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Abstract

Owing to their stability and convergence speed, extragradient methods have be-
come a staple for solving large-scale saddle-point problems in machine learning.
The basic premise of these algorithms is the use of an extrapolation step before per-
forming an update; thanks to this exploration step, extragradient methods overcome
many of the non-convergence issues that plague gradient descent/ascent schemes.
On the other hand, as we show in this paper, running vanilla extragradient with
stochastic gradients may jeopardize its convergence, even in simple bilinear models.
To overcome this failure, we investigate a double stepsize extragradient algorithm
where the exploration step evolves at a more aggressive time-scale compared to the
update step. We show that this modification allows the method to converge even
with stochastic gradients, and we derive sharp convergence rates under an error
bound condition.

1 Introduction

A major obstacle in the training of generative adversarial networks (GANs) is the lack of an imple-
mentable, strongly convergent method based on stochastic gradients. The reason for this is that the
coupling of two (or more) neural networks gives rise to behaviors and phenomena that do not occur
when minimizing an individual loss function, irrespective of the complexity of its landscape. As a
result, there has been significant interest in the literature to codify the failures of GAN training, and
to propose methods that could potentially overcome them.
Perhaps the most prominent of these failures is the appearance of cycles [4, 6, 7, 20, 21] and,
potentially, the transition to aperiodic orbits and chaos [3, 8, 28, 29, 31]. Surprisingly, non-convergent
phenomena of this kind are observed even in very simple saddle-point problems such as two-
dimensional, unconstrained bilinear games [4, 7, 21]. In view of this, it is quite common to examine
the convergence (or non-convergence) of a gradient training scheme in bilinear models before
applying it to more complicated, non-convex/non-concave problems.
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A key observation here is that the non-convergence of standard gradient descent-ascent methods in
bilinear saddle-point problems can be overcome by incorporating a “gradient extrapolation” step
before performing an update. The resulting algorithm, due to Korpelevich [13], is known as the
extragradient (EG) method, and it has a long history in optimization; for an appetizer, see Facchinei &
Pang [5], Juditsky et al. [11], Nemirovski [26], Nesterov [27], and references therein. In particular, the
extragradient algorithm converges for all pseudomonotone variational inequalities (a large problem
class that contains all bilinear games, cf. [13]), and the time-average of the generated iterates achieves
an O(1/t) rate of convergence in monotone problems [26].
The above concerns the application of extragradient methods with perfect, deterministic gradients
and a non-vanishing stepsize. By contrast, in the type of saddle-point problems that are encountered
in machine learning (GANs, robust reinforcement learning, etc.), there are two important points to
keep in mind: First, the size of the datasets involved precludes the use of full gradients (for more than
a few passes at least), so the method must be run with stochastic gradients instead. Second, because
the landscapes encountered are not convex-concave, the method’s last iterate is typically preferred to
its time-average (which offers no tangible benefits when Jensen’s inequality no longer applies). We
are thus led to the following questions: (i) are the superior last-iterate convergence properties of the
EG algorithm retained in the stochastic setting? And, if not, (ii) is there a principled modification
that would restore them?

Our contributions. To motivate our analysis, we first analyse a counterexample to show that the last
iterate of stochastic EG fails to converge, even in bilinear min-max problems where deterministic EG
methods converge from any initialization. We then consider a class of double stepsize extragradient
(DSEG) methods with an exploration step evolving more aggressively than the update step and prove
it enjoys better convergence guarantees than standard EG in stochastic problems. In more detail:

1. We show that the DSEG algorithm converges with probability 1 in a large class of problems that
contains all monotone saddle-point problems.

2. We derive explicit convergence rates for the algorithm’s last iterate under an error bound condition.
This is the first time that such condition is considered in the analysis of stochastic EG methods,
albeit its popularity in the optimization community.

3. For bilinear min-max problems in particular, our analysis establishes that stochastic DSEG
methods converge at a O(1/t) rate. Prior to our work, last-iterate convergence rate for bilinear
min-max games had only been studied in the deterministic setting.1

4. To account for non-monotone problems, we also provide local versions of these results that hold
with (arbitrarily) high probability. Importantly, thanks to the use of a local error bound condition,
we can obtain local convergence rates even if the Jacobian at a solution contains purely imaginary
eigenvalues.

