ep/k)

n
+

�
log(1/δ)

n

�
,

and this recovers the statement of the lemma.
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E Proof of Propositions in Section 4

E.1 Proof of Theorem 2

Proof Sketch. We give an outline of the proof of the theorem. Pθ� is an Ising model in the high
temperature regime with constant α. Recall the proposed estimator:

�θ(i) = argmin
w∈Nγ

d (Sp−2)

sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(w;x

(j))}nj=1

���� . (17)

Proposition 5 states that the negative conditional log-likelihood Lθ�,i is C2(α)-strongly convex,
where C2(α) is a universal constant only depending on α. Therefore, by the monotonicity of the
gradient of strongly-convex function, we bound the parameter error ��θ(i)− θ�(i)�2 as

��θ(i)− θ�(i)�22 ≤ 1

C2(α)

�
∇Lθ�,i(�θ(i))−∇Lθ�,i(θ

�(i)), �θ(i)− θ�(i)
�
.

Next, note that

��θ(i)− θ�(i)�2 ≤ 1

C2(α)

�
∇Lθ�,i(�θ(i))−∇Lθ�,i(θ

�(i)), �θ(i)− θ�(i)
�

��θ(i)− θ�(i)�2
(i)

≤ 1

C2(α)
sup

u∈N2d(Sp−2)

���
�
u,∇Lθ�,i(�θ(i))

����

(ii)

≤ 2

C2(α)
sup

u∈N 1/2
2d (Sp−2)

���
�
u,∇Lθ�,i(�θ(i))

���� ,

where in step (i) we have used the facts that 1)
�θ(i)−θ�(i)

��θ(i)−θ�(i)�2
is a unit vector with at most 2d non-zero

elements, and 2) ∇Lθ�,i(θ
�(i)) = 0 by the maximum likelihood principle, and in step (ii) we have

constructed a 1/2-cover of the set N 1/2
2d (Sp−2).

We further analyze the right hand side by splitting it into two different terms as follows.

sup
u∈N 1/2

2d (Sp−2)

���
�
u,Lθ�,i(�θ(i))

���� ≤

sup
u∈N 1/2

2d (Sp−2)

���
�
u,Lθ�,i(�θ(i))

�
− 1DMean

�
{uT∇�i(�θ(i), x(j))}nj=1

����
� �� �

T1

+ sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(�θ(i), x(j))}nj=1

����
� �� �

T2

.

In Lemmas 11 and 12, considering γ = max
�

�
p ,

log(1/δ)
np

�
, and for sufficiently large n (10), we

bound T1 and T2 as T1 ≤
�
C(α)

�
�
�
log
�
1
�

�
+
�

d log(p)
n +

�
d
n log

�
3ep
dγ

��
, and in Lemma

12, we bound T2 as T2 ≤
�
C(α)

�
�
�
log
�
1
�

�
+
�

d log(p)
n +

�
d
n log

�
3ep
dγ

��
+max

�
�, log(1/δ)

n

�

respectively.
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Plugging these bound into the previous right hand side, we obtain

��θ(i)−θ�(i)�2 �
�
C(α)

�
�

�
log

�
1

�

�
+

�
d log(p)

n
+

�
d

n
log

�
3ep

dγ

��
+max

�
�,
log(1/δ)

n

�
,

and this recovers the statement of the theorem.

We state Lemmas 11 and 12 and prove them below.

Lemma 11. Consider samples {x(j)}nj=1 from the mixture model P� = (1− �)Pθ� + �Q, where Pθ�

is an Ising model over p nodes in the high temperature regime (3) with constant α and with maximum
vertex degree d. Suppose n, confidence δ and contamination level � satisfy (10). Then, 1DMean
satisfies

sup
w∈Nγ

d (Sp−2)

sup
u∈N 1/2

d (Sp−2)

����u,∇Lθ�,i(w)� − 1DMean
�
{uT∇�i(w;x

(j))}nj=1

����

≤
�
C(α)

�
�

�
log

�
1

�

�
+

�
d log(p)

n
+

�
d

n
log

�
3ep

dγ

��
.