Related works. The approaches that have been explored in the literature to ensure the convergence
of stochastic first-order methods, in monotone problems and beyond, include variance reduction
with increasing batch size and schemes with vanishing regularization (or “anchoring”). In regard
to the former, Iusem et al. [10] showed that using increasing batch size can ensure convergence in
pseudomonotone variational inequalities. As for the latter, Koshal et al. [14] and Ryu et al. [30]
regularized the problem via the addition of a strongly monotone term with vanishing weight; by
properly controlling the weight reduction schedule of this regularization term, it is possible to show
the method’s convergence in monotone problems.
In contrast to the above, our approach is based on a modification of the choice of the stepsizes,
which has only been studied theoretically in the deterministic setting. Zhang & Yu [35] recently
examined the convergence of several gradient-based algorithms in unconstrained zero-sum bilinear
games with deterministic oracle feedback. Interestingly, they show that the optimal (geometric) rate
of convergence in bilinear games is recovered for asymptotically large “exploration” parameters
γ →∞ and infinitesimally small “update” parameters η → 0. Even though the setting there is quite

1Let us still mention the work of Loizou et al. [17] which appeared on arxiv a few weeks after the submission
of our manuscript: it proved that stochastic Hamiltonian methods applied to (sufficiently) bilinear games ensures
also a O(1/t) convergence rate. Nonetheless, Hamiltoninan gradient descent is not guaranteed to converge to a
solution in monotone games and in general when it converges, it may converge to an unstable stationary point.
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Assumption Guarantee Rate

Extragradient
(Mirror-prox)

[11] monotone ergodic 1/
√
t

[12] strongly monotone last 1/t
[21] strictly coherent last asymptotic

Increasing batch size [10] pseudo-monotone best 1/
√
t

last asymptotic

Repeated sampling [23] monotone ergodic 1/
√
t

SVRE [2] strongly monotone + finite sum last e−ρt

Double stepsize Ours
variational stability (VS) last asymptotic

VS + error bound last 1/t1/3

monotone + affine last 1/t

Table 1: Summary of known convergence results of stochastic extragradient methods. For ergodic, last iterate
and best iterate guarantees, the convergence metrics are respectively dual gap, squared distance to the solution set
and squared residual. Results for single-call [9, 16] and non-extragradient methods [14, 17, 30] are not included.

different from our own, it is interesting to note that the principle of a smaller update stepsize also
applies in their case – see also Liang & Stokes [15] and Mishchenko et al. [23] for a concurrent series
of results, and Ryu et al. [30] for an empirical investigation into the stochastic setting.
Regarding convergence counterexamples, in a recent paper, Chavdarova et al. [2] showed that if EG
is run with a constant stepsize and noise with unbounded variance, the method’s iterates actually
diverge at a geometric rate. Motivated by this, they proposed a SVRG-type variance reduced EG
method for finite-sum problems and proved a geometric convergence of the algorithm when the
involved operator is strongly monotone. Compared to this situation, our counterexample illustrates
that the non-convergence persists for any error distribution with positive variance (no matter how
small) and any stepsize sequence (constant, decreasing, or otherwise). In particular, if EG is run with
noisy feedback, its trajectories remain non-convergent even if the noise is almost surely bounded and
a vanishing stepsize schedule is employed.
Finally, to make our paper’s position clear with respect to the large corpus of work on stochastic
EG methods, we further provide an overview of the most relevant results in Table 1 and refer the
interested reader to the supplement for further discussion.

2 Preliminaries

In this section, we briefly review some basics for the class of problems under consideration – namely,
saddle-point problems and the associated vector field formulation.

Saddle-point problems. The flurry of activity surrounding the training of GANs has sparked
renewed interest in saddle-point problems and zero-sum games. To define this class of problems
formally, consider a value function L : Rd1 × Rd2 → R which assigns a cost of L(θ, φ) to a player
controlling θ ∈ Rd1 , and a payoff of L(θ, φ) to a player choosing φ ∈ Rd2 . Then, the saddle-point
problem associated to a L consists of finding a profile (θ?, φ?) ∈ Rd1×Rd2 such that, for all θ ∈ Rd1 ,
φ ∈ Rd2 , we have:

L(θ?, φ) ≤ L(θ?, φ?) ≤ L(θ, φ?). (SP)

In this setting, the pair (θ?, φ?) is called a (global) saddle point of L – or, in game-theoretic
terminology, a Nash equilibrium (NE). For concision and generality, we will often abstract away
from θ and φ by setting x = (θ, φ) ∈ Rd (where, in obvious notation, d = d1 + d2).

Vector field formulation. In most cases of interest, the objective L is differentiable and is
usually accessed through a first-order oracle returning values of the vector field V (θ, φ) =
(∇θL(θ, φ),−∇φL(θ, φ)). As usual for gradient-based methods, we will frequently (though not
always) assume that V is Lipschitz continuous:

Assumption 1. The field V is β-Lipschitz continuous i.e., for all x, x′ ∈ Rd,

‖V (x′)− V (x)‖ ≤ β‖x′ − x‖. (LC)
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The importance of the above is that (SP) is often intractable, so it is natural to examine instead the
first-order stationarity conditions for V , i.e., the problem:

Find x? ∈ Rd such that V (x?) = 0. (Opt)

This “vector field formulation” is the unconstrained case of what is known in the literature as a
variational inequality (VI) problem – see e.g., Facchinei & Pang [5] for a comprehensive introduction.
In what follows, we will not need the full generality of the VI framework and we will develop our
results in the context of (Opt) above; our only blanket assumption in this regard is that the set of
solutions X ? of (Opt) is nonempty.

Feedback assumptions Throughout the sequel, we will assume that the optimizer can access V
via a stochastic first-order oracle (SFO). This means that at every stage t of an iterative algorithm,
the optimizer can call this black-box mechanism at a point Xt ∈ Rd to get a feedback of the form
V̂t = V (Xt) + Zt where Zt ∈ Rd is an additive noise variable. Our bare-bones assumptions for this
oracle will then be as follows:
Assumption 2. The noise term Zt of SFO satisfies

a) Zero-mean: E[Zt | Ft] = 0. (1a)

b) Variance control: E[‖Zt‖2 | Ft] ≤ (σ + κ‖Xt − x?‖)2 for all x? ∈ X ?. (1b)

where σ, κ ≥ 0 and Ft denotes the history (natural filtration) of Xt.

It is important to note that in (1b), σ and κ play different roles. When κ = 0, the condition corresponds
to the classic bounded variance assumption on the noise. At the other end of the spectrum, σ = 0
implies that the noise vanish on the solution set. This kind of condition has been popularized recently
in the machine learning community under the name of interpolation [34]. In the most general case,
we have both σ > 0 and κ > 0; then condition (1b) allows the variance of the noise to exhibit
quadratic growth with respect to the distance to the solution set. For example, for a stochastic oracle
of the form V̂t = V̂ (ξ,Xt) where ξ is a random variable and V̂ is a Carathéodory function,2 this is
trivially satisfied if V̂ (ξ, ·) is Lipschitz and the variance of the noise is bounded on X ?. Therefore,
Assumption 2 is fairly weak and verified by most relevant problems.