Proof. Let z ∼ Pθ� . In the proof of Lemma 7, we showed that

Pr(|�u,∇�i(w; z)�|) ≤ 2 exp

�
− t2

C(α)

�

holds due to the form of the gradient and the sub-Gaussianity of the Ising model distribution. This
implies that the gradients of �i due to non-outlier samples are sub-Gaussian. This allows us to leverage
techniques from [41] to produce a guarantee for the 1DMean algorithm when the true distribution is
sub-Gaussian in Lemma 13. This states that

����u,∇Lθ�,i(w)� − 1DMean
�
{uT∇�i(w;x

(j))}nj=1

���� � �

�
C(α) log

�
1

�

�
+

�
C(α)

n
log

�
1

δ

�
,

where w ∈ N γ
d (Sp−2) and u ∈ N 1/2

d (Sp−2).

Finally, to convert the point-wise bound to a uniform bound, we perform a union bound over all the
elements in N γ

d (Sp−2) and N 1/2
d (Sp−2), and use the fact that the number of elements in the cover

can be bounded as |N γ
k (Sp−2)| ≤

�
3ep
kγ

�k
to recover the statement of the result.

Lemma 12. Given samples {x(j)}nj=1 from the mixture model P� = (1 − �)Pθ� + �Q, where Pθ�

is an Ising model over p nodes in the high temperature regime (3) with constant α, there exists a
constant C(α) that only depends on α such that:

sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(�θ(i);x(j)}nj=1

����

≤
�
C(α)

�
�

�
log

�
1

�

�
+

�
d log(p)

n
+

�
d

n
log

�
3ep

dγ

��
+max

�
�,
log(1/δ)

n

�

where �θ(i) is as defined in (9) with γ = max
�

�
p ,

log(1/δ)
p

�
.

Proof. First, define Cγ(θ
�(i)) as the element closest to θ�(i) in the set N γ

d (Sp−2).
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We begin the proof by recognizing that

sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(�θ(i);x(j))}nj=1

����

(i)

≤ sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(Cγ(θ

�(i));x(j))}nj=1

����

(ii)

≤ sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(Cγ(θ

�(i));x(j))}nj=1

�
− �u,∇Lθ�,i(Cγ(θ

�(i)))�
���

� �� �
T2,1

+ sup
u∈N 1/2

2d (Sp−2)

|�u,∇Lθ�,i(Cγ(θ
�(i)))�|

� �� �
T2,2

where Step (i) uses the optimality of �θ(i) and Step (ii) performs splitting by addition and subtraction
as mentioned earlier.

Bounding T2,1: T2,1 can be bounded using Lemma 11, since it holds for any w ∈ N γ
d (Sp−2) and

Cγ(θ
�(i)) ∈ N γ

d (Sp−2 by definition. Therefore, we get

sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(Cγ(θ

�(i));x(j))}nj=1

�
− �u,∇Lθ�,i(Cγ(θ

�(i)))�
���

≤
�
C(α)

�
�

�
log

�
1

�

�
+

�
d log(p)

n
+

�
d

n
log

�
3ep

dγ

��
.

Bounding T2,2: T2,2 can be bounded as follows:

sup
u∈N 1/2

2d (Sp−2)

|�u,∇Lθ�,i(Cγ(θ
�(i)))�| ≤ �∇Lθ�,i(Cγ(θ

�(i)))�2

= �∇Lθ�,i(Cγ(θ
�(i)))−∇Lθ�,i(θ

�(i))�2
≤ L�Cγ(θ

�(i))− θ�(i)�2 ≤ Lγ,

where L is the Lipschitz constant of Lθ�,i. A simple calculation reveals that:

∇2Lθ�,i(w) = Ex∼Pθ�
[σ(�w, x(−i)�xi)(1− σ(�w, x(−i)�xi))x(−i)x(−i)T ]

⇒ vT∇2Lθ�,i(w)v = Ex∼Pθ∗ [σ(�w, x(−i)�xi)(1− σ(�w, x(−i)�xi))(�v, x(−i)�)2]
(i)

≤ 1

4
Ex∼Pθ∗ [(v

Txi)
2]

(ii)

≤ p

4
�v�22

where in Step (i) we have used the fact that σ(z)(1− σ(z)) ≤ 1
4 and in Step (ii) we have used the

Cauchy-Schwarz inequality, leading to L = p.