3 The extragradient method and its limitations

As discussed earlier, the go-to method for saddle-point problems and variational inequalities is the
extragradient (EG) algorithm of Korpelevich [13] and its variants. Formally, in the general setting of
the previous section, the EG algorithm can be stated recursively as:

Xt+ 1
2

= Xt − γtV̂t , Xt+1 = Xt − γtV̂t+ 1
2

(EG)

where γt > 0 is a variable stepsize sequence. Heuristically, the basic idea of the method is as
follows: starting from a base state Xt, the algorithm first performs a look-ahead step to generate an
intermediate – or leading – state Xt+ 1

2
; subsequently, the oracle is called at Xt+ 1

2
, and the method

proceeds to a new state Xt+1 by taking a step from the base state Xt. Hence, the generation of the
leading state can be seen as an exploration step while the second part is the bona fide update step.
One of the reasons for the widespread popularity of (EG) is that it achieves convergence in all mono-
tone problems, without suffering from the non-convergence phenomena (limit cycles or otherwise)
that plague vanilla one-step gradient algorithms [5]. However, this guarantee requires the method to
be run with deterministic, perfect oracle feedback (i.e., Zt = 0 for all t); if the method is run with
genuinely stochastic feedback, the situation is considerably more complicated.
To understand the issues involved, it will be convenient to consider the following elementary example:

min
θ∈R

max
φ∈R

θφ. (2)

Trivially, the vector field associated to (2) is V (θ, φ) = (φ,−θ) and the problem’s unique solution is
(θ?, φ?) = (0, 0). Given the problem’s simple structure, one would expect that (EG) should be easily
capable of reaching a solution; however, as we show below, this is not the case.

2That is, V̂ (ξ, ·) is continuous for almost all ξ and V̂ (·, x) is measurable for all x.
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Figure 1: Behavior of (EG) and (DSEG) on Prob-
lem (2) with Gaussian oracle noise. Even with a
vanishing, square-summable stepsize γt = 1/t0.6,
the iterates of (EG) cycle; in contrast, (DSEG) with
γt = 1/t0.1 and ηt = 1/t0.9 converges.

r
γ
+
r
γ ≤

1

rη > 1/2

2
r
γ

+
r
γ
>

1r
γ
>

1
/
q

Vanilla EG policies

Assumption 4
Local results

rγ

rη

1

0.5

10.50 1/q

O
(

1
t

)
for Affine Operators

O
(

1

t1/3

)

Figure 2: The stepsize exponents allowed by
Assumption 4 for convergence (shaded green).
Dashed lines are strict frontiers. Note that vanilla
EG (the separatrix rγ = rη) passes just outside of
this region, explaining the method’s failure.

Proposition 1. Suppose that (EG) is run on the problem (2) with oracle feedback V̂t = V (θt, φt) +
(ξt, 0) for some zero-mean random variable ξt with variance σ2 > 0. We then have lim inft→∞ E[θ2t +
φ2t ] > 0, i.e., the iterates of (EG) remain on average a positive distance away from 0.

Importantly, Proposition 1 places no restrictions on the algorithm’s stepsize sequence and the variance
of the noise could be arbitrarily small. Relegating the details to the appendix, the key to showing this
result is the recursion

E[θ2t+1 + φ2t+1] = (1− γ2t + γ4t ) E[θ2t + φ2t ] + (1 + γ2t )γ2t σ
2.

from which it follows that lim inft E[θ2t + φ2t ] > 0. In turn, this implies that the iterates of (EG)
remain on average a positive distance away from the origin. This behavior is illustrated clearly in
Fig. 1 which shows a typical non-convergent trajectory of (EG) in the planar problem (2).

4 Extragradient with stepsize scaling

At a high level, Proposition 1 suggests that the benefit of the exploration step is negated by the noise
as the iterates of (EG) get closer to the problem’s solution set. To rectify this issue, we will consider
a more flexible, double stepsize extragradient (DSEG) method of the form

Xt+ 1
2

= Xt − γtV̂t, Xt+1 = Xt − ηtV̂t+ 1
2
, (DSEG)

with γt ≥ ηt > 0. The key idea in (DSEG) is that the scaling of the method’s stepsize parameters
affords us an extra degree of freedom which can be tuned to order. In particular, motivated by the
failure of (EG) described in the previous section, we will take a stepsize scaling schedule in which
the exploration step evolves at a more aggressive time-scale compared to the update step. In so doing,
the method will keep exploring (possibly with a near-constant stepsize) while maintaining a cautious
update policy that does not blindly react to the observed oracle signals.
For illustration and comparison, we plot in Fig. 1 an instance of this method with a fairly aggressive
exploration schedule and a respectively conservative update policy. In contrast to (EG), the iterates of
(DSEG) now converge to a solution. We encode this as a positive counterpart to Proposition 1 below:
Proposition 1′. Suppose that (DSEG) is run on the problem (2) with oracle feedback V̂t =
V (θt, φt) + (ξt, 0) for some zero-mean random variable ξt with variance σ2 > 0. If the method’s
stepsize policies are of the form γt = 1/trγ and ηt = 1/trη for some rη > rγ ≥ 0 with rγ + rη ≤ 1,
we have limt→∞ E[θ2t + φ2t ]→ 0.

From an analytic viewpoint, what distinguishes (EG) from (DSEG) is the following refined bound:

Lemma 1. Under Assumptions 1 and 2, for all t = 1, 2, . . . and all x? ∈ X ?, it holds
E[‖Xt+1 − x?‖2 | Ft] ≤ (1 + Ct κ

2)‖Xt − x?‖2 − 2ηt E[〈V (Xt+ 1
2
), Xt+ 1

2
− x?〉 | Ft]

− γtηt(1− γ2t β2 − 8γtηt κ
2)‖V (Xt)‖2 + Ctσ

2, (3)
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with constant Ct = 4γ2t ηtβ + 2γ3t ηtβ
2 + 4η2t + 16γ2t η

2
t κ

2.

The proof of Lemma 1, which we defer to the supplement, relies on a careful analysis of the update
between successive iterates to separate the deterministic and the stochastic effects. Analyzing the
bound of Lemma 1 term-by-term gives a clear picture of how an aggressive exploration stepsize
policy can be helpful:

• The term γtηt(1 − γ2t β2 − 8γtηt κ
2)‖V (Xt)‖2 provides a consistently negative contribution as

long as supt γt < 1/3 max(β, κ).
• The term Ct is antagonistic and needs to be made as small as possible.
• The term E[〈V (Xt+ 1

2
), Xt+ 1

2
− x?〉 | Ft] plays a lesser role since it is non-negative for variational

stable problems (see upcoming Assumption 3) and is even identically zero in bilinear problems.

Therefore, to obtain convergence, one needs the coefficient γtηt to be as large as possible and,
concurrently, each of the terms γ2t ηt, γ

3
t ηt, η

2
t and γ2t η

2
t that appear in Ct should be as small as

possible. Formally, this would lead to the requirement
∑
t γtηt =∞ and

∑
t γ

2
t ηt + η2t <∞. These

conditions can be simultaneously achieved by a suitable choice of γt and ηt (cf. Proposition 1′
above), but they are mutually exclusive if γt = ηt. This observation is the key motivation for the
scale separation between the exploration and the update mechanisms in (DSEG), and is the principal
reason that (EG) fails to converge in bilinear problems.

5 Convergence analysis

We now proceed with our main results for the DSEG algorithm. We begin in Section 5.1 with
an asymptotic convergence analysis for (DSEG); subsequently, in Section 5.2, we examine the
algorithm’s rate of convergence; finally, in Section 5.3, we zero in on affine problems. Given our
interest in non-monotone problems, we make a clear distinction between global results (which require
global assumptions) and local ones (which apply to more general problems).

5.1 Asymptotic convergence
Global convergence. Our assumption for global convergence is a variational stability condition.

Assumption 3. The operator V satisfies 〈V (x), x− x?〉 ≥ 0 for all x ∈ Rd, x? ∈ X ?.

Assumption 3 is verified for all monotone operators but it also encompasses a wide range of non-
monotone problems; for an overview see e.g., [5, 10, 12, 16, 21] and references therein.
To leverage this assumption, we will further need the algorithm’s update step to decrease sufficiently
quickly relative to the corresponding exploration step. Formally (and with a fair degree of hindsight),
this boils down to the following:

Assumption 4. The stepsizes of (DSEG) satisfy
∑
t γtηt =∞,

∑
t η

2
t <∞, and

∑
t γ

2
t ηt <∞.