With the choice of γ = max
�

�
p ,

log(1/δ)
n

�
, we have the final result

sup
u∈N 1/2

2d (Sp−2)

���1DMean
�
{uT∇�i(�θ(i);x(j))}nj=1

����

≤
�
C(α)

�
�

�
log

�
1

�

�
+

�
d log(p)

n
+

�
d

n
log

�
3ep

dγ

��
+max

�
�,
log(1/δ)

n

�

and this completes the proof.
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E.1.1 Auxiliary Results

Here we state and prove Lemma 13, which we use in the proof of Lemma 11.

Lemma 13 ([41, Lemma 3]). Suppose P� is a sub-Gaussian distribution with variance proxy σ2 and
mean µ = Ex∼P� [x]. Given n samples from the mixture distribution P� = (1− �)P�+ �Q, Algorithm
1 returns an estimate �θδ that satisfies

|�θδ − µ| � �

�
σ2 log

�
1

�

�
+

�
σ2 log

�
1/δ

n

�

with probability at least 1− δ.

Proof. The proof mostly follows the proof in [41].

Let I� be the interval µ ±
�
σ2 log

�
1
δ1

�
. For notational convenience, let fn(u, v) =

�
u(1− u)

�
log(1/v)

n + 2
3
log(1/v)

n . Let �I = [a, b] be the interval obtained using the first split of
the sample set Z1 i.e. the shortest interval containing n(1− (δ1 + �+ fn(�+ δ1, δ3))) points of Z1.
In Algorithm 1, we have δ1 = � and δ3 = δ/4.

From [41, Claim 5], we have that

length(�I) ≤ length(I�) ≤ 2

�
σ2 log

�
1

δ1

�
.

To bound the error of the estimator, we analyze the quantity

�����
1

|�I|
�

zi∈Z2

ziI
�
zi ∈ �I

�
− µ

����� ,

where |�I| = �
zi∈Z2

I
�
zi ∈ �I

�
.

We do so by casing on whether a sample zi was sampled from P� or from Q, like so.

�����
1

|�I|
�

zi∈Z2

ziI
�
zi ∈ �I

�
− µ

����� =

��������

1

|�I|



�

zi∈Z2

zi∼P�

ziI
�
zi ∈ �I

�
+
�

zi∈Z2
zi∼Q

ziI
�
zi ∈ �I

�

− µ

��������

≤

��������

1

|�I|
�

zi∈Z2

zi∼P�

ziI
�
zi ∈ �I

�
− µ

��������
� �� �

T1

+

��������

1

|�I|
�

zi∈Z2
zi∼Q

ziI
�
zi ∈ �I

�
− µ

��������
� �� �

T2

.

Bounding T1: From [41, Claim 6], we bound T1 with probability at least 1− δ3 − δ5 as

T1 ≤ �+ fn(�, δ5)

1− δ4
· 4
�

σ2 log

�
1

δ1

�
,

where δ4 = (δ1 + �) + fn(δ1 + �, δ3).
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Bounding T2: To bound T2, we split the terms further.

T2 =

����������

1

|�I|
�

zi∈Z2

zi∈�I
zi∼Q

(zi − µ)

����������

=
|�IP� |
|�I|

����������

1

|�IP� |
�

zi∈Z2

zi∈�I
zi∼Q

(zi − µ)

����������

≤ |�IP� |
|�I|

����������




1

|�IP� |
�

zi∈Z2

zi∈�I
zi∼Q

zi




− E[x|x ∈ �I, x ∼ P�]

����������
� �� �

T2,1

+
|�IP� |
|�I|

���E[x|x ∈ �I, x ∼ P�]− µ
���

� �� �
T2,2

,

where |�IP� | = �
zi∈Z2

zi∼P�

I
�
zi ∈ �I

�
is the number of elements in Z2 that were originally sampled from

P�.

T2,1 is the deviation of the mean of the samples originally sampled from Q and remain in �I from the
mean of P� conditioned on the event that they belong to �I as well. T2,2 measures the deviation of the
mean of P� from the mean of the same distribution conditioned on �I .

Bounding T2,1: We bound T2,1 using [41, Lemma 15]. With this result, we get that with probability
at least 1− δ7,

T2,1 ≤
�

2σ2 log(3/δ7)

P�(�I)
+ 2

�
σ2 log

�
1

δ1

�
log(3/δ7)

|�IP� |
.