Assumption 4 essentially posits that ηt/γt → 0 as t → ∞, so it reflects precisely the principle
of “aggressive exploration, conservative updates”. In particular, Assumption 4 rules out the choice
γt = ηt which would yield the vanilla EG algorithm, providing further evidence for the use of a
double stepsize policy. A typical stepsize policy for (DSEG) is

γt =
γ

(t+ b)rγ
and ηt =

η

(t+ b)rη
(4)

for some γ, η, b > 0 and exponents rγ , rη ∈ [0, 1]. Assumption 4 then translates as rγ + rη ≤ 1,
2rη > 1, and 2rγ + rη > 1 as represented in Fig. 2. With this in mind, we have the following
convergence result.

Theorem 1. Let Assumptions 1–4 hold and supt γt < 1/3 max(β, κ), then the iteratesXt of (DSEG)
converge almost surely to a solution x? of (Opt).

As far as we are aware, this is the first result of this type for stochastic first-order methods: almost sure
convergence typically requires stronger hypotheses guaranteeing that 〈V (x), x− x?〉 is uniformly
positive when x /∈ X ? [12, 21]. In particular, Theorem 1 implies the almost sure convergence of the
algorithm for bilinear problems like (2) where EG and standard gradient methods do not converge.
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Local convergence. To extend Theorem 1 to fully non-monotone settings, we will consider the
following local version of Assumptions 1–3 near a solution point x?:

Assumption 1′. The field V is β-Lipschitz continuous near x?, i.e., for all x, x′ near x?,
‖V (x′)− V (x)‖ ≤ β‖x′ − x‖.

Assumption 2′. Let x? ∈ X ? and U be a neighborhood of x?. The noise term Zt of SFO satisfies
a) Zero-mean: E[Zt | Ft]1{Xt∈U} = 0. (5a)

b) Moment control: E[‖Zt‖q | Ft]1{Xt∈U} ≤ (σ + κ‖Xt − x?‖)q. (5b)
for some q > 2 and σ, κ ≥ 0.

Assumption 3′. The operator V satisfies 〈V (x), x− x?〉 ≥ 0 for all x near x?.

Notice that (5b) is slightly stronger than (1b) in the sense that we now require to control the qth
moment of the noise for some q > 2. Nonetheless, this condition as well as the unbiasedness
assumption only need to be satisfied in a neighborhood of x?. Our next result shows that, with these
modified assumptions, the DSEG algorithm converges locally to solutions with high probability:

Theorem 2. Fix a tolerance level δ > 0 and suppose that Assumptions 1′–3′ hold for some isolated
solution x? of (Opt). Assume further that (DSEG) is run with stepsize parameters of the form (4)
with small enough γ, η and proper choice of rγ , rη (cf. Fig. 2). If the algorithm is not initialized too
far from x?, its iterates converge to x? with probability at least 1− δ.

The first step towards proving Theorem 2 is to show that the generated iterates stay close to x? with
arbitrarily high probability. To achieve this, one needs to control the total noise accumulating from
each noisy step, a task which is made difficult by the fact that the norm of the SFO feedback can only
be upper bounded recursively and thus depends on previous iterates. In the supplement, we dedicate a
lemma to the study of such recursive stochastic processes, and we build our analysis on this lemma.

5.2 Convergence rates

Global rate. To study the algorithm’s convergence rate, we will require the following error bound
condition:
Assumption 5. For some τ > 0 and all x ∈ Rd, we have

‖V (x)‖ ≥ τ dist(x,X ?). (EB)

This kind of error bound is standard in the literature on variational inequalities for deriving last iterate
convergence rates [see e.g., 5, 18, 19, 32, 33]. In particular, Assumption 5 is satisfied by

a) Strongly monotone operators: here, τ is the strong monotonicity modulus.
b) Affine operators: for V (x) = Mx+v where M is a matrix of size d×d and v is a d-dimensional

vector, τ is the minimum non-zero singular value of M .

In this sense, Assumption 5 provides a unified umbrella for two types of problems that are typically
considered to be poles apart. Our first result in this context is as follows:

Theorem 3. Suppose that Assumptions 1–3 and 5 hold and assume that γt ≤ c/β with c < 1. Then:

1. If (DSEG) is run with γt ≡ γ, ηt ≡ η, we have:

E[dist(Xt,X ?)2] ≤ (1−∆)t−1 dist(X1,X ?)2 +
C

∆

with constants C = (2γ2ηβ + γ3ηβ2 + η2)σ2 and ∆ = γητ2(1− c2).3

2. If (DSEG) is run with γt = γ/(t+ b)1−ν and ηt = η/(t+ b)ν for some ν ∈ (1/2, 1), we have:

E[dist(Xt,X ?)2] ≤ C

∆− r
1

tr
+ o

(
1

tr

)
where r = min(1− ν, 2ν − 1) and we further assume that γητ2(1− c2) > r. In particular, the
optimal rate is attained when ν = 2/3, which gives E[dist(Xt,X ?)2] = O(1/t1/3).

3For better readability, these constants are stated for the case κ = 0. On the other hand, if σ = 0 (and κ ≥ 0),
a geometric convergence can be proved. The same arguments apply to Theorem 5.
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The first part of Theorem 3 shows that, if (DSEG) is run with constant stepsizes, the initial condition
is forgotten exponentially fast and the iterates converge to a neighborhood of X ? (though, in line with
previous results, convergence cannot be achieved in this case). To make this neighborhood small, we
need to decrease both γ and η/γ; this would be impossible for vanilla (EG) for which η/γ = 1.

The second part of Theorem 3 provides an O(1/t1/3) last-iterate convergence rate. In Section 5.3,
we further improve this rate to O(1/t) for affine operators by exploiting their particular structure.

Local rate. To study the algorithm’s local rate of convergence, we will focus on solutions of (Opt)
that satisfy the following Jacobian regularity condition:
Assumption 5′. V is differentiable at x? and its Jacobian matrix JacV (x?) is invertible.

The link between Assumptions 5 and 5′ is provided by the following proposition:
Proposition 2. If a solution x? satisfies Assumption 5′, it satisfies (EB) in a neighborhood of x?.

The proof of Proposition 2 follows by performing a Taylor expansion of V and invoking the minimax
characterization of the singular values of a matrix; we give the details in the supplement. For our
purposes, what is more important is that (EB) has now been reduced to a pointwise condition; under
this much lighter requirement, we have:

Theorem 4. Fix a tolerance level δ > 0 and suppose that Assumptions 1′–3′ and 5′ hold for some
isolated solution x? of (Opt) with q > 3. Assume further x? satisfies Assumption 5′ and (DSEG) is
run with stepsize parameters of the form γt = γ/(t+ b)1/3 and ηt = η/(t+ b)2/3 with large enough
b, η > 0. Then, there exist neighborhoods U , U ′ of x? and an event EU such that:

a) P(EU |X1 ∈ U) ≥ 1− δ.

b) P(Xt ∈ U ′ for all t | EU ) = 1.

c) E[‖Xt − x?‖2 | EU ] = O
(
1/t1/3

)
In words, if (DSEG) is not initialized too far from x?, the iterates Xt remain close to x? with
probability at least 1− δ and, conditioned on this event, Xt converges to x? at a rate O(1/t1/3) in
mean square error.

Taken together, Theorems 1 and 4 show that for all monotone stochastic problems with a non-
degenerate critical point, employing the suggested stepsize policy yields an asymptotic O(1/t1/3)
rate. In more detail, the last point of Theorem 4 shows that, with the same kind of stepsizes as
in the second part of Theorem 3, we can retrieve a O(1/t1/3) convergence rate provided that the
iterates stay close to the solution. Note that this rate is not a localization of Theorem 3 because, after
conditioning, the unbiasedness of the noise is not guaranteed. To overcome this issue, our proof
draws inspiration from Hsieh et al. [9] but the use of double stepsizes requires a much more intricate
analysis which is reflected in the stronger noise assumption.