Bounding T2,2: To control T2,2 we make use of Proposition 8 in conjuction with [41, Lemma 14]
to get

T2,2 ≤ 2P�(�Ic)

����σ2 log

�
1

P�(�Ic)

�
,

where P�(A) is the probability that z ∼ P� lies in A. Finally, we bound P�(�Ic using [41, Claim 7] to
obtain with probability at least 1− δ6 that

P�(�Ic) ≤ C1�+ C2δ1 + C3
log(n)

n
+ C4

log(1/δ6)

n
+ C5

log(1/δ3)

n
,

where {Ci}6i=1 are universal constants.

Therefore, combining the bounds for T1, T2,1 and T2,2, and setting δ1 = �, δ3 = δ5 = δ6 = δ7 = δ/4

and noting that for the choice of n |�IP� | ≥ n
2 , we get the final deviation bound:

T1 + T2,1 + T2,2 � �

�
σ2 log

�
1

�

�
+

�
σ2 log

�
1/δ

n

�
,

and this completes the proof of the lemma.
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F Proof of Theorem 3

In this section, we present the proof of Theorem F. The proof mostly follows the analysis in the proofs
of Lemma 7 and Theorem 1. The only difference is that we will not be able to use the sub-Gaussianity
of Ising model distributions anymore, as it is no longer applicable.

Proof. Following the proof of Lemma 7, we have for any v such that �v�1 = 1 that
���
�
v,∇Lθ(1),i(2θ

(2)(i))
���� ≤

���Ez1,z2∼C
��

v,∇�i(2θ
(2)(i); z1)

�
I {z1 �= z2}

����

+
���Ez1,z2∼C

��
v,∇�i(2θ

(2)(i); z2)
�
I {z1 �= z2}

����
(i)

≤ Ez1,z2∼C
����
�
v,∇�i(2θ

(2)(i); z1)
���� I {z1 �= z2}

�

� �� �
T1

+ Ez1,z2∼C
����
�
v,∇�i(2θ

(2)(i); z2)
���� I {z1 �= z2}

�

� �� �
T2

,

where in step (i), we have used Jensen’s inequality for f(x) = |x|.

Bounding T1: By Hölder’s inequality
���v,∇Lθ(1),i(2θ

(2)(i))
��� ≤ �v�1

��∇Lθ(1),i(2θ
(2)(i))

��
∞.

Again by Jensen’s inequality, and the explicit form of ∇�i, we have
��∇Lθ(1),i(2θ

(2)(i))
��
∞ =��E

�
∇�i(2θ

(2)(i), z1)
���

∞ ≤ E
�
�∇�i(2θ

(2)(i), z1)�∞
�
≤ 1. Therefore,

Ez1,z2∼C
����
�
v,∇�i(2θ

(2)(i); z1)
���� I {z1 �= z2}

�
≤ Ez1,z2∼C [I {z1 �= z2}] ≤ �.

Bounding T2: T2 can be bounded in the exact same way as T1.

Plugging these bounds, we get that
���
�
v,∇Lθ(1),i(2θ

(2)(i))
���� ≤ 2�.

Now, following the first part of the proof of Theorem 1, we have using Hölder’s inequality and the
bound above that

C

2

exp(−O(ω))

ω
�Δi�22 ≤

���
�
Δi,∇Lθ(1),i(2θ

(2)(i))
���� ≤ �Δi�1

���∇Lθ(1),i(2θ
(2)(i))

���
∞

≤ 2��Δi�1

where Δi = 2θ(1)(i) − 2θ(2)(i). Now, since θ(1) and θ(2) are parameters of Ising models with
maximum vertex degree d, Δi = 2θ(1)(i)− 2θ(2)(i) has atmost 2d non-zero elements. Consequently,
we get �Δi�1 ≤

√
d�Δi�2.

Finally, plugging the above norm inequality in the previous bound, we have:

�Δi�2 � �
√
dω exp(O(ω)).

Analogously, since d ≤ k when G(1), G(2) ∈ Gp,k, we have

�Δi�2 � �
√
kω exp(O(ω)),

Alternatively, note that by the triangle inequality: �Δi�1 ≤ �2θ(1)(i)�1 + �2θ(2)(i)�1 ≤ 4ω. This
gives us:

�Δi�2 �
√
�ω exp(O(ω))

Since both types of inequalities holds simultaneously, we recover the statements of the theorem for
Gp,d and Gp,k.
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