5.3 A case study of affine operators

We terminate our analysis with a dedicated treatment of affine operators which are commonly studied
as a first step to understand the training of GANs [1, 4, 7, 15, 22, 35]. The following result improves
the O(1/t1/3) rate of Theorem 3 to O(1/t) for affine operators.

Theorem 5. Let V be an affine operator satisfying Assumption 3, and suppose that Assumption 2
holds. Take a constant exploration stepsize γt ≡ γ ≤ c/β with c < 1 (here β is the largest singular
value of the associated matrix). Then, the iterates (Xt)t∈N of (DSEG) enjoy the following rates:

1. If the update stepsize is constant ηt ≡ η ≤ γ, then:

E[dist(Xt,X ?)2] ≤ (1−∆)t−1 dist(X1,X ?)2 +
C

∆

with C = η2(1 + c2)σ2 and ∆ = γητ2(1− c2).

2. If the update stepsize is of the form ηt = η/(t+ b) for η > 1/(τ2γ(1− c2)) and b > η/γ, then:

E[dist(Xt,X ?)2] ≤ C

∆− 1

1

t
+ o

(
1

t

)
.
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Figure 3: Convergence of a (DSEG) scheme in stochastic bilinear (left), strongly convex-concave (middle) and
non convex-concave linear quadratic Gaussian GAN (right) problems. All curves are averaged over 10 runs with
the shaded area indicating the standard deviation. The benefit of aggressive exploration is evident.

The proof of this theorem relies on the derivation of another descent lemma similar to Lemma 1 but
tailored to affine operators. Note also that Assumptions 1 and 5 are automatically verified in this case.
Theorem 5 mirrors Theorem 3; however, in Part 1 of Theorem 5, the final precision is only determined
by σ2 and η/γ. Thus, compared to Theorem 3, there is no need to decrease γ to obtain an arbitrarily
high accuracy solution. The weaker dependence on γ is further confirmed by Part 2, which shows a
O(1/t) rate with γt constant. As far as we are aware, this result gives the best convergence rate for
stochastic affine operators compared to the literature, and it gives yet another motivation for the use
of a double stepsize strategy.

6 Numerical experiments

This section investigates numerically the benefits of double stepsizes. We run (DSEG) with stepsize
of the form (4) on three different problems: i) a bilinear zero-sum game, ii) a strongly convex-concave
game and iii) a non convex-concave linear quadratic Gaussian GAN model [4, 25]. We examine their
behavior when rγ and rη vary. The exact description of the problems and the experimental details are
deferred to the supplement.
As shown in Fig. 3, for bilinear game and Gaussian GAN examples, choosing rη < rγ turns out to be
necessary for the convergence of the algorithm, and the convergence speed is positively related to
the difference rγ − rη , as per our analysis. For a strongly convex-concave problem, it is known that
the iterates produced by (EG) with noisy feedback achieve O(1/t) convergence for proper choice of
(γt)t∈N [9, 12]. Our experiment moreover reveals that when a double step-size policy is considered,
the convergence speed of the algorithm seems to only depend on (ηt)t∈N and using aggressive (γt)t∈N
has little influence, if any, suggesting that taking a larger exploration step may be a universal solution.
Going one step further, we conduct experiments and observe similar phenomena for the generalized
optimistic gradient method [24, 30] when the output vector is appropriately chosen. We refer the
interested reader to the supplement for a dedicated discussion.

7 Conclusion

In this paper, we examined the benefits of employing a double stepsize extragradient method for
which the exploration step is more aggressive than the update step. This additional flexibility turns
out to be both necessary and sufficient for the method to achieve superior convergence properties
relative to vanilla stochastic extragradient methods in a large spectrum of problems including bilinear
games and some non convex-concave models.
Our results constitute a first attempt towards designing an algorithm that provably avoids cycles and
similar non-convergent phenomena in a fully stochastic setting. Several interesting future directions
include an extended analysis with relaxation of the variational stability assumption as well as the
design of a fully adaptive and/or universal method on the basis of our results.

Broader impact

This work does not present any foreseeable societal consequence.
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